

Model-Based Dynamic Software Project Scheduling
Natasha Nigar

School of Computer Science
University of Birmingham, United Kingdom

n.nigar@cs.bham.ac.uk

ABSTRACT
Software project scheduling, under uncertain and dynamic
environments, is one of the most important challenges in
software engineering. Recent studies addressed this challenge in
both static and dynamic scenarios for small and medium size
software projects. The increasing trend of cloud based software
solutions (large scale software projects) needs agility not only for
sustainable maintenance but also for in time and within budget
completion. Therefore, this paper formulates software project
scheduling problem (SPSP) as an optimization problem under
uncertainties and dynamics for hybrid scRUmP software model.
In this regard, a mathematical model is constructed with five
objectives as project duration, task fragmentation, robustness,
cost, and stability.

CCS CONCEPTS
• Software and its engineering → Search-based software
engineering;

KEYWORDS
Dynamic software project scheduling; search-based
optimization; mathematical model.

ACM Reference Format

Natasha Nigar. 2017. Model-Based Dynamic Software Project
Scheduling. In Proceedings of 11th Joint Meeting of the European
Software Engineering conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 2017 (ESEC/FSE’17).
https://doi.org/10.1145/3106237.3119879

1. INTRODUCTION
In the last two decades, an exponential growth of software
companies has resulted in a highly competitive environment
where success heavily depends on the faster but within budget

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ESEC/FSE'17, September 4–8, 2017, Paderborn, Germany
 © 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09…$15.00
https://doi.org/10.1145/3106237.3119879

completion of software projects. This refers to a scheduling
problem (SP) where decisions are made about who does what
during project life cycle [1]. The SP becomes more complex and
challenging for medium to large scale projects. The key
associated challenges are schedule evaluation, handling chaotic
behavior, reducing computational burdens, accommodating
unpredictability and handling unpredictable cases [2]. In this
PhD, we deal with the large-scale software project scheduling
problem for a hybrid software engineering model ‘scRUmP’ [3],
which is focused on agility and quality, in a dynamic
environment.
 Juran [4] defines software quality as an extent to which we
comply with the customer requirements and a hybrid software
model ‘scRUmP’ ensures quality by customer involvement. In a
typical project scheduling problem (PSP), key focus is on
optimally allocating people (employees) to activities (tasks) using
automated approaches [1,5,6,7]. In this regard, both traditional
and optimized strategies have been used. The most promising
traditional methods are program evaluation and review
technique (PERT) [8], critical path method (CPM) [9] whereas
resource-constrained project scheduling problem (RCPSP) model
[10] is classical optimization example. With growing software
needs, these are becoming obsolete; hence, there is a rise of
interest in new methods to comply with dynamic environment.
 Previous works on PSP considers that no disruption occurs
during the project life to interrupt the task execution [11]
whereas in reality software projects have to go through many
uncertain and dynamic changes e.g. new high priority task
arrival, new employee addition, employee leave, requirements
change during whole project development life cycle. For such
scenarios, the optimal schedule may risk within budget and in
time completion. The software engineering [13] is defined as an
application of systematic, disciplined, quantifiable approach to
the development, operations and maintenance of software [12].
Thus, we argue that dynamic software project scheduling
approaches that take into account uncertainties and dynamic
events to ensure not only within budget and time completion but
also to ensure quality and agility in the large-scale software
projects must be developed.
 Dynamic software project scheduling problem (DSPSP) has
attracted many researchers’ attraction. In the literature, for static
scheduling environment, cost and duration minimization are
treated as optimization objectives. While dynamic environment
may re-generate a new schedule based on changing software
needs. For example, an employee may join the software
company after project starts, so allocating him/her on project by

