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ABSTRACT
Software reuse is a promising solution to the software crisis.
Reuse repositories are the basic infrastructure for software
reuse. During the past decade, various academic, commer-
cial, governmental, and industrial organizations have devel-
oped many Internet-enabled reuse repositories to provide
access to software components and related resources. It
has necessitated semantic interoperation to allow distributed
maintenance and management of these repositories while en-
abling users to efficiently and conveniently access resources
from multiple reuse repositories via a single representation
view. In this paper, we have proposed an approach to en-
hancing the semantic interoperability of reuse repositories,
called the improved relevancy matching and ranking (IRMR)
method, based on analyzing the correlation of terms in rep-
resentation methods of the repositories. A prototype sys-
tem, the Virtual Repository supporting Semantic Interop-
eration (VRSI), is presented to illustrate the application
of this approach to support the semantic interoperation of
reuse repositories. Experimental results on real world reuse
repositories demonstrated significant improvement in terms
of searching effectiveness.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data mapping; D.2.13 [Reusable
Software]: Reusable libraries; D.2.2 [Design Tools and
Techniques]: Computer-aided software engineering, Soft-
ware libraries; H.3.3 [Information Search and Retrieval]:
Query formulation, Retrieval models,Search process

General Terms
Algorithms, Management
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1. INTRODUCTION
It is widely believed that software reuse, a development

method of using reusable components to create new sys-
tems, is a feasible way to improve both the productivity and
quality of software development [4]. However, the develop-
ers must be capable to efficiently and conveniently acquire
enough desired components before developing with reuse.
Current reuse repositories (such as Component-Source [15],
Download.com [17], SourceForge [50], Open-Components [43],
and Netlib [38]) provide access to software packages (includ-
ing reusable software components, Web Services, and related
documents) via Internet or Intranet.
The existence of many independent software repositories

has its advantage to allow each repository to tailor its con-
tents and services [11]. However, multiple independent repos-
itories also result in redundancy and inefficiency, and it is
usually inconvenient for users to access each repository sep-
arately. Therefore, interoperation has been necessitated by
allowing distributed maintenance of these repositories while
enabling users to access resources from multiple repositories
via a single interface [10].
Current approaches to repository interoperation mainly

focus on a uniform data model for software catalog records [8].
However, there are more other barriers than the inconsistent
catalog formats among repositories. In this paper, we focus
on alleviating semantic inconsistency among representation
methods in reuse repositories, and propose a novel method
based on analyzing the relevancy of the terms in these rep-
resentation methods. In our approach, co-occurrent compo-
nents are used to calculate the basic correlations between the
terms, and the correlations are improved through consider-
ing the frequency of the term in each representation method
and the number of components associated with each term.
Based on the IRMR method, the users can retrieve com-
ponents from multiple repositories via a single representa-
tion view. The users’ queries represented in the vocabulary
of one repository are mapped automatically to the queries
represented in the vocabulary of another repository. Fur-
thermore, we present a prototype system named the Virtual
Repository supporting Semantic Interoperation (VRSI).
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Our approach has been applied to two different types of
real independent repository pairs: 1) ComponentSource (de-
noted as CS) and Download.com (denoted as DL), and 2)
Open-Components (denoted as OC) and SourceForge (de-
noted as SF). The experimental results of the proposed ap-
proach show significant improvement in terms of searching
effectiveness compared with other techniques such as the
word-matching-based method [3] in information retrieval.

2. MOTIVATION

2.1 Information Islands in Reuse Repositories
Many empirical reports about reuse in industry show that

the users repeatedly re-implement the same function be-
cause they are unaware of these reusable components [16,
21]. It is a key factor for promoting reuse to make com-
ponents known to the users [46, 33]. Although multiple
repositories facilitate the users to find more desired compo-
nents, they can lead to information islands to embarrass this
retrieval.
Suppose repository A is familiar and repository B is un-

known to the user, three knowledge levels of retrieving com-
ponents from the two repositories can be identified (see Fig. 1).
The ovals represent the information space of the components
in the two repositories, and the rectangle represents the ac-
tual information space of the users’ desired components (la-
belled as L3). Generally, the users who are only familiar
with repository (A) can retrieve components in L1 easily,
but they can hardly reuse the components in the area of
(L3-L1) [22]. The components in (L3-L1) become informa-
tion islands [19], which are irretrievable to the users of A
without appropriate tools.

L1
(retrievable)

L2
(irretrievable)

L3
(actual desirable)

Repository A Repository B

Figure 1: Different levels of users’ knowledge about
components in two reuse repositories.

