Studying Developer Gaze to Empower
Software Engineering Research and Practice

Bonita Sharif
Dept. of Computer Science and
Information Systems
Youngstown State University
Youngstown, Ohio 44555

bsharif@ysu.edu

ABSTRACT

A new research paradigm is proposed that leverages developer
eye gaze to improve the state of the art in software engineering
research and practice. The vision of this new paradigm for use
on software engineering tasks such as code summarization, code
recommendations, prediction, and continuous traceability is
described. Based on this new paradigm, it is foreseen that new
benchmarks will emerge based on developer gaze. The research
borrows from cognitive psychology, artificial intelligence,
information retrieval, and data mining. It is hypothesized that
new algorithms will be discovered that work with eye gaze data
to help improve current IDEs, thus improving developer
productivity. Conducting empirical studies using an eye tracker
will lead to inventing, evaluating, and applying innovative
methods and tools that use eye gaze to support the developer.
The implications and challenges of this paradigm for future
software engineering research is discussed.

CCS Concepts

eSoftware and its engineering— Software creation and
management

Keywords

Eye tracking, summarizations, recommendations, continuous
traceability, predictions, benchmarks, mining gaze data

1. INTRODUCTION

Eye trackers have been used for many decades to study how
people comprehend visual stimuli [1]. Modern eye trackers
implicitly collect a person’s (e.g., developers) eye gaze data on
the visual display (stimulus) in an unobtrusive way while they
are performing a given task. This eye movement data could
provide much valuable insight into comprehension strategies [2]
as to how and why people arrive at a certain solution. Eye
movements are essential to cognitive processes because they
focus a person’s visual attention to the parts of a visual stimulus
that are processed by the brain. Visual attention triggers
cognitive processes that are required to perform such things as
comprehension. Eye movement is also a proxy for cognitive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions @acm.org.

FSE’16, November 13-18, 2016, Seattle, WA, USA
(© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983988

Benjamin Clark
Dept. of Computer Science and
Information Systems
Youngstown State University
Youngstown, Ohio 44555

bjclark01@student.ysu.edu

940

Jonathan |. Maletic
Department of Computer Science
Kent State University
Kent, Ohio 44242

jmaletic@kent.edu

effort [1] and allows us to determine what parts of a visual
stimuli are difficult to understand.

The current role of eye trackers in software engineering is
mostly limited to empirical assessment [3, 4]. This restriction is
understandable due to the fact that the affordability of high-
quality eye-tracking equipment is not yet to the level of common
computer components (the cost difference is in the order of
several magnitudes). Recently, low-cost eye trackers costing a
couple of hundred dollars were released for consumer use
(mainly gaming). If history of technology evolution is to be our
guide, it is perhaps not farfetched to say that in the foreseeable
future, eye-tracking technology would become more affordable.
Eye trackers would then be a common feature on personal
computers similar to web cameras and other peripherals. It is
becoming increasingly possible to do things in integrated
development environments (IDEs) with a “blink of an eye”,
similar to what we do today “by word of mouth or click of a
button”. Capturing eye gazes would be as simple as capturing
screen shots, videos or activity logs. Such eye-tracking enabled
IDEs would offer unique opportunities to software engineering
research and practice.

The field of cognitive psychology has used eye trackers to study
how we comprehend such things as words, prose, pictures, and
diagrams. Computer scientists have used eye tracking devices to
study how people interact with graphical user interfaces and web
pages. One goal of such investigations is to learn what
constitutes a good human computer interface so that we may
design better ones.

The software engineering research community is now using eye
trackers to study how engineers comprehend and develop
software. Sharafi et al. [5] did a comprehensive systematic
literature review on all eye tracking related studies (approx. 35
to date) done in software engineering since the 1990s.
Unfortunately, all of the studies use small code snippets that do
not mimic real world scenarios. While fixed static text is
sufficient to study how people read a sentence (or a few lines of
source code), it is wholly inadequate to study how programmers
attempt to comprehend an entire software system. That is, with
the current technology we can only study how programmers
comprehend short snippets of code [6]. Instead, we need to
study the programmer developing software in their actual work
environment while using program editors and other associated
integrated development tools (e.g., Visual Studio, Xcode, or
Eclipse).

