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ABSTRACT

Numerical software is playing an increasingly critical role in modern
society, but composing correct numerical programs is difficult. This
paper describes a doctoral research program that aims to alleviate
this issue. It tackles real world problems and is guided by features
learned from empirically studying these programs. By assisting
developers in the production of numerical software, it improves
the quality and productivity of software development. The research
depends on numerical analysis and lies in the intersection of software
engineering and program analysis.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about Programs]
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1. INTRODUCTION

Numerical software, whose behavior is determined by the compu-
tational representation of real arithmetic, is increasingly important
in many subjects [17]. In physics, numerical software provides the
capability to enter disciplines that are either inaccessible to tradi-
tional experimentation or where carrying out conventional empirical
inquiries is prohibitively expensive.

Some real values, like Pi, have an infinite number of digits. Com-
puters have limited storage and therefore must encode such reals. A
real number can be written in a numeric form, like scientific notation,
or as an algebraic expression. Computers encode numeric forms
using fixed width bit vectors. For instance, they capture scientific
notation into three fields, one bit for the sign and two fixed-width bit
vectors for the exponent and the significand, since the base, which
is always 2, does not need to be encoded [26]. Computer algebra
systems represent real numbers symbolically as a syntax tree.

Although finite precision approximation is accurate enough for
many applications, numerical programs can output incorrect results
or throw arithmetic exceptions. For example, the accumulation of
rounding errors in floating-point computations can lead to arbitrarily
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inaccurate results [8]. The fact that such inaccuracy can cause
massive financial and human losses has been well-established since
1982, when the Vancouver Stock Exchange experienced a huge loss.
A new index was instituted and initialised to 1000.000. The index
was updated after each transaction and 22 months later it had fallen
to 520 because of the propagated rounding error [14].

Writing numerical software that does not violate its specifica-
tion is difficult [13], especially for scientists who have not received
formal training in programming [17]. Therefore, it is critical to auto-
matically detect and eliminate such errors. The underlying cause of
this problem is that the semantics of floating-point arithmetic is com-
plex and unintuitive. A programming model is a set of abstractions
and operations that developers can use to define new abstractions
and write algorithms. Another way to put the problem, then, is
that the programming model of floating-point lacks affordance, a
concept we borrow from psychology and here refers to the property
of a computer system’s easy discoverability of possible actions [19].

My research aims to decide whether floating-point is the well-
suited real encoding of a problem, and when it is, improve the
affordance of floating-point programming model. I will employ
an empirically driven approach; that is, I first identify a real world
problem and then extract features from its instances to guide the
formulation of analysis and testing techniques. I intend to assist pro-
grammers in the production of correct numerical software thereby
improving the productivity and quality of software development.
The research starts with a thorough survey in the field of numeri-
cal program analysis and testing, detailed in Section 2. Section 3
describes an empirical study of different real encodings. I continue
in Section 4 to Section 5 introducing two areas of potential con-
centration. As I progress into my PhD, I will refine and focus my
investigation of these areas into a cohesive topic. In Section 6, I
conclude by presenting the expected contributions to the area.

2. SURVEY

As modern society increasingly relies on numerical software,
numerous researchers have contributed to the field and established
various theories, such as abstract interpretation, metamorphic testing
and satisfiability modulo floating-point arithmetic. However, there
has never been a systematic and self-contained survey. The reason
for me to begin the doctoral journey with a survey is that it can
benefit researchers, including me, by presenting a detailed and
objective description of the state of the art. The survey covers three
topics: static analysis, floating-point testing and symbolic execution.

2.1 Static Analysis

Static analysis has a long tradition of being applied to numeri-
cal programs and the general problem is imprecision. Among all



the techniques in static analysis, abstract interpretation and model
checking are the most prominent.

Abstract interpretation is a theory of the approximation of pro-
gram semantics with properties of interest preserved, established by
Cousot and Cousot in 1977 [6]. It rests on two key concepts: the
relation between concrete and abstract semantics through Galois
connections, and the computation of a fixpoint of the abstract seman-
tics, through the combination of widening and narrowing operators.
Since its birth, abstract interpretation has been well-developed and
considerable research has been undertaken.