2.2 Cognitive Barriers of Multi-Repository
Retrieval

It has been widely accepted that component retrieval in
a single repository is primarily a cognitive activity begin-
ning with a problem in the mind of the retriever. To get
the solution of this problem, the users have to translate the
problem into a series of operations of a reuse repository sys-
tem [36]: from the actual problem to user’s intention, from
the intention to queries, and from the queries to retrieved
components. Each transformation might be a barrier for
component retrieval if not being addressed appropriately.
Retrieval of components from multiple repositories is also

a cognitive activity. The cognitive model for multi-repository
retrieval is shown in Fig. 2. After understanding the re-
trieval problem, the users must formulate their intentions
as queries represented by the vocabulary in each repository.
In this retrieval process, three worse cognitive barriers exist
than that in single-repository retrieval process.
Repository systems usually provide representation meth-

ods in special disciplines by experts to help the users to
retrieve and employ the components efficiently [24]. As a
result, the vocabulary of one repository might be quite dif-
ferent from the vocabulary of another repository. A repre-

Formulating
queries

 R1
 

user's
intentions

 

user

R1

Problem space

 

problem

R1
R2
Rn

R2 R2
Rn Rn

problem space
understood by users

query space solution space

queries Retrieving
Retrieved

components

Figure 2: A cognitive model for multi-repository re-
trieval.

sentation method in a repository is usually associated with
a vocabulary that contains terms [24]. Users should learn
the syntax and the semantics of the vocabulary to formu-
late their intention as queries. Vocabulary learning is a ma-
jor part of the cognitive barrier to retrieve in reuse reposi-
tory [7]. It is particularly difficult for the users to retrieve
components from multiple repositories, because the users
need to learn more vocabularies.
Another barrier related to the difference among vocab-

ularies used in different repositories is the conceptual gap
among these vocabularies. For example (see Section 4.1),
the same meaning may be represented by entirely differ-
ent terms, and some terms that share common words may
describe different aspects. Learning the vocabulary for one
repository may confuse or contradict the learning of another
vocabulary.
The users need to formulate their intention as the queries

in the system model of the repository after learning the vo-
cabulary. With the unknown system model, the users can-
not formulate effective queries [56]. This conceptual gap
between the problem space understood by users and the
system model of the repository is also a cognitive barrier to
retrieve in a reuse repository. It is a big burden for the users
to know all the system models in multiple repositories in or-
der to formulate their intention as different queries suitable
for different repositories.

2.3 Current Approaches
In the literature, there have been some approaches pro-

posed to alleviate the information islands problem in multiple-
repository retrieval. These approaches mainly focus on two
levels of interoperation between repositories [10]: 1) the level
of catalog information that describes the resources [10, 28,
29, 30]; and 2) the level of the actual resources [14, 51, 5].
In these approaches, the users can browse or search for

resources from all the interoperating repositories through
a single interface. However, because there still exist some
cognitive barriers in multiple-repository retrieval, these ap-
proaches cannot fully solve the information islands problem
in multiple repositories. With our IRMR method, the users
can concentrate on learning the vocabulary and the system
model for one repository while they still can retrieve com-
ponents in other repositories. This way of retrieving com-
ponents from multiple repositories can effectively reduce the
cognitive barriers, and thus further alleviate the information
islands problem.

3. IMPROVED RELEVANCY MATCHING
AND RANKING METHOD

The basic idea of our approach is to map the queries for
one repository (denoted as A) to those for the other (denoted
as B) using the correlation between terms in two different
repositories. Based on the correlation, a query (q) repre-
sented by the terms in A can be automatically transformed
to a query (q′) represented by the terms in B. The users can
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use these queries to retrieve components in B transparently.
The approach consists of three essential steps:

• Correlation calculation: In our approach, the cor-
relations are automatically calculated based on the
mutual components in both repositories and recorded
in a term-to-term association matrix.

• Query transformation: Given a query represented
by the terms in one repository, the query is trans-
formed into a query represented by the terms in an-
other repository based on the correlation to retrieve in
the repository.

• Results ranking: The retrieved results are ranked
using the calculated correlation.

3.1 Correlation Calculation
The first step in our approach is to calculate the corre-

lation between the terms in two different repositories. Let
H be the number of terms in one repository (denoted as
A) and V be the number of terms in the other repository
(denoted as B). The term-to-term correlation can be de-
fined as a matrix with H rows and V columns, denoted as
�MAB = (mij), called the relevancy matrix. Each element
mij represents the correlation between the i-th term in A
and the j-th term in B. Note that this representation is ap-
plicable to any two repositories represented by terms using
the library and information science methods [24].

3.1.1 The Matrix Calculating Algorithm
The relevancy matrix could be specified manually by spe-

cialists who are familiar with both repositories [6]. However,
this way would be subjective and expensive, since there are
dozens of repositories and usually hundreds of terms in each
repository. As terms in many repositories may change from
time to time, the relevancy matrix may have to be updated
accordingly. Frequent manual updates of the relevancy ma-
trix may be particularly burdensome. To address these is-
sues, we propose an algorithm to calculate the relevancy
matrix automatically as follows.
Usually there are some components stored in both reposi-

tories A and B, denoted as CAB. For example, there are 172
components stored in both ComponentSource and Down-
load.com. These mutual components in both repositories
are the only information that we can exploit. The Bayesian
network model [45] can be applied to calculate the term-
term correlation (see Fig. 3) where the set CAB is the sample
space.

Ai

c1 c2 ck cN

B1 B2 Bj BV

…... …...

…... …...

Figure 3: A term-term correlation Bayesian network
model.

