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ABSTRACT
A version control system, such as CVS/SVN, can provide the
history of software changes performed during the evolution
of a software project. Among all the changes performed
there are some which cause the introduction of bugs, often
resolved later with other changes.

In this paper we use a technique to identify bug-introducing
changes to train a model that can be used to predict if a new
change may introduces or not a bug. We represent software
changes as elements of a n-dimensional vector space of terms
coordinates extracted from source code snapshots.

The evaluation of various learning algorithms on a set of
open source projects looks very promising, in particular for
KNN (K-Nearest Neighbor algorithm) where a significant
tradeoff between precision and recall has been obtained.

Keywords
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1. INTRODUCTION
Software faults affect negatively its quality assurance as the
time and people available are usually not sufficient to elim-
inate all faults before a release. A technique that allows
software engineers to identify the most fault-prone code is
of great interest as it permits to concentrate the effort on
such code, for example, with more test cases. On the other
hand, a technique that prevents the introduction of fault-
prone code offers another perspective of the same problem
as it will inevitably reduce the presence of such fault-prone
code. Moreover the concurrent action of a fault-prone code
identification technique and a fault-prone code prevention
technique should affect positively software quality in both
testing and coding phases. In this paper we focus on pre-
dicting if a new change may introduce a bug, alerting devel-
opers to prevent the introduction of fault-prone code. Fol-
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lowing a seminal work introduced in [14] we use a technique
to identify bug-introducing changes to train a model and
then predict whenever a new change is to be made if it in-
troduces a potential bug or not. When developers make a
change to a software system, either to add new functionality,
restructure the code, or to fix an existing bug, they may in-
advertently introduce a bug into the system. This is known
as a bug-introducing change, the modification in which a bug
was introduced into the software. Later, this bug may be
discovered and tracked with a bug-tracking system and sub-
sequently resolved by a developer with a commit into the
versioning system. This is known as a bug-fix change which
may includes, in the commit notes, the identifier of the bug
report that was just fixed [9].

We exploit the information carried by source code changes
which introduced a bug fixed later with another change.
Such bug-introducing changes are important also for under-
standing properties of bugs and mining bug prone change
patterns [17]. Our model uses a weighted terms vector rep-
resentation of source code which has been applied with suc-
cess in a number of contexts [2, 3], as it is able to synthesize
with a strong mathematical structure the representation of
source code. With such a representation a bug-introducing
change can be computed with a vector difference and used
as a feature vector of a learning algorithm. The basic in-
tuition behind such approach is that weighted terms vector
are able to capture change patterns and a learning model
is able to classify those related to bug-introducing changes.
This paper evaluate such intuition with various well known
learning algorithms on two open source projects. Promis-
ing results have been obtained for KNN (K-Nearest Neigh-
bor algorithm) with the best tradeoff between precision and
recall (both at 58%) and Simple Logistic regression with
the best precision (80%). Main contributions of this pa-
per are: (i) a learning based bug prediction approach that
can be a useful support to prevent the introduction of bug-
prone changes;(ii) a quantitative evaluation of the proposed
approach with respect to the adopted learning algorithms;
and (iii) a qualitative evaluation about how bug-introducing
causes can be discovered by inspecting into the learning
model. The paper is organized as follows: the next Sec-
tion gives an overview about the topics which the prediction
model is based on; Section 3 introduces the prediction model
and the learning algorithms we wish to evaluate; Section 4
evaluates the approach among different learning algorithms
on two open-source projects; finally, related work and con-
clusions are given respectively in Sections 5 and 6.
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2. BACKGROUND
In this Section we briefly introduce some topics which con-
stitute the basis of the prediction approach presented in the
following Section.