I briefly introduce some research in abstract interpretation to illus-
trate how the survey is conducted. Abstract domain, the computer
representation of program invariants and operators to manipulate
them, is the key concept of abstract interpretation. The interval and
affine domains are often used to analyse numerical programs. The
interval domain is based on interval arithmetic, a classical concept
developed by Moore [18], and has been widely used in scientific
computing. Interval arithmetic tracks three sources of errors —
rounding, truncation and input errors — by setting lower and upper
bounds, thereby yielding reliable intervals that the true results lie
within. Cousot and Cousot adapted interval arithmetic to the needs
of abstract interpretation in 1977 [6]. In this domain, each program
variable is bounded by an interval [a,b], where a and b are computer-
representable values and a < b holds. The interval domain is effi-
cient and easy to implement, but the lost track of relations among
variables leads to a severe imprecision. For instance, given a variable
x represented by [3,10], we now estimate a function f(x) = x —x.
Apparently, f(x) = 0 holds. However, according to the interval sub-
traction, f(x) = [5,10] — [5,10] =[5 — 10,10 — 5] = [-5, 5], which
is considerably inaccurate.

Affine domain which was built to overcome the drawbacks of
interval domain also originates from a mathematical theory. Affine
arithmetic, introduced by Comba and Stolfi in 1993 [5], is a model
for numerical computation in which an unknown numeric quantity
x is represented by an affine form £ = xo +x1€; +x26 + -+ - +X,,&n,
where € € [—1,1]. Elementary operations are defined based on this
representation. Goubault first applied affine arithmetic to abstract
interpretation in 2001 [12], intending to statically analysing the
precision of numerical values with acceptable accuracy. Since then,
affine domain has been continuously extended. It now mainly serves
to identify computations which introduce significant precision loss
and to describe the propagation of rounding errors.

Model checking is an automated technique to exhaustively check
whether a given model of a computer system has the specified prop-
erties [9]. Though it is extensively applied to hardware designs,
according to a case study under the Certification Technologies for
Advanced Flight Critical Systems program [25], model checking can
effectively find errors at the design stage of software development,
even for complex numerical programs. In 2006 Siegel ef al. pro-
posed an idea of combining model checking and symbolic execution
to verify the correctness of parallel numerical programs [22].

Other techniques are emerging. In 2013, Bao and Zhang de-
veloped an efficient technique to address instability problems in
floating-point programs [1]. By comparing the exponents of the
operands, the technique identifies computations where canceled bits
occur and marks the result as inaccurate. It tracks inaccurate values
and reports instability when the error reaches a critical execution
point, such as a predicate. In 2014, Schkufza et al. used stochas-
tic search to optimise floating-point programs [21]. This approach
repeatedly applies random transformations, including opcode re-
placement, code swap and instruction replacement. To validate an
optimisation, they check whether the rewriting introduces impreci-
sion greater than a user-defined value.
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2.2 Testing

For decades, testing has dominated software validation in industry.
Broadly, testing depends on solving two problems: generating test
cases and defining a test oracle, a means of determining whether a
program’s output on a specific input is correct. Floating-point pro-
grams exacerbate both problems. For brevity, I only discuss the test
oracle problem in the numerical context. As described in Section 1,
floating-point is a finite precision approximation to the real number
system, thus testing for equality is problematic. Two computations
that are equivalent in real arithmetic may produce different floating-
point results. To check the equality in floating-point, a maximum
error must be specified. Simply put, if two values are closed enough,
we regard them as equivalent. Hence, the definition of test oracles
in floating-point depends on a detailed specification, which is often
neglected in practice because it is complicated and time-consuming.
Regarding floating-point testing, the survey will start with research
including Berkeley elementary function test suite [16] which was
later extended at Sun Microsystems. The survey also considers
metamorphic testing [4] which attempts to alleviate the problem of
test oracles by exploiting metamorphic relations.

2.3 Symbolic Execution

Symbolic execution is a program analysis technique born in the
mid 1970s [15]. It executes programs by supplying symbolic instead
of concrete inputs and generates test cases by solving constraints that
is collected along the path and updated whenever a branch statement
is executed. Though numerous applications have utilised the power
of symbolic execution, in addition to the existing issues such as path
explosion and external functions, additional problem arises when it
is applied to numerical programs. The fact that the Associative and
Distributive laws do not hold over floating-point makes constraint
rewriting extremely difficult. Thus general purpose solvers that
support floating-point have not been implemented. In 2006 Botella
et al. defined efficient projection functions over floating-point in-
tervals to solve normalised symbolic expressions [3]. Moreover,
Lakhotia et al. provided a unified framework to solve constraints
over floating-point variables by combining symbolic execution and
search-based software testing in 2010. The described research will
be the preliminary target of the survey.