In this network model, the term Ai in repository A is
modelled as a network node associated with a random vari-
able. The value of this variable is 1 whenever Ai completely
covers the mutual component space CAB , so P (Ai) is the
degree of coverage of the space CAB by Ai. A term Bj in
repository B is also modelled as a network node associated
with a random variable. P (Bj) is the degree of coverage
of the space CAB by Bj . The correlation between terms
Ai and Bj is interpreted as a concept matching relationship

and reflects the degree of coverage provided to the concept
Bj by the concept Ai, i.e. P (Bj |Ai).
By the application of Bayes’ theorem, we can write

P (Bj |Ai) = P (BjAi)/P (Ai)

Based on the Bayesian network model,

P (Bj |Ai) =

∑
∀�c(P (BjAi|�c)× P (�c))

P (Ai)

�c is a binary vector associated the set CAB , i.e., the value
of each ck is 1 or 0. From the network of Fig. 3, the por-
tions of Ai and Bj in the network are logically separated by
instantiation of the mutual component nodes.

P (Bj |Ai) =

∑
∀�c(P (Bj |�c)× P (Ai|�c)× P (�c))

P (Ai)

We need to specify the conditional probabilities P (Bj |�c),
P (Ai|�c), P (Ai) and P (�c).
Let gk(�c) be a function that returns the value of ck in a

binary N-dimensional vector.

�ck = �c|(gk(�c) = 1 ∧ ∀h�=kgh(�c) = 0)

�Bj = �c|(gk(�c) = 1⇔ ck is represented by the term Bj)

�Ai = �c|(gk(�c) = 1⇔ ck is represented by the term Ai)

A straightforward way of calculating P (Bj |�c) is as follows:

P (Bj |�c) =
{
1 if �c = �ch ∧ gh( �Bj) = 1
0 otherwise

However, considering that different components in CAB

may not contribute equally, we extend the ITF-DFmethod [47]
in information retrieval to calculate P (Bj |�c). Here, we con-
sider two factors for this calculation: 1) the term frequency
tf : the number of terms in B representing the component
ch and 2)the component frequency cf : the number of oc-
currences of term Bj in the whole collection of the mutual
components (i.e. CAB). Intuitively, the larger the number
of terms in B representing ch is, the more terms in B are
correlated to term Ai through ch, and thus the less ch con-
tributes to the correlation of one particular term in B to
term Ai. Similarly, the larger the number of occurrences of
term Bj in CAB, the less a particular component in CAB

contributes to P (Bj |�c). We summarize in Table 1 some of
the notations and their definitions in detail.

N number of components in CAB

Ni number of components in CAB represented by Ai

V number of terms in B
cfj component frequency of the term Bj , that is number

of components in CAB represented by term Bj

th number of terms in B representing the component ch
icfj inverse component frequency of the term Bj

i.e. icfj = log
N

cfj

tfh,j frequency of term Bj representing component ch, i.e.

tfh,j =

{
1/th if Bj represents ch
0 otherwise

wh,j weight of term Bj representing component ch
i.e. wh,j = tfh,j × icfj

Table 1: Notations and definitions in calculating the
relevancy matrix.

We can have

P (Bj |�c) =
{ wh,j√∑N

h=1 w2
h,j

if �c = �ch ∧ gh( �Bj) = 1

0 otherwise
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Further, define

P (Ai|�c) =

{
1 if �c = �ch ∧ gh( �Ai) = 1
0 otherwise

P (Ai) =
Ni

N

P (�c) =

{
1
N

if �c = �ck
0 otherwise

We can get the correlation between Ai and Bj :

mij = P (Bj |Ai) =

∑
∀�c(P (Bj |�c)× P (Ai|�c)× P (�c))

P (Ai)

=

∑N
h=1

w′
h,j√∑N

h=1 w2
h,j

Ni
N

×N =

∑N
h=1 w

′
h,j

Ni ×
√∑V

j=1 w
2
h,j

where

w′
h,j =

{
wh,j if ch is represented by term Bj and Ai

0 otherwise

3.1.2 An Example
There are five terms in the representation method of repos-

itory A, and the representation method of repository B con-
sists of four terms. The set of mutual components in repos-
itories A and B:CAB = {c1, c2, c3, c4, c5}. They are repre-
sented by terms in repository A and B as shown in Table 2.

terms in repositories mutual components
c1 c2 c3 c4 c5

A1
√ √

A2
√ √ √

A3
√ √

A4
√ √ √

A5
√ √

B1
√ √ √

B2
√ √ √ √

B3
√ √

B4
√

Table 2: An example: mutual components are rep-
resented by the terms in repositories A and B.

The following is the steps of calculating the relevancy ma-
trix MAB between two repositories A and B:

N = 5, V = 4, Ni = [2, 3, 2, 3, 2], cfj = [3, 4, 2, 1]

th = [2, 2, 1, 3, 2], icfj = [0.222, 0.097, 0.398, 0.699]

tf =




0 0.5 0.5 0
0.5 0 0.5 0
0 1 0 0
0.33 0.33 0 0.33
0.5 0.5 0 0




wB =




0 0.0485 0.199 0
0.111 0 0.199 0
0 0.097 0 0

0.074 0.032 0 0.233
0.111 0.0485 0 0




MAB =



0.33 0.39 0.35 0
0.36 0.35 0.24 0.33
0.54 0.13 0.35 0.5
0.36 0.22 0.47 0.33
0.54 0.33 0 0.5




In MAB , the correlation between the terms A1 and B2 is
0.5, while the correlation between A1 and B4 is 0, etc. A
real example is shown in Table 5 with further explanation
in Section 4.3. In general, MAB 
=MBA.