In the following sections, we describe how eye tracking can
become more prevalent in developer workflow with very little
effort on the part of the developer. We also outline several
research applications and visions (not limited to using eye
tracking just for assessment) including challenges that need to

be overcome. We believe the outcome of this research to be far-
reaching and directly advancing the state of the art in supporting
several core software engineering tasks

2. EYE TRACKING WITHIN THE IDE

The underlying basis of an eye tracker is to capture various
types of eye movements that occur while a participant in our
case, humans, physically gaze at an object of interest. Fixations
and saccades are the two types of eye movements. A fixation is
the stabilization of eyes on an object of interest for a certain
period of time. Saccades are quick movements that move the
eyes from one location to the next (i.e., refixates). A scan path
is a directed path formed by saccades between fixations. The
general consensus in the eye tracking research community is that
the processing of visualized information occurs during fixations,
whereas, no such processing occurs during saccades. The visual
focus of the eyes on a particular location triggers certain mental
processes in order to solve a given task [1]. Modern eye trackers
are accurate to 0.5 degrees (0.25 inch diameter) on the screen.

Eye trackers work by determining the (x, y) coordinate on a
screen of where a person is looking. It is accomplished with
cameras that record the subject’s eye movements. This is done
at a given sampling rate and a given accuracy. For fixed stimuli
(image or pdf) mapping the eye movements to the location a
person is looking at is relatively straight forward geometry.
Changes to the stimuli (screen), such as scrolling, present a more
complicated problem. There exists very limited support of
scrolling in commercial eye tracking devices however it still
requires fixed stimuli that just happens to be longer. There is no
existing support in the context of a person interactively using an
editor or switching between files being viewed. Basically,
existing systems do not keep track of what line in which file is
present on the screen (i.e., currently being viewed).

In order to deal with the above problem, we introduced i7race
[7], an Eclipse plugin that interfaces with an eye tracker to
collect fine-grained line-level data on software artifacts the
developer is viewing and interacting with. It allows for scrolling
and switching between different artifacts and files during an eye
tracking study. The goal is to support not just source code
artifacts but also other software artifacts such as UML diagrams,
stack overflow (www.stackoverflow.com) documents, bug
reports, test cases, and requirements all accessible within an
IDE. This will enable software engineering researchers to
conduct large-scale realistic eye-tracking studies seamlessly
within a software development environment. We believe the
data generated by eye trackers can be used along with other data
streams for added insight. There is no need for the researcher to
manually map (x, y) coordinates to source code elements as all
of this time-consuming labor-intensive process is now done
automatically by iTrace. iTrace runs uninterrupted in the
background within Eclipse, recording developers' eye
movements while they are working. The first version of the
plugin is open source under the GPL license
(http://seresl.csis.ysu.edu/iTrace/). In order to use iTrace, a
developer would need to do a quick calibration and start
tracking.

3. COMPARING EYE TRACKING AND
INTERACTION DATA SETS

To investigate developers' detailed behavior while performing a
change task, Kevic et al. [8] conducted a study with 22
developers working on three change tasks in the JabRef open
source system. This is the first study that collects both eye-

941

tracking (using our iTrace prototype) and interaction data (using
Mylyn) simultaneously, while developers work on realistic
change tasks. The analysis shows that gaze data contains
substantially more elements captured, as well as more fine-
grained data, providing evidence that gaze data is in fact
different and captures different aspects compared to interaction
data. The analysis also shows that developers working on a
realistic change task only look at very few lines within a method
rather than reading the whole method as was often found in
studies on single method tasks. A further investigation of the eye
traces of developers within methods showed that developers
chase variables flows within methods. When it comes to
switches between methods, the eye traces reveal that developers
only rarely follow call graph links and mostly only switch to the
elements in close proximity of the method within the class.
Furthermore, the fine-grained gaze context showed that
developers focus only on a few methods when investigating a
change task. These detailed findings provide insights and
opportunities for future developer support.

4. APPLICATION SCENARIOS

We now present several scenarios that discuss how the iTrace
environment can be used to improve and enhance various
software engineering tasks.