2.1 Snapshots extraction
A number of techniques have been presented in literature to
extract from CVS/SVN repositories logical coupled changes
performed by developers working on a bug fix or an enhance-
ment feature [9]. Such techniques consider the evolution of a
software system as a sequence of Snapshots (S0, S1, . . . , Sn)
generated by a sequence of source code changes (∆1, ∆2,
. . . , ∆n), also known as Change Sets, representing the logical
changes performed by a developer, for example, in terms of
added, deleted, and modified source code lines. Approaches
based on time–window consider a Change Set as sequence of
file revisions that share the same author, branch, and com-
mit notes, and such that the difference between the time-
stamps of two subsequent commits is less or equal than 200
seconds [29]. Approaches based on time–warping consider a
Change Set as the set of file revisions that change together
almost all the time [6].

2.2 Finding Bug-introducing changes
A number of work in literature have been proposed to clas-
sify a source code change as a bug fix or not. There are
methods that analyze log messages in two ways: searching
for keywords such as ‘Fixed’ or ‘Bug’ [19] and searching for
references to bug reports like ‘#12345’ [9]. In addition to
know when a bug is fixed, another question, introduced in
literature, is to know when such a bug is introduced into
the system. Kim et al. proposed a method to find the set of
changes which introduce a bug fixed later [14]. We use such
a technique to extract from the CVS/SVN repository, of a
software system, the set of bug-introducing changes which
provide the training set of a model to predict if a new change
introduces a bug. Such a technique is briefly explained in
Figure 1. Starting from a bug-fixing change, ∆i, the set
of preceding changes ∆j , with j < i, are inspected to find
those that contain the lines of code handled in the initial
change, ∆i. Such backward tracking is performed by using
a line change detection algorithms which maps homologue
lines of two subsequent snapshots [7].
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Figure 1: Identification of a bug-introducing change

As stated by their authors such approach exhibit a good
precision but a limited recall as the causes of a bug may have
hidden dependencies which are difficult to localize entirely.

2.3 Weighted terms vector representation of
changes

A weighted terms vector is defined as set of coordinates in
an n-vector space (x1, x2, . . . , xn), where xi is a real num-
ber representing the weight of the ith term extracted from a
source code document. We defined here a source code docu-
ment as the unit we intend to represent, such as classes,
files, packages, releases. Terms are extracted by consid-
ering a sequence of alphanumeric characters separated by
non-alphanumeric characters including for example, vari-
ables names and types, language keywords, function/method
names, comments. From such extraction process code com-
ments are discarded as well as blank lines and large string lit-
erals. The weight xi is defined by the product: tfi · log(idfi),
where tfi (i.e., term frequency) is the number of term occur-
rence divided by the total number of terms in the document,
and idfi (i.e., inverse document frequency) is the total num-
ber of documents divided by the number of documents such
term appears.

Such a vector based representation permits to consider a
software snapshot as a weighted terms vector in an n-dimen-
sional space, where n is the total number of terms extracted
from the overall set of snapshots (i.e. the vocabulary). Vec-
tor algebra allows to compute the representation of a source
code change, ∆j , as the vector difference between Sj and
Sj−1 (see Figure 2). Coordinates of such a vector differ-
ence are real numbers which can be positive, negative, and
zero, when such code element coordinates has been added,
deleted, and left unchanged respectively.
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Figure 2: Representation of a change: vector differ-
ence between two subsequent snapshots

Vectors representing software changes have some interesting
properties we briefly list in the following:

• They are insensible to large used code snippets due to
the idf factor, for example composed of very frequent
language keywords (ex. java import keyword) and/or
domain specific code (ex. logging) occurrences;

• They are able to capture project-specific change pat-
terns, such as particular co-occurrences of API usage
patterns and pre/post conditions;

• They are independent from the programming language
as they does not consider the syntactic information of
source code;
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3. PREDICTION MODEL
A prediction model is a mathematical model that makes
predictions based on correlations or relationships among fea-
tures [26]. After the prediction model is built, one sample at
a time is loaded into the prediction model and processed to
make a prediction of that sample. In the context of a soft-
ware development process this means that when a change is
to be performed by a developer a check point can be arisen,
which evaluate if such a change may introduces a bug or not.
Obviously the model cannot tell us which are the motiva-
tions of a bug-introducing change but it can alert developers
that such a change he/she is currently typing could be risky
or not. If it is the case of potential bug-introduction the de-
veloper can perform a more accurate review of s/he’s code
before committing the change into the system.