1042

ESEC/FSE’17, September 2017, Paderborn, Germany N. Nigar

replacing an employee with less experience might result in both
project cost and time reduction. The tasks are assigned with
priorities, so if multiple tasks with same priority arrive at the
same time, these must be executed while ensuring project
efficiency, which is not trivial. This leads to preemption in our
proposed model. Moreover, given uncertainty in DSPSP good
schedule should be robust against data variation. Therefore, in
the proposed mathematical model, duration, cost, robustness,
stability and task fragmentation are modeled as objectives
whereas dynamic features (section 3) will be implemented in the
algorithm for targeted hybrid software engineering model
‘scRUmP’. This is chosen for its inherent ability toward agility
and quality, key success factors in a large software project. In
this PhD, We are to make the following contributions:
1. Model Validation
 Model validation will be done by two methods. First is
Qualitative approach. In this approach, surveys/interviews will
be done to project managers in different software companies.
Another one is Quantitative approach. It includes the collection
of data sets from different software houses to validate our model.
2. Novel Algorithm development
A novel algorithm will be developed to deal with the five
objectives of our model. There is a non-existing solution for the
proposed scheduling problem.
 This paper is organized as follows. The section 2 presents
related work whereas sections 3 presents mathematical model of
DSPSP for ‘scRUmP’ software hybrid model. This paper
concludes in section 4 with future work.

2. RELATED WORK
The literature review is divided into static and dynamic software
project scheduling problems.

2.1 Static Software Project Scheduling (SSPS)
During last decade, search-based approaches became a
promising way for software project scheduling problem. Alba
and Chicano [1] presented a basic model to tackle SPSP and
solved many different software project scenarios. Minku et al.
[5] proposed an improved algorithm based on the model
presented in [1] whereas Xiuli et al. [21] solved it in a better
way. Xiao et al. [19] based on mathematical model in [1]
assigned tasks to the humans.
 Chang et al. [15] proposed software project management net
(SPMnet) model to find near optimal solutions. An improved
version of Chang et al. [17] work, introduced a 3D matrix
representation, specifying the work load assignment of each
employee for each task on each time period. Hanne and Nickel
[16] have proposed multi-objective evolutionary algorithm for
scheduling and inspection planning. Xiao et al. [18] allocated
human resources to multiple projects under resource
requirements, constraints. Tavana et al. [20] deal with three
conflicting objectives. Chen and Zhang [22] handled both task
scheduling and human resource allocation where employees
leave/return were regarded as events. Studies in [17,22] treat
some dynamics but have been designed for static environment.

2.2 Dynamic Software Project Scheduling (DSPS)
Dynamic scheduling has been of researchers’ interest.
Gueorguiev et al. [23] introduced a search based approach to
software project robustness under uncertainty using proactive
scheduling method with a multi-objective evolutionary
algorithm (MOEA). Ge [24] proposed a rescheduling method
with GAs under uncertainty. In this approach both efficiency
and stability were handled as a single objective function by
weighted sums. Xiao et al. [25] have proposed resource
management under disruption prone environment. But there
exist some limitations for their work such as continuous
rescheduling. Antoniol et al. [26] developed the scheduling
method which combines GA and queue simulation. Although
this method realizes scheduling under some uncertainties, issues
such as stability are not considered. Chicano et al. [27] present a
novel formulation for SPSP which considers productivity of the
employees at performing different tasks. Their wok also provides
robust solution under analysis of the inaccuracies in task-cost
estimations. Shen et al. [11] proposed a mathematical model with
four objectives. Still more dynamics can be added in their work.
 The above literature highlights that static approaches do not
consider uncertainty and unpredictability which has strong
impact in large scale software projects efficiency, particularly in
this competitive environment. Contrary, the dynamic
approaches consider rescheduling. However, none of the existing
approaches consider continuous rescheduling as well as
duration, cost, stability, task fragmentation and robustness as
competing objective functions. Moreover, the dynamic features
inclusion is also limited to employees leaving and returning as
events. Besides there are features, identified in [11] as addition
of new tasks, removal of tasks, change in task precedence and
addition of new employee, which can make rescheduling
problem highly challenging for large software projects.

3. MATHEMAICAL MODEL

3.1 Employees’ Attributes
Let’s suppose that there are N employees for a software project
from {1,2,…..,N}. Each employee has associated attributes. An
employee set is {eid, eskills, eexp, ebasic_salary, eoverwork_salary,

eperhour_salary, enormalhours , emaxhours }. Table 1 presents the detailed
description of employee’s attributes.
 Table 1: Employees’ Attributes

Attribute Description
eid Each employee has a specific id.

eskills Employee’s skills in which he is proficient.

eexp
An employee has associated experience
between [0,1]. 1 means that employee is an
experienced employee, 0 means employee is
fresh; and don’t have much knowledge.

ebasic_salary Each employee has a basic salary per month.
eoverwork_salary Monthly salary of an employee for overtime.

nhours Normal working hours of an employee.
maxhours Monthly maximum allowed working hours.

eperhour_salary Per hour salary of an employee.