4.1 Code Summarizations

The findings from Kevic et al. [8] demonstrate that method
summarization techniques could be improved by applying some
program slicing first and focusing on the lines in the method that
are relevant to the current task rather than summarizing all lines
in the whole method. In addition, the findings suggest that a
fisheye view of code zooming on methods in close proximity
and blurring out others, might have potential to focus
developers' attention on the relevant parts and possibly speed up
code comprehension. Studies can be conducted to compare
strategies adopted by developers when summarizing code
elements (methods and classes for example) using code and/or
documentation. The documentation could be in the form of stack
overflow documentation and/or bug reports. The motivation is to
help automatic tools benefit from such results and enhance their
accuracy when summarizing with either code or documentation
available. Researchers can compare these techniques with
Natural Language Processing (NLP) [9] and Information
Retrieval (IR) [10, 11] techniques. Key research questions
would be: Do developers use different program comprehension
strategies when summarizing code elements using different
sources of information (i.e., code, documentation, or both)?
What do they look at during summarization using multiple
artifacts? To what extent does using different types of
information impact the summarization task (in terms of quality
and time)?

The expected outcomes of this research direction would be the
eye movement patterns and strategies used in both cases (using
code and documentation), the quality of the answers, i.e.,
summaries, as well as the time to answer the tasks. The quality
of the summaries can be evaluated against an oracle that can
possibly built by considering all annotators answers. We can
compare and contrast this realistic setting with the one from
Rodeghero et al. [12] where methods were shown in isolation.
The key research question to be addressed in this direction is:
When given an entire open source system and asked to
summarize a method, what do developers look at?

4.2 Code Recommendations

We can collect eye tracking data from developers working on
real change tasks in large open source systems in order to
provide contextual help when they are stuck on a task thereby
tailoring code recommendations to their specific user
experience. The main challenge associated with this research
application is that of false positives. It could be possible that the
recommendations are totally off and not what the developer
wanted. One way to deal with this would be to devise an
algorithm that detects stray glances and avoids them during
recommendations. Another challenge is when should the
recommendation be made - proactively or only when requested?
The key questions to be addressed in this research area are: Can
we provide code recommendations for developers solely based
on eye gaze history? And how useful are they? When do we
determine that developers need help with their development
session? And how do we prompt them with recommendations?
What types of elements do developers search for when they are
stuck on a task?

The expected outcomes of this research area would be to create
a measure of relevance/degree of interest for the eye tracking
data. Once this measure is created, researchers could build
extensions to the iTrace framework via a code recommendation
module that will be based on eye movement patterns and
strategies used. The open and extensible nature of i7race allows
for such inclusions.

4.3 Predictions Based on Eye Gaze

The collected gaze data can also be used for predictions using
machine learning algorithms. Fritz et al. [13] conducted a study
that found that the pupil diameter was an important feature in
predicting task difficulty. The study was on small code snippets
but now can be replicated using i7race on larger code bases.

Besides predicting task difficulty, one can also predict developer
expertise using eye gaze features such as number of fixations,
fixation durations, pupil diameter, and scan path patterns.
Experts and novices have different eye gaze behavior when
reading code [14, 15]. Given a developer’s eye tracking data set,
can we determine with some level of confidence if the data
comes from an expert or a novice? We believe this is possible as
we learn more about how developers (both experts and novices)
behave while solving tasks. The more data we collect, the better
our algorithms learn to model and predict expertise. The answer
to such a question of predicting expertise is also of importance
in coding interviews. Imagine a scenario where an interviewer
would like to know based on eye movements, how skilled the
interviewee actually is. Or more importantly, with eye tracking,
they can see how an interviewee followed the right approach to
the solution but did not quite come up with an entirely correct
solution. A similar argument can be made about how a code
reviewer goes about reviewing. Eye tracking developers lets us
peek into these valuable insights that are otherwise lost if not
tracked.

A third possibility is the prediction of developer fatigue. Blink
rate and revisits/regressions can be used to determine fatigue.
As iTrace learns more about what is normal for a developer,
fatigue will be a feature that will stand out more based on the
rules we provide. We can build a cognitive model that
continuously learns from added gaze sessions. Emotion mining
and prediction is also an interesting future possibility.

942

4.4 Continuous Traceability

Gotel et al. [16] gives an analysis of the requirements
traceability problem. The issue of human effort and usability in
traceability is of paramount importance, and needs to be
thoroughly addressed for software traceability to be successfully
adopted in industry and to become a common developer routine.
One of the main reasons cited for this problem is the high error-
prone human effort and costs required to document and maintain
the traceability links over time and the high rate of false
positives [17]. Therefore, traceability often downgrades to a
low-priority activity with no obvious immediate benefits to the
developers or managers.