Such kind of assistance mechanism, which is a challenging
issue in the future of programming environments [28], can be
applied in particular during the coding phase and we belief
that it could be crucial to reduce the effort of bug fixing
performed usually during the testing phase as many of such
bugs may be detected before. The evaluation of such effort
reduction, such as the reduction of new bugs discovered in
the case of using the prediction model and not, is a future
work. In this paper we focus on evaluating the prediction
capability of such a built model.

The prediction model can be synthesized as follows:

y = SLA(∆new, Λ)

where, ∆new is the incoming new change, Λ is the set of past
performed changes (i.e. learning set) for which is known if
introduces a bug or not, SLA is a supervised learning al-
gorithm chose from the literature of machine learning algo-
rithms [26], and y={bug, ¬bug} is the dichotomic depen-
dent variable with two possible outcomes: introduces or not
a bug. A supervised learning algorithm generates a function
that maps inputs to desired outputs, which in general is a
classification problem. The learner is required to approxi-
mate the behavior of a function which maps a vector into one
of several classes by looking at several input-output exam-
ples of the function. In our case the number of classification
classes are two: bug and ¬bug.

In the following a brief description of the learning algorithms
we evaluated in the case study. We selected the algorithms
which are more suitable for a categorical classification prob-
lem and which have reported a valuable performance. More
information can be found in their respective references.

3.1 K-Nearest Neighbor
K-Nearest Neighbors (KNN) classifier is a type of instance-
based learning for classifying objects based on closest train-
ing examples in the feature space [1]. The training examples
are mapped into multidimensional feature space which is
partitioned into regions by class labels of the training sam-
ples. A point in the space is assigned to the class if it is
the most frequent class label among the k nearest training
samples. Usually a weighted Euclidean distance is used to
compute the closeness to samples. The number of neigh-

bors, k, can be set both as a parameter or can be selected
considering the mean squared error for a given training set.

3.2 Simple logistic regression
Logistic regression models are particulary suitable in the
case of dichotomous dependent variables [16]. In the case
of Simple logistic the model is fit with a simple regression
function, usually a sigmoidal, used as a base learner. The
optimal number of iterations can be detected automatically
and can be set in order to minimizes the root mean squared
error on the training set.

3.3 Multi-boosting
Multi-boosting is an improvement of the adaptive boosting
(ADABoosting) meta-algorithm which has subordinate al-
gorithms as variable and replaceable parameters [25]. The
basis of such algorithms are the boosting stages, which in-
crements iteratively the performance of the current learned
function. At every stage a weak learner is trained with the
data and then its output is added to the learned function,
with some strength proportional to how accurate the weak
learner is. Multi-boosting uses the C4.5 as the base learning
algorithm with a wagging mechanism which provide a fast
convergence to the optimal learner function.

3.4 C4.5
C4.5 is a decision tree generating algorithm, based on the
ID3 algorithm [20]. A decision tree is basically a tree in
which each branch node represents a choice between a num-
ber of alternatives, and each leaf node represents a decision.
They has been successfully used in expert systems in captur-
ing knowledge. The main task performed by a decision tree
generating algorithm, such as C4.5, is using inductive meth-
ods to the given values of attributes of an unknown object
to determine appropriate classification according to decision
tree rules. In particular C4.5 allows to avoid overfitting the
data, to determine how deeply to grow a decision tree, to
reduce error pruning, rule post-pruning, to choose an appro-
priate attribute selection measure, to handle training data
with missing attribute values, and to handle attributes with
differing costs.