3.2 Query Transformation
Once the relevancy matrix MAB is set, we can translate

a query represented by the terms in A to a query in B with
corresponding terms.
A query can be represented by terms using different re-

trieval models, such as the boolean, the vector, and the prob-
abilistic models [3]. In this paper, the query is based on
the boolean model, i.e., a query is composed of index terms
linked by three connectives: not, and, or.
Let q(A1, A2, ..., Al) be the query represented by the terms

in repository A. Based on the relevancy matrix �MAB , each
term Ai in the query q(A1, A2, ..., Al) is mapped to the terms
in repository B:

B[i] = [ Bi1, Bi2, ..., Bipi ]

Each mij > 0 indicates that the term Ai is related to the
term Bj , i.e., the term Bj should be included into the array
B[i] if mij > 0.
Let q′(B1, B2, ..., Bk) be the transformed query represented

by the terms in repository B. For each Ai in the query q,
replace it with (Bi1 ∨Bi2 ∨ ... ∨Bipi), i.e.,

q′(B1, B2, ..., Bk) = q(B11 ∨ B12 ∨ ... ∨B1p1 ,

B21 ∨ B22 ∨ ... ∨B2p2 ,

..., Bl1 ∨Bl2 ∨ ... ∨Blpl
)

As a result, the transformed query q′ can be used to search
components in B.

3.3 Results Ranking

3.3.1 The Ranking Algorithm
Let Cq = {c1, c2, c3, ..., cn} be the set of the retrieved com-

ponents in B by the transformed query q′ from query q.

Based on the relevancy matrix �MAB, for each component ci
in the set Cq, we can calculate the weight wq(ci).
Since this relevancy matrix is the only information that we

can use to rank the retrieved components, the set of terms
in B is the sample space for ranking. The Bayesian network
model [45] can also be applied to rank the components(see
Fig. 4), which is similar as Fig. 3. P (ck|Ai) can be adopted
as the rank of the component ck with respect to the term
Ai in the query q.

Ai

B1 B2 Bj Bv

C1 C2 Ck Cn

…... …...

…... …...

Figure 4: A ranking Bayesian network model.

By the application of Bayes’ theorem, we can similarly
write:

P (ck|Ai) = P (ckAi)/P (Ai)

P (ck|Ai) =

∑
∀�B(P (ck| �B)× P (Ai| �B)× P ( �B))

P (Ai)
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We need to specify the conditional probabilities P (ck| �B),
P (Ai| �B), P (Ai) and P ( �B).
Let V be the number of terms in B. Define gk(�c) as a func-

tion that returns the value of ck in a binary V -dimensional
binary vector �c. Let Numi be the number of terms in B
transformed to term Ai in A. Also, let IN(ck) be the set of
the terms in B representing the component ck.
Let,

�Bj = �B|(gj( �B) = 1 ∧ ∀h�=jgh( �B) = 0)

�ck = �B|(gj( �B) = 1⇔ ck is represented by the term Bj)

�Ai = �B|(gj( �B) = 1⇔ mi,j > 0)

Therefore,

P (ck| �B) =
{
1 if �B = �Bj ∧ gj(�ck) = 1
0 otherwise

Further, define

P (Ai| �B) =

{
mij if �B = �Bj ∧ gj( �Ai) = 1
0 otherwise

P (Ai) =
Numi

V

P ( �B) =

{
1
V

if �B = �Bj

0 otherwise

So, we can get the weight of ck with respect to the term Ai:

wAi(ck) = P (ck|Ai) =

∑
∀�B(P (ck| �B)× P (Ai| �B)× P ( �B))

P (Ai)

=

∑
Bj∈IN(ck)mij

Numi
V

× V =

∑
Bj∈IN(ck)mij

Numi

Based on the probability theory, the algorithm of calcu-
lating the weight wq(ci) is a recursive algorithm consisting
of the following cases:
If q = Ai, the weight wq(ck) is defined as

wq(ck) =

∑
Bj∈IN(ck)mij

Numi

If q = ¬Ai, the weight wq(ck) is defined as

wq(ck) = 1− wq′(ck)

where q′ = Ai;

If q =
∧r

j=0 qj , the weight wq(ck) is the product of the

weights wqj (ck), i.e.,

wq(ck) =
r∏

j=0

wqj (ck)

If q =
∨r

j=0 qj , q = ¬∧r
j=0(¬qj), thus wq(ck) is

wq(ck) = 1− (

r∏
j=0

(1−wqj (ck)))

3.3.2 An Example
The query q represented by the terms in repository A is

q = A5 ∧ (A2 ∨ ¬A1)

There are 7 components in repository B:

{c1, c2, c3, c4, c5, c6, c7}
They are represented by terms in repository B (Table 3).

terms in B components in B
c1 c2 c3 c4 c5 c6 c7

B1
√ √ √

B2
√ √ √ √ √

B3
√ √ √

B4
√ √

Table 3: An example: components are represented
by the terms in repository B.

The following matrix shows the relevancy matrix MAB

calculated in Section 3.1.2 for the two repositories A and B.