We conducted a pilot study [18] on a small system (iTrust), to
determine if it was possible to infer traceability links from eye
gaze. In order to do this, we devised an algorithm that gives a
higher weight to source code elements seen later in the session.
The rationale behind this is that when a developer first starts a
session, they are not sure of what they are interested in. But as
the session comes to an end, they only focus their gaze on
source code entities they think are related to the task. The results
were promising. Software traceability researchers could work at
investigating the following questions: How well can the models
based on human gaze capture software traceability data (links)
in large realistic open source and industrial systems? How much
reduction do we see in human effort while collecting,
recovering, or maintaining software traceability data (links)
using the iTrace infrastructure in a continuous fashion?

We envision a future where continuous traceability is possible
when we capture and use human gaze information to inform
traceability link generation and evolution while developers work
on change tasks. iTrace will silently observe and document the
developers’ eye movements while they are working on tasks and
provide a novel platform that would directly support two key
software traceability tasks: traceability link generation/recovery,
and traceability link maintenance and evolution.

4.5 Benchmarks on Eye Gaze Data

Techniques for feature location are commonly evaluated on
benchmarks formed from commits [19]. Although, commits are
a reasonable source, they only capture entities that were
eventually changed to fix a bug or resolve a feature. We did
some preliminary work on investigating another type of
benchmark based on eye tracking data. Eye tracking data
provides insights into activities that go beyond entities that were
changed in a commit. To establish a benchmark, we analyzed
eye-gaze information for five developers from the previous
study [18] required to perform bug-localization tasks on the
open source subject system JabRef. We found results from the
gaze tracking algorithm [18] to be more specific than the
rankings from current IR methods. The gaze algorithm also
exhibited the notable property of finding useful source code
entities given unsuccessful attempts to fix a bug by developers.
This indicates that a developer might have found a starting point
but not the exact solution yet. With commits, the IR techniques
can only be evaluated if the solution is committed. The eye
tracking benchmark can be used even if the solution is
incomplete. The transparency and minimal effort required by
developers makes gaze tracking as a benchmark an attractive
possibility for researchers to investigate further.

S. DISCUSSION AND CONCLUSIONS

iTrace is a radical departure from existing approaches that rely
on the conventional structural and semantic analysis in software
artifacts. This paradigm requires some challenges to be
addressed. The first challenge has to do with making sure we get
accurate data from the eye tracking device. Because of the noise
associated with any biometric device, we need to make sure our
data is accurate and drift is manageable. We propose an
automated fixation correction algorithm [20] that is a first step
towards this direction. In order to tackle this problem, we need
to borrow ideas from artificial intelligence and machine learning
to detect drifts/offsets in the data and correct them on the fly.

An additional concern is that the proposed paradigm would
generate a massive amount of eye tracking data. Such volumes
could introduce scalability issues and pointless gazes. For
iTrace, a self-feedback based learning loop can be incorporated
with the goal of reducing the number of false positives. Our
initial implementation handles the elimination of stray gazes
quite well. The developer validation of accuracy such as in the
case of traceability links could be fed back in the link recovery
algorithm. According to eye-tracking vendors, a state-of-the-art
eye tracker works well for approximately 98% of the population.
We only expect the technology to improve to accommodate
more samples as it has been in recent years. Finally, we initiated
a call for standardization of visual effort metrics [21] as many
researchers use different terms to mean similar things and in
some cases different things. This presents problems when
comparing studies across different research groups. There needs
to be some community effort in standardization of visual effort
metrics pertaining to studying software developers.

In this paper, we discuss an extensible infrastructure namely
iTrace that researchers can use to build modules for specific
application scenarios mentioned above. Eye trackers tell you
where a person is looking but they do not tell you where they are
not looking. We need to synergistically use eye tracking data
with other existing techniques to our advantage to help towards
the common goal of improving how software is built. The
central premise in iTrace is to use eye-tracking equipment to
implicitly collect developers’ eye activity on software artifacts
(that automatically map to relevant artifact elements on the fly)
in an unobtrusive way while they are performing software
maintenance tasks.