3.5 SVM
Support Vector Machine (SVM) is a kernel based learning
algorithm that use the idea of structural risk minimiza-
tion from computational learning theory [8]. The classi-
fications main purpose is to obtain a good generalization
performance, that is a minimal error classifying unseen test
samples. Basically SVM map input vectors to a higher di-
mensional space where a maximal separating hyperplane is
constructed. Two parallel hyperplanes are constructed on
each side of the hyperplane that separates the data. The sep-
arating hyperplane is the hyperplane that maximizes the dis-
tance between the two parallel hyperplanes. Given a labeled
set of training samples a SVM classifier finds the optimal hy-
perplane that correctly separates (classifies) the largest frac-
tion of data points while maximizing the distance of either
class from the hyperplane (the margin). An assumption is
made that the larger the margin or distance between these
parallel hyperplanes the better the generalization error of
the classifier will be.
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Table 1: Case study history characteristics
Snapshots/

System Changes Releases KNLOC Classes
JHotDraw 132 5.2–5.4B2 13.5–36.3 164–489
DNSJava 1204 0.3–2.0.2 5.5–25.3 55–179

Table 2: Data-set characteristics of each system
# of changes

System bug-fix bug ¬bug
JHotDraw 38 19 (14%) 113 (86%)
DNSJava 114 263 (22%) 941 (78%)

4. CASE STUDY
We selected two open-source systems, JHotDraw and DNS-
Java which can be classified as small size systems. We
extracted from such systems only the HEAD development
trunk (i.e., excluding branches) by using the time-window
heuristic [9] and ignored changes that involve more than
30 source code files in order to exclude large CVS mainte-
nance activities. Table 1 reports for each system, the num-
ber of extracted snapshots, the range of analyzed releases,
the minimum and maximum number of non commented lines
of code (KNLOC), and the minimum and maximum number
of classes (excluding anonymous-classes).

JHotDraw1 is a Java framework for drawing 2D graphics.
The project started in October 2000 with the main purpose
of showing the Design Pattern Programming in a real con-
text. We extracted a total of 132 snapshots from release 5.2
to release 5.4 BETA2, in the time interval between March
2001 and February 2004. In that interval the size of the sys-
tem grew almost linearly from 13.5 KNLOC at release 5.2
to 36.5 KNLOC at release 5.4 BETA2.

DNSJava2 is an open-source Domain Name Server written in
Java. The project started in September 1998. It comprises
classes for handling DNS names, records, addresses, and for
caching name resolutions. The interval of observation con-
sidered ranges from March 1999 (release 0.3) to June 2006
(release 2.0.2). The total number of releases produced in this
range is 52 including pre and beta releases. The CVS system
is managed by a single user account, probably because the
submission of changes are performed in a strictly controlled
way. The number of classes grew from 55 to 179 in a non
linear fashion, while the number of non commented lines of
code ranges between 5000 and 25000. The total number of
snapshots extracted from the HEAD development trunk is
1204.

We applied the prediction model introduced in Section 3 on
both JHotDraw and DNSJava data-sets and evaluate the
performance by using different learning algorithms. Table 2
summarizes such data-sets characteristics showing the num-
ber of changes which fix a bug, introduce a bug (bug), and
those that don’t introduce bugs (¬bug). Beside the good
precision of the bug-introduction detection approach, we in-
spected manually such data-sets in order to eliminate all
false positives and discarded those change commits which
include more than 30 different source files which may intro-

1http://www.jhotdraw.org
2http://www.dnsjava.org

duce noise in the change vector representation. False nega-
tives have been ignored as they are difficult to retrieve man-
ually. In any case their absence should not strongly affect
the results we have obtained. Figures 3(a) and 3(b) show
the density distribution among snapshots of bug-introducing
changes. DNSJava exhibit an evident decreasing trend, while
JHotDraw have a peak in the middle stage of development
and then still decreases. This does not mean that the most
recent changes does not introduce bugs but, as the tech-
nique briefly introduced in Section 2.2 is able to identify
bug-introducing changes by starting from bug-fixed changes,
more recent bug-introducing changes could be identified only
later, when new bugs are discovered and fixed.