MAB =




0.33 0.39 0.35 0
0.36 0.35 0.24 0.33
0.54 0.13 0.35 0.5
0.36 0.22 0.47 0.33
0.54 0.33 0 0.5




The query q is translated as:

q′ = (B1∨B2∨B4)∧((B1∨B2∨B3∨B4)∨¬(B1 ∨B2∨B3))

As a result, the set of the retrieved components for query q
in repository B is c1, c2, c3, c4, c5, c6.Table 4 shows the cases
of ranking components in the IRMR method. Finally, the
retrieved components are sorted as: c4, c5, c6, c2, c3, c1.

query retrieved components in B
c1 c2 c3 c4 c5 c6

A5 0.11 0.18 0.11 0.46 0.29 0.28
A2 0.15 0.15 0.09 0.26 0.18 0.17
A1 0.25 0.23 0.13 0.24 0.13 0.12
¬A1 0.75 0.77 0.87 0.76 0.87 0.88

A2 ∨ ¬A1 0.79 0.8 0.88 0.82 0.89 0.9
A5 ∧ (A2 ∨ ¬A1) 0.09 0.14 0.10 0.38 0.26 0.25

Table 4: An example: results of ranking compo-
nents based on the improved relevancy matching
and ranking method.

3.4 VRSI: A Virtual Repository supporting
Semantic Interoperation

The VRSI system is a prototype of a virtual repository
supporting semantic interoperation based on the IRMRmethod
discussed in the previous section. VRSI catalogs and refers
to software maintained elsewhere. It consists of three func-
tional modules: the calculator, the translator and the sorter,
and the relevancy matrix repository. The calculator module
calculates MAB and MBA based on the catalog information
in the physical repositories and stores them in the relevancy
matrix repository. In the translator module, users’ queries
represented by the representation method of their familiar
repository are automatically translated to the queries rep-
resented by the representation method of other repositories.
These queries are used to retrieve components in the physi-
cal repositories separately. At last, the sorter module ranks
the retrieved components.
In summary, the core part (the query space) of the cogni-

tive model of the retrieval process in VRSI has been changed.
Fig. 5 shows the query space in changed cognitive model
in which (a) is the space in Fig. 2 and (b) is the space in
VRSI. The users do not need to formulate the intentions as
queries for each repository individually in the changed cog-
nitive model. They only need to formulate the intentions
as the query represented by the vocabulary in their famil-
iar repository Ri instead. The translator can automatically
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Figure 5: The changed cognitive model:(a) is the
query space in Fig. 2, (b)is the query space in VRSI.

translate the query in Ri to queries for each repository (R1

to Rn) to retrieve the components.

4. EXPERIMENTAL STUDY

4.1 Data Sets
To evaluate our approach, we applied it to two different

kinds of real independent repository pairs. The first exper-
iment was performed on two software repositories mostly
for software users (not software developers) who wanted
to obtain already developed tools or systems, i.e. Compo-
nentSource (CS) [15] and Download.com (DL) [17]. There
were 102 terms in vocabulary of CS, 245 terms in DL and 172
mutual components stored in both repositories. The terms
in CS were organized as a controlled keyword method. The
terms in DL formed an enumerated method, in which each
term represented a subject area and an area was broken into
mutually exclusive, usually hierarchial classes. Each com-
ponent in CS can be represented by more than one term.
However, each component in DL was represented by only
one term that was the leaf node in the classification tree.
The second experiment was performed on two repositories

for software developers, i.e. Open-Components (OC) [43]
and SourceForge (SF) [50]. There were 30 terms in OC, 184
terms in SF, and 325 mutual components in both reposi-
tories. The terms in OC and SF both formed enumerated
methods. Each component in OC or SF can be represented
by more than one term which was the leaf nodes in the clas-
sification trees.

4.2 Experiments
For each repository pair, 2/3 mutual components were

used to calculate the relevancy matrices. For CS and DL,
114 mutual components were randomly selected as the train-
ing set to calculate the (102×245) relevancy matrixMCS,DL

and (245 × 102) relevancy matrix MDL,CS . For OC and
SF, 215 components were randomly selected from these 325
components as the training set to calculate the (30 × 184)
relevancy matrix MOC,SF and (184 × 30) relevancy matrix
MSF,OC. The remaining components were used for analyz-
ing the search effectiveness, called test set(denoted as Ct).
Each single term was used as a query to retrieve compo-

nents in Ct. Since the number of terms in each repository
was different, the number of generated queries was also dif-
ferent, i.e. 27 queries in CS to retrieve components in DL,
23 queries in DL to retrieve in CS, 20 queries in OC to re-
trieve in SF , and 57 queries in SF to retrieve in OC. Note
that only the terms referred in Ct were used to obtain the
results of our experiments.
The results of our method were compared with the stan-

dard keyword-based matching method [3] on two types of
searching effectiveness: 1) the average precision versus re-
call, and 2) the average precision at seen relevant compo-
nents (see [3] pp.73–81). Since each term in the representa-
tion methods was a noun phrase (such as “internet commu-
nication”), there were only few same terms in different repos-

itories. We adapted the standard keyword-based matching
method as follows. In the adapted method, if a term t′ in
repository B shared some words with term t in repository
A, the term t′ was considered to be equal to term t in the
query (such as “internet communication” and “internet”).
This method was referred to as the word matching method
in this paper. We also used standard pre-processing tech-
niques in information retrieval, such as elimination of stop-
words (such as articles and connectives) and use of stemming
(which reduced distinct words to their common grammatical
root) in this adaption.