The anonymized eye tracking data sets can be made available to
researchers and eye tracking mining challenges similar to the
challenges at the Mining Software Repositories conferences can
be undertaken. This engagement in the community will further
improve understanding the gaze datasets. There is a lot of
potential to use methods from data mining, information retrieval,
artificial intelligence, and cognitive psychology to help better
use the data collected on developer eye gaze. Besides software
engineering research and practice, eye tracking studies can also
help inform software engineering education thereby developing
new guidelines (such as coding style for better readability) for
educators.

6. REFERENCES

[1] K. Rayner, "Eye Movements in Reading and Information
Processing: 20 Years of Research," Psychological Bulletin, v.
124, pp. 372-422, 1998.

[2] E. Soloway and K. Ehrlich,
Programming Knowledge," Software Engineering,
Transactions on, vol. SE-10, pp. 595-609, 1984.

"Empirical Studies of
IEEE

943

[3] R. Turner, B. Sharif, and A. Lazar, "An Eye-tracking Study
Assessing the Comprehension of C++ and Python Source
Code," presented at ETRA 2014, Florida, USA, 2014.

[4] B. Sharif, G. Jetty, J. Aponte, and E. Parra, "An Empirical
Study Assessing the Effect of SeelT 3D on Comprehension,"
presented at VISSOFT 2013, Eindhoven, Netherlands, 2013.

[5] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, "A Systematic
Literature Review on the Usage of Eye Tracking in Software
Engineering," IST, 2015.

[6] M. Hansen, R. Goldstone, and A. Lumsdaine, "What Makes
Code Hard to Understand?," ArXiv e-prints, 2013.

[7] T. Shaffer, J. Wise, B. Walters, S. Miiller, M. Falcone, and
B. Sharif, "iTrace: Enabling Eye Tracking on Software
Artifacts Within the IDE to Support Software Engineering
Tasks," in ESEC/FSE 2015, Italy, 2015, pp.954-957.

[8] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. Shepherd, and
T. Fritz, "Tracing Software Developers’ Eyes and Interactions
for Change Tasks," in FSE 2015, Italy, 2015, pp. 202-213.

[9] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K.
Vijay-Shanker, "Towards automatically generating summary
comments for Java methods," ASE, Belgium, 2010.

[10] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, "On the
Use of Automated Text Summarization Techniques for
Summarizing Source Code," in WCRE 2010, 2010, pp. 35-44.

[11] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver,
"Evaluating source code summarization techniques:
Replication and expansion," in ICPC, 2013, pp. 13-22.

[12] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch,
and S. D'Mello, "Improving Automated Source Code
Summarization via an Eye-Tracking Study of Programmers,"
presented at ICSE'14, Hyderabad, India, 2014.

[13] T. Fritz, A. Begel, S. Miiller, S. Yigit-Elliott, and M. Ziiger,
"Using Psycho-Physiological Measures to Assess Task
Difficulty in Software Development," presented at ICSE,
Hyderabad, India, 2014.

[14] M. E. Crosby and J. Stelovsky, "How do we read
algorithms? A case study," IEEE Computer, pp.24-35, 1990.

[15] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H.
Paterson, C. Schulte, et al., "Eye Movements in Code
Reading: Relaxing the Linear Order," in ICPC, pp.255-265.

[16] O. C. Z. Gotel and A. C. W. Finkelstein, "An Analysis of
the Requirements Traceability Problem", RE,1994, pp.94-101.

[17] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora,
"Recovering Traceability Links in Software Artefact
Management Systems using Information Retrieval Methods,"
TOSEM, v. 16, p. article no. 13, 2007.

[18] B. Walters, T. Shaffer, B. Sharif, and H. Kagdi, "Capturing
Software Traceability Links from Developers' Eye Gazes," in
ICPC, Hyderabad, India, 2014, pp. 201-204.

[19] M. Gethers, B. Dit, M. Revelle, and D. Poshyvanyk,
"Feature location in source code: A taxonomy and survey,"
JSME: Research and Practice, vol. 25, 2013.

[20] C. Palmer and B. Sharif, "Towards Automating Fixation
Correction for Source Code" in ETRA 2016, pp.65-68.

[21] Z. Sharafi, T. Shaffer, B. Sharif, and Y.-G. Guéhéneuc,
"Eye-tracking Metrics in Software Engineering," in APSEC,
New Delhi, India, 2015, pp. 96-103.

