Understanding Gamification Mechanisms
for Software Development -

Daniel J. Dubois
Massachusetts Institute of Technology
MIT Media Lab
Cambridge, MA, USA

ddubois@mit.edu

ABSTRACT

In this paper we outline the idea to adopt gamification techniques
to engage, train, monitor, and motivate all the players involved in
the development of complex software artifacts, from the inception
to the deployment and maintenance. The paper introduces the con-
cept of gamification and proposes a research approach to under-
stand how its principles may be successfully applied to the process
of software development. Applying gamification to software engi-
neering is not as straightforward as it may appear since it has to be
casted to the peculiarities of this domain. Existing literature in the
area has already recognized the possible use of such technology in
the context of software development, however how fo design and
use gamification in this context is still an open question. This leads
to several research challenges which are organized in a fascinat-
ing research agenda that is part of the contribution of this paper.
Finally, to support the proposed ideas we present a preliminary ex-
periment that shows the effect of gamification on the performance
of students involved in a software engineering project.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management

General Terms

Human factors, management

Keywords

Software development, gamification, serious games, reward

1. INTRODUCTION AND MOTIVATION

Effective and efficient software development presents several
technical challenges that relate for example to correctness, relia-
bility, security, performance and privacy. Advances in research
and technology have produced many methodologies and techniques

*This work has been partially funded by the Fondazione Fratelli
Rocca (Progetto Roberto Rocca fellowship — MIT-Italy Program)
and by the European Commission (Marie Curie Intra-European
Fellowship FP7-302648 RunMore).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.
ESEC/FSE’13, August 18-26, 2013, Saint Petersburg, Russia

ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2494589

659

Giordano Tamburrelli
University of Lugano
Faculty of Informatics
Lugano, Switzerland

giordano.tamburrelli@usi.ch

to overcome these difficulties. However, despite these improve-
ments, too often software projects produce artifacts with an un-
satisfactory quality, or exceed their budget in terms of time and
cost. This occurs not only because software engineering technolo-
gies and methodologies still require further investigations, but also
because of human factors. Indeed software design and develop-
ment is intrinsically a human-centric and brain-intensive activity
in which the experience, motivation and discipline of developers
represent crucial ingredients. However, stimulating and maximiz-
ing these elements is still an open challenge.

The idea we propose is a method to use gamification techniques
to engage, train, monitor, and motivate all the players involved in
the development of complex software artifacts. The final purpose is
twofold: from one hand we want to improve software-engineering
education/training, from the other hand we want to improve the
quality of development activities for already experienced teams.

The term gamification is very recent and one of the first attempts
to define it has been made in [13] with the following statement:
“gamification is defined as the use of game design elements in non-
game contexts”. The most elementary gamification element con-
sists of a rewarding mechanism that awards people in response of
the accomplishment of certain activities (also known as challenges)
that need to be encouraged. The initial adoption of gamification
was as a marketing strategy to increase customer engagements and,
because of its effectiveness, rapidly spread to other domains such as
employee or project management. Gamification, if applied to soft-
ware development, may provide several advantages. First, because
of its rewarding mechanisms, it may motivate developers to learn
new technologies and increase their productivity (e.g., the Visual
Studio Achievements [5]). Second, it may improve the quality of
their work if adopted to encourage best practices (e.g., testing, code
conventions, etc.). From a management perspective, it may be used
as input to give economic incentives and to support the evaluation
of employees as well as of teams. Deriving a method for applying
gamification to software development is not as straightforward as
it may appear since gamification principles and mechanisms need
to be casted to the peculiarities of this domain. This leads to sev-
eral research challenges, which constitute the goal of this work that
may be summarized as the investigation and design of ad-hoc gam-
ification mechanisms for software development, which depend on
the behavior to be incentivized. Once a method has been found and
experimentally validated on a given context, it can be easily reused
in similar contexts with a limited cost.