3. REAL ENCODING COMPARISON

Though floating-point has been adopted by a majority of the
computer systems, other real encodings, such as symbolic alge-
bra representations [10], Q format [20] and logarithmic number
system [24], have different trade-offs and can replace or even out-
perform floating-point under particular circumstances. Symbolic
algebra representation is extensively used in computer algebra sys-
tems like Mathematica and Maple, while Q format is often adopted
when the hardware does not have a floating-point unit or constant
resolution is required. For logarithmic number system, it is suitable
for applications in which most arithmetic operations are multipli-
cation or division [11]. However, no empirical study regarding
the comparison of popular real encodings has ever been conducted.
Can we analyse an arbitrary numerical program and determine an
acceptable encoding based on the comparison?

To work on this topic, I will mathematically compare these real
encodings. For example, I can establish a function which maps
every floating-point representation to a mathematically equivalent
one in Q format. Regarding these two encodings, I can undertake
a theoretical comparison over the supporting range and intervals
between adjacent values. Afterwards, I will choose a set of sample
programs in which at least one encoding is likely to outperform
others. For example, I will select programs from FPGA-based



applications where multiplication and division are frequently used
for logarithmic number system. With respect to Q format, the source
will possibly be applications for DSP fixed-point operation where
floating-point tends to perform worse. Based on these sample codes,
I will actually run them using different real number encodings and
record the statistics such as computation time, accuracy and memory
consumption. From the set of programs that solve some numerical
problems, it is undecidable to choose the best encoding in terms
of accuracy and compactness. Thus I aim to identify a nontrivial
subset of actually occurring programs that people actually care about.
Within the subset which is amenable to the proposed analysis, a tool
that is able to choose the optimal encoding can be built. Eventually,
I will validate the tool by inputting programs outside of the corpus
and comparing the result with manual selection.

A key difficulty of the proposed study will be generating real-
world inputs for the programs. Generally falling back on a uniform
distribution over a program’s input domain can, in principle, arbitrar-
ily distort, and therefore invalidate, my findings. To capture these
inputs, there are several possible methods. First, I observe that some
programs document the subset of their domain that their authors
designed them to consume. I will seek out such documentation, as
it appears in comments or conditionals in the source code. Second,
I will favour programs that have associated test cases: clearly, the
program’s developers believed these inputs to be likely, or at least
possible, in the program’s operating environment. Third, similar to
metamorphic testing introduced in Section 2, I will, where possi-
ble, exploit mathematical identities, like sin?x + cos?x = 1, as test
oracles to generate inputs that a program that implements such an
identity must represent. I can also utilise reverse symbolic execution
or Dijkstra’s weakest precondition [7] to solve the input set with the
premise of knowing the exit point of the program.

The following examples briefly demonstrate how such a tool
might work. The tool can calculate the percentage of multiplication
and division in all arithmetic operations to decide whether to adopt
logarithmic number system. As particular embedded systems do
not have floating-point unit, the tool can also analyse the program
including variable names, comments and even documents along
with the code to decide whether it is targeting at these embedded
systems, thereby making decisions upon whether to apply Q format.

4. FLOATING-POINT EXCEPTIONS

According to the IEEE 754 standard, floating-point exceptions
are divided into five categories: overflow, underflow, finite division
by zero, inexact and invalid [26]. The meaning of the first three
exceptions is self-explanatory. Inexact is thrown when a real number
cannot be represented accurately; that is, it lies between two floating-
point values and therefore needs to be rounded. Invalid covers
situations where undefined operations occur, such as oo 4 (—o0),
000, 00/0, and /x where x < 0.