1043

Model-Based Dynamic Software Project Scheduling ESEC/FSE’17, September 2017, Paderborn, Germany

3.2 Tasks’ Attributes
Let’s suppose, there are M tasks for a software project from
{1,2,…..,M}. Each task has associated attributes. A task set is {Tid,
Tskills, Tstatus, Tpremp, Tprio, Tman-hours}. When ‘K’ new tasks are
added to the project, total tasks in the project are {1,2,…..M, M+1,
M+2,……,M+K}. Table 2 is the detailed description of task
attributes.

 Table 2: Tasks’ Attributes
Attribute Description

Tid Each task has a specific id.
Tskills Skills required to accomplish the task.
Tstatus

Task has associated status. 1 means task is active.
0 means task has been cancelled.

Tpremp
Each task has a preemption associated with it. 0
means task is high priority task and can’t be
interrupted. 1 means task can be preempted.

TaskList
Each task belongs to a task list. TaskList is a list of
tasks with priorities of execution. {VeryHigh,
High, Medium}

Tprio Each task has a priority as mentioned in task list.
Tman-hours Number of man-hours required to complete task.

3.3 Objectives
There are five objectives to be optimized namely project
duration, cost, task fragmentation, robustness and stability.
There are four phases ‘p’ and ‘iter’ number of iterations
depending on project size. If teams have no or less experience as
compared to specified percentage then a penalty factor is added
in project duration and cost. This may include time and cost for
team training etc.
 F = [f1, f2, f3, f4, f5]

3.3.1 Duration. Project duration is the maximum time required
to complete the project. Tstart_time, Tend_time is the start and end
time of a task respectively. This eexp attribute differentiates our
hybrid model with other models presented in literature.

 min 𝑓1(𝑡) = ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑝

𝑝

1=1

 (1)

 if eexp =1 then duration is

= ∑ (∑ (𝑚𝑎𝑥(𝑇𝑒𝑛𝑑_𝑡𝑖𝑚𝑒) − 𝑚𝑖𝑛(𝑇𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒))

𝑖𝑡𝑒𝑟

𝑗=1

)

𝑝

1

 (2)

 elseif eexp =0 then duration is

= ∑ (∑ (𝑚𝑎𝑥(𝑇𝑒𝑛𝑑_𝑡𝑖𝑚𝑒) − 𝑚𝑖𝑛(𝑇𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒))

𝑖𝑡𝑒𝑟

𝑗=1

)

𝑝

1

 + ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑗 (3)

3.3.2 Cost. Project cost depends on number of iterations.

min 𝑓2(𝑡) = ∑ 𝑐𝑜𝑠𝑡𝑝

𝑝

1=1

 (4)

if maxhours ≤ nhours

cost = ∑ 𝑒𝑗
𝑝𝑒𝑟ℎ𝑜𝑢𝑟_𝑠𝑎𝑙𝑎𝑟𝑦

𝑛

𝑗=1

∗ 𝑛𝑕𝑜𝑢𝑟𝑠 + 𝑒𝑗
𝑏𝑎𝑠𝑖𝑐_𝑠𝑎𝑙𝑎𝑟𝑦 (5)

elseif maxhours > nhours

cost = ∑ 𝑒𝑗
𝑝𝑒𝑟ℎ𝑜𝑢𝑟_𝑠𝑎𝑙𝑎𝑟𝑦

𝑛

𝑗=1

∗ 𝑛𝑕𝑜𝑢𝑟𝑠 + 𝑒𝑗
𝑏𝑎𝑠𝑖𝑐_𝑠𝑎𝑙𝑎𝑟𝑦

+ (𝑚𝑎𝑥𝑕𝑜𝑢𝑟𝑠 − 𝑛𝑕𝑜𝑢𝑟𝑠) ∗ 𝑒𝑗
𝑜𝑣𝑒𝑟_𝑠𝑎𝑙𝑎𝑟𝑦 (6)

3.3.3 Task Fragmentation. f3(t) represents task fragmentation
performance. It measures dependency of one task on another.
Objective is to avoid the task schedule fragmentation. If more
tasks are dependent on a task and due to some reason that task is
delayed so that other tasks are not affected and whole
completion time is not delayed. This objective differentiates our
hybrid model with other models presented in literature.

min 𝑓3(𝑡) = 𝑡𝑎𝑠𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

= (𝛼 ∗ 𝐷𝑆(𝑡) + 𝛽 ∗ 𝑈𝐷𝑆(𝑡)) (7)

where 𝛼 and 𝛽 are control parameters for direct successors (DS)
and undirect successors (UDS) respectively.