4.3 Relevancy Matrix
Table 5 shows some selected rows and columns of the rel-

evancy matrix MCS,DL. Since the representation methods
in the two repositories are quite different, the same meaning
may be represented by entirely different terms, such as the
term “training courses” in CS and the term “home & educa-
tion” in DL, between which the correlation is 1. Some terms
that have same words may describe different aspects, such
as “internet communication” in CS which usually represents
the components for internet communication software devel-
opment and “internet” in DL which represents the com-
ponents used on the internet such as web browsers. This
behavior partially demonstrates that why the word match-
ing based method cannot achieve good results for retrieving
across different repositories. Some other terms are simi-
lar, such as “web site” and “internet” (the correlation is
0.235385), “web site” and “software developer” (the corre-
lation is 0.307692).

terms in DL
terms in CS home & Software

education internet developer
training
courses 1 0 0
web site 0 0.235385 0.307692
internet

communication 0 0.0792308 0.556923

Table 5: Some selected rows and columns of the
relevancy matrix MCS,DL.

4.4 Experimental Results and Analysis

4.4.1 Average Precision versus Recall
Recall is the ratio of the relevant components retrieved by

the query q (denoted as |Ra| ) over the number of relevant
components (denoted as |Rq |) in the repository, i.e.,

Recallq =
|Ra|
|Rq |

Precision is the ratio of the relevant components retrieved
(denoted as |Ra|) over the total number of components re-
trieved (denoted as |Aq|), i.e.,

Precisionq =
|Ra|
|Aq|

The recall versus precision curve is based on 11 standard
recall levels, which are 0%, 10%, 20%, ... , and 100%. To
evaluate the retrieval performance of a method over all test
queries, we average the precision at each recall level r as
follows:

P (r) =

Nq∑
i=1

Pi(r)

Nq
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where P (r) is the average precision at the recall level r, Nq

is the number of queries used, and Pi(r) is the precision at
recall level r for the i-th query.
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Figure 6: Average precision versus recall curves for
the word matching method and our Improved Rel-
evancy Matching and Ranking (IRMR) method.

Fig. 6 shows the average precision versus recall curves for
the word matching method and our IRMR method. The
curves for our IRMR method are all beyond the curves for
the word matching method. This result shows that our
IRMR method has higher precision at all recall levels than
the word matching method.
It is interesting to note that sometimes both precision

and recall increase in the curve (see Fig. 6). This behavior
is practically possible [12]. For a specific query q, |Rq | is
constant. If |Ra| and |Aq | increase simultaneously, both the
precision and recall may increase. For example, in our ex-
periment, the set of components relevant to the given query
q = ‘databases & networks’ in DL and the ranked retrieved
components (R) in CS of our IRMR method are:

Rq = {68, 70, 71, 72, 75}
R = {68, 60, 37, 70, 71, 72, 75, 82, 87, 93}

Then, the recall and precision are:

recall = 20%, 20%, 20%, 40%, 60%,

80%, 100%, 100%, 100%, 100%

precision = 100%, 50%, 33.33%, 50%, 60%,

66.67%, 71.43%, 62.5%, 55.56%, 50%

When recall increases from 40% to 100%, precision increases
from 50% to 71.43%. It means that the average precision
and recall may also increase simultaneously.
Furthermore, according to Buckland and Gey [12], simul-

taneous increase of recall and precision should be regarded
as a merit despite of its rarity. After all, the overall trend
of the curve of our IRMR in any case is that precision de-
clines as recall increases, which well conforms to the common
sense.

4.4.2 Average Precision at Seen Relevant
Components

The average precision at seen relevant components is a
single value representation of the ranking. It is the mean
precision obtained after each new relevant component is

observed [3]. For instance, consider the example in Sec-
tion 4.4.1. The precisions after each new relevant compo-
nents is observed are 1, 0.5, 0.6, 0.6667, 0.7143 by our IRMR
method. Then the average precision at seen relevant com-
ponents is (1 + 0.5 + 0.6 + 0.6667 + 0.7143)/5 or 69.62%.
This measure favors systems that can retrieve relevant com-
ponents quickly (i.e., relevant components appear early in
the ranking).
Table 6 shows the results of the mean precision at seen

relevant components for the word matching method and
the IRMR method. First, the results show that the IRMR
method can yield higher mean precision for any of the four
experiments. Second, it also can be shown from the results
that the IRMR method is better in most cases of each indi-
vidual query, which indicates that our method outperforms
the word matching method stably. Third, the IRMRmethod
has much fewer zero numbers for all the individual queries
(73 for the word matching and 7 for the IRMR method).
This demonstrates that IRMR is much more reliable than
the word matching method, which is much more likely to re-
trieve nothing useful at all. In summary, our IRMR method
is quicker, more stable, and more reliable than the word
matching method based on our experiments.
Furthermore, we analyzed the variance of the average pre-

cision at seen relevant components for each method using
the Sign Test [27]. The sign test is one kind of the non-
parametric alternatives to the t-test, which compares the
magnitude of the difference between methods to the varia-
tion among the differences. The sign test looks only at the
sign of the difference ignoring its magnitude completely.
Let Xi and Yi be the average precision at seen relevant

components of the IRMR method and the word matching
method for query i in each experiment, and define Di =
Yi −Xi. These methods assume that the model is additive,
i.e. Di = θ + εi, where the errors εi are independent. The
null hypothesis is that the difference between the methods
does not exist, i.e. θ = 0. Define the statistics n+ and n− as
the number of queries with Di > 0 and Di < 0 respectively,
and let N = n+ + n−. Any cases where Di = 0 are ignored.
Let να be the maximal integer that satisfies

ν∑
k=0

Ck
N(
1

2
)N � α

2
.