We used Weka3 which provides a collection of machine learn-
ing algorithms for data mining tasks [26] and a number of
model validation options. We chose to perform two model
validation options discussed in the next two subsections.
The first consists in a 10-fold cross-validation, while the sec-
ond consists in an incremental learning validation which is
more adherent to a real development context. Performances
has been calculated with the precision and recall for each
of the two possible outcome values (bug and ¬bug). This
is because the distribution of bug-introducing and not-but-
introducing changes are not equal, and not-bug-introducing
changes is usually more higher than bug-introducing changes
(see Table 2). Precision and recall are defined respectively
as:

P =
CP

CP + FP
R =

CP

CP + FN

where CP is the number of correct positives, FP is the
number of false positives, and FN is the number of false
negatives.

4.1 Cross-validation
In order to compare performances of the different methods, a
10-fold cross-validation [24] for each learning algorithm was
performed with the dataset of both JHotDraw and DNS-
Java. Percentages of correct classification for each possible
outcome are reported in Tables 4 and 5. The precision and
recall have been used as performance measures. In partic-
ular, considering that the main objective of using such pre-
diction model is to correctly predict if a change introduces
a bug, the main focus is on the Bug outcome.

The settings options of each algorithm have been fixed after
numerous trials in which we used the real data set. Settings
which have revealed the best performance are the same in
both system. Table 3 reports a brief description of the set-
ting used for each prediction model.

We experienced that clearly emerge a best algorithm, which
is KNN, performing significantly better than others with a
good tradeoff between Precision and Recall, both for bug
and ¬bug classifications. Moreover this result is confirmed
in both JHotDraw and DNSJava. The increment with re-
spect to other learning algorithms is of about 10%. The
worst performance is obtained with SVM probably because

3http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3: Distribution of bug-introducing changes among snapshots

Table 3: Prediction model settings
Prediction Model Settings
KNN A number of K=10 neighbor has been

used with a mean squared error valida-
tion on the current training set select-
ing the best one.

Simple Logistic The number of iterations is chosen that
minimizes the root mean squared error
on the training set.

Multi-boosting A decision tree algorithm has been
used as the base multi-boosting clas-
sifier, the number of maximum iter-
ations performed has been 10, and
for weighing pruning has been used a
threshold equals to 100.

C4.5 The confidence factor used for pruning
has been fixed to 0.25, the minimum
number of instances per leaf has been
fixed in 2, one fold has been used for
pruning and 2 for growing the tree, and
when pruning a subtree raising opera-
tion has been considered.

SVM The constant rate and percentage rate
at which attributes are eliminated per
invocation of the support vector ma-
chine have not been changed from de-
fault value (1 and 0 respectively). The
epsilon value for round-off error has
been set to 1.0e-25 while the tolerance
parameter to 1.0e-10, both are default
values.

to the huge number of feature vector attributes, which are
1846 and 2856 respectively for JHotDraw and DNSJava. An
average performance is obtained for both C4.5 and Multi-
boosting which exhibit similar precision/recall values. Sim-
ple logistic exhibits the best precision but almost the worst
recall for both systems. We noted that both recall and
precision of Simple logistic is highly correlated with a size
metric base predictor, such as the number of source code
lines involved in a change, as an indicator of bug-introducing
changes. This is probably related to the implicit model con-
struction of a Simple logistic function. Usually size metrics
is a raw indicator (good in some cases) of fault prone code
[4], i.e. large changes have a higher probability to introduce

Table 4: Model performances on JHotDraw
Prediction bug ¬bug
Model Precision Recall Precision Recall
KNN 58.8% 58.8% 93.3% 93.3%
Simple Logistic 80.0% 21.1% 88.2% 99.1%
Multi-boosting 67.7% 21.2% 88.8% 98.8%
C4.5 50.0% 13.0% 89.9% 98.7%
SVM 50.0% 10.5% 86.2% 98.1%

Table 5: Model performances on DNSJava
Prediction bug ¬bug
Model Precision Recall Precision Recall
KNN 69.4% 23.1% 87.1% 98.1%
Simple Logistic 60.0% 13.7% 80.2% 97.4%
Multi-boosting 52.0% 30.0% 82.2% 92.2%
C4.5 48.8% 29.0% 82.0% 90.0%
SVM 39.9% 31.6% 81.9% 86.7%

a bug than a smaller one, but in this case they exhibit a
very low recall. Such behavior let us to consider that the
vector representations used for changes are able to capture
key information, ignored by size metrics, which contributes
positively to identify bug prone changes.