3.3.4 Robustness. f4(t) represents robustness, the schedule’s
ability to cope with small increases in the time duration of some
tasks. It is defined as task’s slack time by which a task can be
delayed without delaying the whole project. In Equation (8) ‘S’
represents the slack time of a task. ‘NSucc’ is number of
immediate successors of a task. So, robustness is maximized for
our problem.

max 𝑓4(𝑡) = 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠

= ∑ (∑ ∑ 𝑆𝑘

𝑚

𝑘=1

𝑖𝑡𝑒𝑟

𝑗=1

∗ 𝑁𝑆𝑢𝑐𝑐𝑘)

𝑝

𝑖=1

 (8)

3.3.5 Stability. f5(t) objective measures deviation between new
and original schedules. t′ represents new schedule time and t
represents old schedule time. A penalty is attached for
preventing employees for being shuffled around too much.

max 𝑓5(𝑡) = 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

= ∑ ∑ |𝑡′
𝑖,𝑗 − 𝑡𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

| + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖,𝑗 (9)

1044

ESEC/FSE’17, September 2017, Paderborn, Germany N. Nigar

3.4 Constraints
Listed below are soft constraints for our DSPSP.

1. Task Due-date
Task should not delay from its due date, it is defined:
 Taskdelay =  (dn – DDn)
where

dn, task finish time
DDn , Due date of task n
=1 if (dn – DDn) >0; = 0 otherwise.

2. Task headcount
There is limit for number of employee to work on a task.
Each task has maximum number of headcount of
employees.

 ∀ Tj, Tj
no_of_emp (t׳) ≤ Tj

maxheadcount

 Here Tj
maxheadcount is already defined for our problem.

4. CONCLUSIONS
This work introduces a novel idea for dynamic software project
scheduling in hybrid software model ‘scRUmP’ for medium to
large scale projects in agile way. We develop a mathematical
model to summarize five objectives. The project constraints and
dynamic features have been identified. Future work will be the
design of algorithms to deal with this multi-objective
optimization problem. A new search algorithm will be either
developed or an existing evolutionary algorithm such as ant
colony optimization (ACO) or particle swarm optimization (PSO)
will be adapted. Currently there is an issue for our model
validation. We will validate our proposed model in future
through surveys/interview to project managers and collection of
data sets from different software companies.

ACKNOWLEDGMENTS
I would like to thank Professor Xin Yao and Dr. Miqing Li for
their guidance on this work. This work was supported by the
FDP Fund for Young Scholars under Grant no. Estab/D-
412(331)/2014/2278.

REFERENCES
[1] E. Alba and J. F. Chicano. Software project management with gas. Inf. Sci.,

vol. 177, no. 11, pp. 2380–2401, 2007.

[2] Parunak and H. Van Dyke. Characterizing the manufacturing scheduling
problem. Journal of manufacturing systems, vol.10, no. 3, pp. 241-259, 1991.

[3] E. del Nuevo , M. Piattini, and F. J. Pino. Scrum-based methodology for
distributed software development. In Proceedings of 6th Internaional
Conference on Global Software Engineering, Aug. 2011, pp. 66-74.

[4] J.M. Juran, Juran's Quality Control Handbook, McGraw-Hill, 1988.

[5] L. L. Minku, D. Sudholt, and X. Yao. Improved evolutionary algorithm
design for the project scheduling problem based on runtime analysis. IEEE
Trans. Softw. Eng., vol. 40, no. 1, pp. 83–102, Jan. 2014.

[6] C. K. Chang, M. J. Christensen, and T. Zhang. Genetic algorithms for project

management. Ann. Softw. Eng., vol. 11, pp. 107–139, 2001.

[7] F. Luna, D. González-Álvarez, F. Chicano, and M.A.Vega-Rodríguez. The

software project scheduling problem: A scalability analysis of multi-

objective metaheuristics. Appl. Soft Comput., vol. 15, pp. 136–148, 2014.