If min(n+, n−) < να, the testing illustrates that the null
hypothesis is rejected at the α level, i.e. there is a significant
difference between the methods.

A = CS,B = DL
Methods n+ n− N να(α = 0.05)

Word VS. IRMR 6 20 26 7(reject)

A = DL,B = CS
Methods n+ n− N να(α = 0.05)5

Word VS. IRMR 3 18 21 5(reject)

A = OC,B = SF
Methods n+ n− N να(α = 0.05)

Word VS. IRMR 7 11 18 4(accept)

A = SF,B = OC
Methods n+ n− N να(α = 0.05)

Word VS. IRMR 17 38 55 19(reject)

Table 7: Sign Test analysis of variance for average
precision at seen relevant components.

The results of our Statistical Testing are shown in Table 7,
in which, they succeed in rejecting the null hypothesis be-
tween the IRMR method and the word matching method at
the α = 0.05 level except the case of (A = OC,B = SF ).
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query A=CS, B=DL A=DL, B=CS A=OC, B=SF A=SF, B=OC
number word IRMR word IRMR word IRMR word IRMR word IRMR

1 0 5.87 22.5 56.97 100 2.8 52.81 65.14 0 28.85
2 0 25 0 100 67 83 100 54.44 75.56 20.92
3 0 15 100 100 2 14 100 100 0 50.74
4 0 11.89 0 62.5 0 100 64.29 44.91 0 33.33
5 0 25 0 100 50 8.3 100 0 50 50
6 0 5.06 0 50 100 17.6 83.39 56.97 0 17.69
7 58.34 34.71 0 100 100 13.3 64.29 15.34 0 27.78
8 100 37.7 0 25 37.4 20.2 0 29.14 0 7.14
9 0 11.03 0 60 0 58.6 0 6.17 0 100
10 0 33.33 0 100 0 29.7 53.33 38.37 0 16.67
11 0 8.59 0 100 100 100 0 60 100 33.33
12 0 43.77 24.29 24.29 5.6 50 0 25 24.31 41.2
13 0 50 33.33 0 50 100 77.84 42.26 36.67 10.1
14 0 100 14.29 0 0 14.1 20 100 88.53 62.42
15 0 21 0 70.16 0 13.3 0 37.12 31.67 39.74
16 0 45.09 0 42.54 20.8 6.4 0 12.5 0 3.48
17 100 0 0 56.86 0 22.2 0 21.36 0 20
18 0 2.22 0 35.01 80.4 6 5.26 5.2 0 5
19 100 100 26.04 69.62 80.4 80.4 0 25 0 16.67
20 0 25 0 33.33 8.5 100 0 7.99 0 3.13
21 0 100 100 0 47.78 54.46 0 3.57
22 0 3.13 0 100 50 8.92 12.5 19.47
23 0 6.62 0 100 63.89 27.81 0 4.35
24 0 4.76 0 35.5 0 100
25 50 0 0 50 8.7 37.5
26 50 9.88 58.33 50 24.29 7.79
27 100 0 0 3.03 0 4.17
28 0 7.05 33.33 14.29
29 0 20.19

average 20.68 26.84 13.93 60.27 40.11 42.00 25.03 31.28

Table 6: The average precision at seen relevant components for the word matching method and the IRMR
method. (Because there are 57 queries for {A = SF,B = OC}, we use four columns instead of two.)

Based on the theory in statistics, the statistical testing ver-
ified that the IRMR method is significantly better than the
word matching method.

5. RELATED WORK

5.1 Repository Interoperation
The impact of reuse repository interoperability upon a

software component industry has been identified in the lit-
erature [11, 37].
Some previous work of repository interoperation focuses

on the description of the assets, especially the common syn-
tax for exchanging the catalog records. BIDM [28] and the
supplement [29, 30] specify metadata to interoperate in mul-
tiple repositories.
Other work concentrates on building a system or inter-

face to access catalog records in multiple repositories. The
NHSE [39] provides a uniform interface to a distributed
set of discipline-oriented HPCC repositories. It is a virtual
repository, which catalogs and points to software maintained
elsewhere [8, 9]. The RIB [44] is a toolkit developed by
NHSE for maintainers to create and maintain software cat-
alog records, and exchange these records with other reposi-
tories based on BIDM.
DCH [14], Uranus [51] and UDDI[5] work on accessing ac-

tual resources in distributed repositories. DCH uses LDAP
to operate and manage the distributed repositories while ex-
isting a universal representation for components in each dis-
tributed node. Uranus uses the degradation functions and a
component migration history to tackle the problem. UDDI
uses the synchronized replication among the inter-nodes.

Our research differs from the preceding work in tackling
the semantic mismatches between different repositories. The
only similar work in this area is OML [6], which proposes
an architecture using the mediation and ontology technolo-
gies to transform queries to retrieve components in multiple
repositories. However, the correlations between two terms in
two ontology models are provided by the maintainers man-
ually.