Overall, the results achieved are encouraging. More focused
investigation are required (for example by involving develop-
ers in a real software project) but the measure obtained for
precision and recall is an initial attempt to confirm the pro-
posal to support the prediction of introducing bugs during
the coding development phase with the purpose of prevent-
ing fault prone code generation.

4.2 Incremental learning validation
Incremental learning validation tries to simulate a real soft-
ware change process: a new change is classified according
to the changes performed previously and considering all of
them as the training set. To perform such validation we con-
sider snapshots ordered by the commit time-stamps split, in
training and test sets, at regular intervals. Results, for a
learning set that grows chronologically, are shown in Figures
4(a) and 4(b) which report, on the y-axis, the F-measure
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Figure 4: Incremental learning performance

for the outcome that a bug is introduced (y=bug). The
F-measure is the balanced harmonic mean of Precision (P)
and Recall (R) [21]. It is given by the following expression:

F =
2 ·R · P
P + R

Both JHotDraw and DNSJava exhibit a transient oscillation
at the beginning which tend, almost asymptotically, to the
performance values obtained with a 10-fold cross-validation
reported in Section 4.1. This is coherent with the devel-
opment process as more bug-introducing change examples
contribute a better prediction performance still around the
value obtained with a 10-cross validation. Some exceptions
of such trend can be observed but we ascribe such behavior
mainly to the dataset distribution characteristics where the
number of bug-introducing changes almost decreases as de-
velopment proceeds (see Figures 3(a) and 3(b)). Moreover
for JHotDraw the number of samples for the training set
dataset may not contain a valuable number of examples.

4.3 Threats to validity
This section discusses threats to validity that can affect the
results reported in this Section, following a well-known tem-
plate for case studies [27].

Systems examined might not be representative (external va-
lidity). We considered two different software systems, dif-
fering for their domain (graphical editor vs. dns server)
but having almost the same size and both are open source
projects. We obtained some common findings and some re-
sults peculiar to each system. Nevertheless, it would be
desirable to analyze further systems — also developed in
different programming languages and with different size —
to draw more general conclusions.

Bug fixing changes are incomplete (external validity). Only
a sub set of all faults can be extracted from a project, which
is typically 40%-60%, even though with a high quality of
historic data. However, we are confident that the model
performance improves with the quality of the dataset.

Change sets and bug-introducing changes identification might
not be accurate (construct validity). The identification of
change sets, i.e. logical coupled changes performed by devel-
opers during their maintenance activity, and bug-introducing
changes, described in Section 2, might not be accurate as
they are based on heuristics which in some cases could be
not valid. However in both cases such events are very rare
in the project we have considered.

Computational complexity (construct validity). A limitation
of learning algorithms is that the training phase may be com-
putational expensive and may not be used in a real environ-
ment. However, this is a partial limitation as the training
phase can be performed while development proceeds.

Regarding reliability validity, the source code of the two sys-
tems is publicly available and the way our analyses were
performed is described in detail in Section 3.

Threats to internal validity did not affect this particular kind
of study. Error measure, such as those deriving, for example,
from the heuristics used to classify bug-fixing changes has
been reduced considerably with a partial inspection of such
changes.

5. RELATED WORK
The problem of fault prediction has been mainly addressed
by identifying software entities, such as modules, which should
manifest problems. There are methods based on software
quality metrics and those based on change history analysis.

Gyimóthy et al. performed an empirical validation of how
object-oriented metrics (Chidamber and Kemerer) are cor-
related with software faults [11]. Khoshgoftaar and Allen
proposed a quantitative software quality model to predict
the rank-order of modules according to a quality factor, such
as the number of faults [12]. Bell developed a negative bi-
nomial regression model to predict the expected number of
faults in each file of the next release of a system on the basis
of code attributes extracted from previous releases [5].