As discussed in Section 1, floating-point exceptions can be catas-
trophic. In 2013 Barr et al. presented Ariadne, a symbolic execution
engine for automatically identifying inputs which trigger floating-
point exceptions in a given C/C++ program [2]. The fundamental
idea is to convert the task of exception detection into a reachability
problem. Specifically, Ariadne adds a conditional guard before each
floating-point computation, symbolically executes the transformed
program over arbitrary precision rationals and checks whether the
exception is reachable. Ariadne rests on a hypothesis that dense
neighborhoods of exception-triggering inputs exist because it ap-
proximates floating-point using arbitrary precision rationals. How-
ever, this hypothesis has not been validated. Additionally, Ariadne
only analyses C/C++ programs and supports scalars. This restriction
undermines its programming model.
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I plan to refactor, extend, and release Ariadne, because it will
support and validate my future research. Scientists will also benefit
from the extension by using Ariadne to analyse their numerical
programs. First, I will undertake an experiment to compare Ariadne
against fuzz testing in terms of the number of exceptions found in a
given period of time. Next, I intend to enhance the language support
of Ariadne. Among the rest of active languages, Fortran and Python
have the highest priorities, because the former has been used in a
majority of the legacy numerical systems and the latter is currently
regarded as a popular scripting language for scientific computing.
Finally, I will add support for non-scalars, such as pointers and
arrays, to Ariadne.

S. EXPRESSION REWRITING

Mathematical expressions that are encoded by floating-point can
trigger arithmetic exceptions. Because of the poor affordance of
floating-point programming model, inexperienced programmers
tend to have an illusion that they are coding in real arithmetic,
thereby neglecting cases where intermediate computation under-
flows or overflows. The research on automatic detection of floating-
point exception by Barr ef al. [2] shows such cases are nontrivial.
Rewritings of a single expression using the laws of algebra — the
Commutative, Associative and Distributive laws — are equivalent
over real arithmetic by definition, but may be nonequivalent over
floating-point arithmetic. If the result of an expression that throws
exceptions can be represented by floating-point, can we always
rewrite it to an equivalent form that is exception-free?

I plan to investigate rewriting these expressions to eliminate their
intermediate under- or over- flows. Since the number of possible
rewritings resulted from applying the Associative and Commutative
law is the Catalan Number [23] and permutation, respectively, brute
force testing every possible rewriting is unfeasible. However, the set
of mathematical expressions in programs that developers actually
compose to tackle actual problems may be small enough to be
solvable. I propose to validate the feasibility of the rewriting by
undertaking an empirical study of the expressions extracted from a
corpus of real world numerical software.

Assuming that such a rewriting is viable, I will build a tool to au-
tomatically identify and extract mathematical expressions from the
control flow graph (CFG) of a given numerical program. This plan is
based on an assumption that accurate CFGs have been constructed,
which is, in fact, challenging because of two reasons. First, building
a precise CFG is undecidable because the conditional expression
itself may be undecidable. The second problem is related to indirect
jumps, where the address of the instruction to be executed next,
instead of being a constant, is located in registers or memory.

To efficiently search for the acceptable rewriting in such a vast
space, I propose to utilise a genetic algorithm, because it only needs
a fitness function to guide the search and currently the order of the
algebra laws applied to transform the expression is not clear. How
to appropriately encode the candidate solution and accurately define
a fitness function remains challenging. Considering the specific
working procedure of this tool, it will automatically create a new
program which only contains necessary definitions and one possible
rewriting from the sample space, simulate a running process and
measure properties such as the occurrence of arithmetic exception,
computation time and data accuracy. These properties act as param-
eters of the fitness function. The entire process will be repeated until
a solution has been selected to replace the original one.

I will conduct a thorough evaluation by running a set of sample
programs which are composed of different kinds of complex arith-
metic computations with and without the involvement of this tool
and compare the statistics.



6. CONCLUSION

By the end of my PhD study, I hope to make contributions to the
field of numerical program analysis and testing as following:

e Provide a systematic and self-contained survey of the existing
research in the area.

e Release the extended Ariadne to benefit researchers who need
to check the correctness of their numerical programs.

e Present validated instructions to programmers of which real
encoding is optimal under certain circumstances.

e Propose an approach to automatically rewrite mathematical
expressions to eliminate floating-point exceptions caused by
some intermediate computations.

This research depends on numerical analysis and lies in the in-
tersection of software engineering and programming language. I
welcome feedback on how to best present it for publication in a
software engineering venue.
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