[8] J. D. Wiest, and F. K. Levy, A Management Guide to PERT/CPM: with

GERT/PDM/CPM and Other Networks., NJ, USA: Prentice-Hall. 1977.

[9] D. Golenko-Ginsburg and A. Ganik. Stochastic network project scheduling
with non-consumable limited resources. Int’l. J. Production Econ., vol. 48, pp.
29–37, 1997.

[10] W. Herroleon , B. D. Reyck, and E. Demeulemeester. Resource-constrained
project scheduling: A survey of recent developments. Comput. Oper. Res.,
vol. 25, no. 4, pp. 279–302, 1998.

[11] X. Shen, L. L. Minku, R. Bhasoon, and X. Yao. Dynamic software project
scheduling through a proactive-rescheduling method. IEEE Trans. Softw.
Eng., vol. 42, no. 7, pp. 658-686, July. 2016.

[12] R. Pressman, Software Engineering: A Practioner´ıs Approach, 6th ed.New
York, NY, USA: McGraw Hill, 2005.

[13] M. Harman. The Current State and Future of Search Based Software
Engineering. In Proc of Future of Software Eng, May. 2007, pp. 342-357.

[14] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. vol. 53,
Heidelberg: springer, 2003.

[15] C. K. Chang, M. J. Christensen, C. Chao, and T. T. Nguyen. Software Project
Management Net: A New Methodolog on Software Management. In
Proceedings of 22nd Annual Int’l Conf. on Computer Soft and App., 1998.

[16] T. Hanne and S. Nickel. A multiobjective evolutionary algorithm for
scheduling and inspection planning in software development projects.
Europen Journal of Operational Research, vol. 167, no.3, pp. 663-678, 2005.

[17] C. K. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge. Time-line based model for
software project scheduling with genetic algorithms. Inf. Softw. Technol.,
vol. 50, pp. 1142-1154, 2008.

[18] J. Xiao, Q.Wang, M. Li, Q. Yang, L. Xie, and D. Liu. Value-based multiple
software projects scheduling with genetic algorithm. In Proceedings of
Internaional Conference on Software Process, May. 2009, pp. 50-62.

[19] J. Xiao, X. T. AO, and Y. Tang. Solving software project scheduling
problems with ant colony optimization. Computers & Operations Research,
vol. 40, no. 1, pp. 33-46, 2013.

[20] M. Tavana, A. R. Abtahi, and K. Khalili-Damghani. A new multi-objective
multi-mode model for solving preemptive time–cost–quality trade-off
project scheduling. Expert Systems with App, vol. 41, pp. 1830-1846, 2014.

[21] X. Wu, P. Consoli, L. Minku, G. Ochoa, and X. Yao. An Evolutionary Hyper-
heuristic for the Software Project Scheduling Problem. In Proceedings of Int’l
Conf. on Parallel Problem Solving from Nature, 2016, pp. 37-47,

[22] W. N. Chen and J. Zhang. Ant colony optimization for software project
scheduling and staffing with an event-based scheduler. IEEE Trans. Softw.
Eng., vol. 39, no. 1, pp. 1-17, Jan 2013.

[23] S. Gueorguiev, M. Harman, and G. Antoniol. Software project planning for
robustness and completion time in the presence of uncertainty using multi-
objective search based software engineering. In Proceedings of 11th Annual
Conference on Geneic Evol. Compu. 2009, pp. 1673–1680.

[24] Y. Ge. Software Project Rescheduling with Genetic Algorithms. In
Proceedings of Internaional Conference on Artificial Intelligence and
Computational Intelligence, Nov. 2009, pp. 439-443.

[25] J. Xiao, L. J. Osterweil, Q. Wang, and M. Li. Dynamic resource scheduling in
disruption-prone software development environments. In Proceedings of
Internaional Conference on Fundamental Approaches to Software Engineering,
March. 2010, pp. 107–122, doi: 10.1007/978-3-642-12029-9_8.

[26] G. Antoniol, M. Di Penta, and M. Harman. A robust search-based approach
to project management in the presence of abandonment, rework, error and
uncertainty. In Proc. of Int’l Symp. Software Metrics, 2004, pp. 172–183.

[27] F. Chicano, A. Cervantes, F. Luna, and G. Recio. A novel multiobjective
formulation of the robust software project scheduling problem. Applications
of Evolutionary Computation. New York,USA: Springer, 2012, pp. 497–507.

1045