5.2 Component Retrieval and Ranking
in Reuse Repositories

Another important research issue is to retrieve and rank
the components in reuse repositories. Reuse repositories
usually apply representation methods [23] to facilitate the
users to retrieve and employ components.
In recent years, there are several approaches to assist users

to formulate queries or rank retrieval components. Isakowit
proposes a method using hypertext to organize retrieval
components [32]. Drummond [18] provides an agent to infer
users’ intentions and advise them. CodeBroker [55] provides
an active reuse repository system to formulate query auto-
matically. Component Rank [31] proposes a method to rank
components by analyzing actual use relations of components
and propagating the significance.
All the preceding work mainly focuses on component re-

trieval and ranking in one single repository, whereas our
research focuses on cross-repository retrieval and ranking.
We speculate that the searching effectiveness can be further
improved if we incorporate some of these techniques in the
preceding work into our ranking algorithm.
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5.3 Machine Translation and Cross-Lingual
Information Retrieval

Machine translation (MT) attempts to automate the pro-
cess of translating from one human language to another [2].
In some sense, the central problem addressed in this paper
is similar to a MT problem – translating the queries for one
repository to queries for another. MT focuses on tackling
the syntactic differences between human languages and thus
producing correct sentences in the target language with the
proper dictionaries.
The cross-lingual information retrieval (CLIR) [42] is closer

to our research, which aims at translating queries in one lan-
guage to queries in another [40]. Unlike MT, CLIR focuses
more on word-by-word translation of the queries than on
formulation of complex sentences in the target language.
Some previous work [1, 20, 25, 26] proposes approaches

to automatically calculating the probability from the paral-
lel texts to translate words between two languages. They
can improve the overall retrieval effectiveness by eliminat-
ing the ambiguity in choosing the words from the dictionary.
Since there is not any available dictionary, these approaches
cannot be applied to our approach.
Some other approaches rely on parallel texts for CLIR

without any dictionary. Yang et al. [54] investigate several
translation models expanded from variants of the traditional
vector space model that use parallel texts to calculate two
transformation matrices for queries or documents. Some
approaches [40, 53] use probabilistic translation models to
estimate the probability distribution of a query in the source
language over the set of sentences in the target language.
Although these translation models are similar to our rel-

evancy matrix, our technique for calculating the matrix dif-
fers from them. First, our technique does not rely on multi-
occurrence of a single term that is essential in a document [53]
but not the case in reuse repositories. Second, our technique
takes both the number of components associated with each
term and the number of terms associated with each com-
ponent into account, whereas Yang et al. [54] only consider
the distribution of each term over the documents, and some
other approaches [40, 53] only take the number of terms
associated with each document into consideration.

5.4 Distributed Information Retrieval
Distributed information retrieval (DIR) [13] is also re-

lated to our research. DIR focuses on searching distributed
heterogeneous repositories. Typical research topics in this
area include common resource description languages [49],
schemes for repository selection [41, 48] and merger of ranked
lists [52]. Because they mainly focus on the physical rather
than semantic differences between repositories, these ap-
proaches may be applied to improve our VRSI system.

6. DISCUSSION AND FUTURE WORK
Our IRMR method makes an assumption that there are

mutual components stored in two repositories. In most
cases, this assumption is realistic, especially noting that if
the users want to retrieve components in two repositories,
it is expected that these two repositories should have some
similarity in contents. In other words, people seldom have
the requirement to retrieve components from two reposito-
ries whose domains and contents are quite different.
In addition, we are working on applying our IRMRmethod

to more than two repositories to further illustrate its fea-
sibility and effectiveness on reuse. As a result, relevancy
information between two repositories could be acquired not
only based on their mutual components, but also based on
their mutual information with other repositories.
Another problem is how to find the mutual components

in repositories, i.e., how to identify similar or identical com-
ponents. Although the mutual components of two reposi-
tories are identified manually in our experiments, there are
a number of automatic techniques to tackle this problem.
RAIC [34] proposes a technique for identifying similar or
identical components via interface relations, functionality
relations, domain relations, snapshot relations, security, in-
vocation price, and other aspects. CodeWeb [35] uses name
matching and information retrieval-based similarity match-
ing to identify similar components.
We plan to conduct experiments to evaluate our method

against the similar approaches for CLIR. As is mentioned
above, we also plan to extend our method to repositories
based on the vector model and the probabilistic model. Fur-
thermore, we plan to examine whether there are minimum
requirements of mutual components to apply our IRMR
method.

7. CONCLUSIONS
Although software reuse is an big effort to reduce software

crises, it introduces new difficulties for finding and locat-
ing components. This paper has proposed a novel method
named the improved relevancy matching and ranking method
for semantic interoperation of reuse repositories. The rele-
vancy matrix of terms in two repositories is calculated auto-
matically based on the mutual components in both reposito-
ries to tackle the conception gap between two representation
methods. With the relevancy matrix, a query represented
by the terms in one repository can be easily transformed
to a query in the other repository. Consequently, compo-
nents distributed in repositories of different types could be
retrieved and ranked with a single query interface, which
would definitely facilitate component retrieval, management
and reuse. We has presented a prototype of a virtual reposi-
tory supporting semantic interoperation based on the IRMR
method. We have also demonstrated the feasibility of our
method by applying it to two different types of repository
pairs, and the experimental results show that our approach
is better than word matching based methods in terms of
both accuracy and efficiency.
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