Graves et al. assumed that modules that were changed re-
cently are more fault-prone than modules that were changed

24



a long time ago [10]. Livshits and Zimmermann proposed
DynaMine, a tool that analyzes source code check-ins to find
highly correlated method calls as well as common bug fixes
in order to automatically discover application-specific cod-
ing patterns [17]. Śliwerski et al. show how to automatically
locate fix-inducing changes and found that those performed
on Friday induce more bug fixing [23]. Kim et al. present a
bug finding algorithm using the history of bug fixes [13]. The
results demonstrate, congruently with our findings, that bug
fix patterns occur frequently enough to be useful as a bug
detection technique. The main difference with our approach
is in the representation of bug-introducing changes, in our
case, n-dimensional term vectors, more suitable to be used
as feature vectors in a learning algorithm. Śliwerski et al.
developed a prototype, HATARI, to detect those locations
where changes have been risky in the past and makes this
risk visible for developers by annotating source code with
color bars [22]. Kim et al. analyzed the version history of
7 software systems to predict the most fault prone entities
and files with a cache based approach [15]. In particular
they showed, by consulting the cache at the moment a fault
is fixed, how a developer can detect likely fault-prone loca-
tions. The difference with our approach is that they assume
the locality (spatial and temporal) of a bug location, while
we consider the representation in an n-dimensional space
of fault prone location inside a co-change (which is near in
time and may be spread in space). Mizuno et al. presented
a related approach which use a spam filtering detection al-
gorithm on source code text to classify fault prone software
modules [18]. With respect to our approach they consider
an entire software modules source code text for training, in-
stead, we concentrate on text belonging to a software change
which could be spread also on different modules.

6. CONCLUSIONS
If we can prevent the introduction of faults into a system
then we are able to reduce the number of bug prone mod-
ules and consequently the density of bugs. The quantita-
tive evaluation of such reduction is object of future work.
In this paper we introduced a model to represent software
changes as elements of an n-dimensional space which can
be used as feature vectors for training a classifier. We feel
that such a representation encapsulate change patterns effec-
tively as it is independent from the programming language
used and subsumes to a strong mathematical structure. We
tested the prediction model on two open source systems,
JHotDraw and DNSJava, considering different learning al-
gorithms. Results feels promising, in particular for KNN
(K-Nearest Neighbor algorithm) where a significant tradeoff
between precision and recall has been obtained.

Beside to perform a more accurate evaluation with more
machine learning algorithms and case studies, we see room
of improvements in the following main topics.

Representation of changes. In this paper we consider
a feature vector which attributes are terms extracted
from source code. We intend to move along two main
direction of improvement. First, a more accurate rep-
resentation, with a more accurate parsing, including
also syntactic properties of source code rather than
only language keywords and identificators, could be

useful to model also syntactic fault prone changes such
as assignment errors and so on. Second, other vector
based representation may be interesting to evaluate,
such as vectors composed of source code metrics at-
tributes.

Fault prone code. Detecting fault prone modules is a
“diagnosis/cure like” approach which leads the atten-
tion of developers to concentrate on such modules with
more test cases, the “cure of the illness”. Instead,
the approach presented in this paper focus on changes
which may introduce a bug into the system prevent-
ing, as a “preventive like” approach, the generation of
fault prone code. We intent to exploit both point of
views and in particular how bug-introducing changes
can help in identify fault prone code.

Indirect bug-introducing dependencies. The approach
used to detect bug-introducing changes considers those
strongly related with bug-fixing changes by inspecting
the change history of their lines of code. Such ap-
proach assumes a strict (historical change) relationship
between the cause of a bug and its fix. In general this
is not true as there could be conditions such that code
introduced somewhere may causes bugs elsewhere. To
consider such indirect bug-introducing dependencies
historical changes should be related with source code
dependencies such as those originated from software
slicing.

Comparison with source code metrics. Source code
metrics, such as those related to size and complexity,
are widely used to predict fault prone code. We wish
to perform a comparison with such metrics in order to
put in evidence which are their respective advantages
and drawbacks.
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