In this paper we propose: (i) a research approach for adopting
gamification in the different phases of the software-engineering
lifecycle (both for educational and productivity purposes), (ii) a
discussion on how such approach can be developed to address the
identified issues, and (iif) preliminary results in the context of soft-
ware engineering education on how gamification affects undergrad-
uate students behaviors and performance.

2. BACKGROUND AND RELATED WORK

2.1 Background on Gamification

Gamification has been initially adopted by marketers and web-
site product managers as a tool to maximize customer engagement.
For example StackOverflow [3], a popular question-and-answer site
for developers, in which users receive points and/or badges for
performing a variety of actions, including spreading links to ques-
tions and answers via Facebook and Twitter. Because of its effec-
tiveness, gamification rapidly became popular and spread to other
domains such as employee performance management and training
(e.g., Work [6]) or project management (e.g., RedCritter [1]).

As a consequence of these initial promising applications in in-
dustry, academic research started to investigate gamification from
many viewpoints. Indeed, even if the research on gamification is
quite recent, there is already an established literature on this topic.
For example in [12] and [21] the authors propose some guidelines
for the design and development of games. In these guidelines they
consider many key aspects to build successful games that include
the necessity of challenges, interactions, the inclusion of creativity
in the gaming experience, and finally a view of games as contexts
for social play. This preliminary literature led to the adoption of the
same features that make a game successful to the context of user
applications to have similar engaging effects [19, 31], thus intro-
ducing gamification patterns into non-game contexts. In addition,
existing works have identified the idea of collaboration [15] and
competition [16, 27] as individual factors for developing gamified
applications. In these works the authors observe for example that
elements of collaboration/competition games can stimulate hobby-
ists to develop unpaid tasks. An example is the common creation of
the so-called mods, which are modified versions of existing games
developed by volunteers [22]. Moreover, other works analyze how
the power of competition may be a huge source of motivation for
players to achieve the so-called pro status (i.e., professional play-
ers) [28, 29]. In our previous work [14] we have shown how to en-
gineer gamification at user experience level in mobile applications
using not only collaboration and competition, but also exploiting
context-aware capabilities of mobile devices.

In this paper we propose a research approach for understanding
and achieving all the aforementioned effects to improve the quality
of a software engineering process.

2.2 Gamification and Software Engineering

In a survey on social software engineering [7] the authors point
out the need to: (i) integrate results from social and psychological
sciences in the software lifecycle, (ii) engineer social networking
services and collaborative tools. With respect to this our idea has
the objective to exploit gamification to advance the state of the art
in social software engineering in both directions.

Preliminary works on the topic of gamification have been re-
cently presented, however they just tend to show some abstract
gamification ideas applied to very particular cases. Unfortunately,
little effort has been spent so far to understand how gamification
can be applied on different situations. For example Passos et al. [20]
propose an idea that, at the best of our knowledge, is the clos-
est to the one we are proposing: they suggest to gamify the entire
software lifecycle by dividing the whole process into tasks and as-
signing points and achievements based on task completion. The
main limitation of such work is that the authors do not explain
how to actually use gamification (e.g., type of gamification strategy,
pros/cons, etc.), which is still an open question and the main prob-
lem addressed by our paper. Xie et al. [30] discuss the importance
of gamification in the software engineering education area using
PEX4FUN, a .NET multi-language platform for education for pro-
viding learning games based on coding duels. Sheth et al. propose a
methodology for highly addictive, socially optimized software en-

660

gineering [23] and show their experience in project gamification of
an introductory computer science class [24]. Singer and Schnei-
der [25] show their experience in the gamification of a version
control system based on the number of commits. Bacchelli et al.
propose Seahawk [8], a tool for integrating the gamified question-
and-answer engine of StackOverflow [3] to a software development
IDE, in which users receive points and/or badges for answering
questions. Finally, game-inspired concepts have also been widely
used in agile software development methodologies such as eXtreme
Programming [11], in which the planning activity is modeled as a
planning game to maximize the scores earned during a develop-
ment iteration. Worth to mention are also the work by Snipes et
al. [26] that investigates a game-like system to motivate developers
to use more efficient development techniques, and the work by Ba-
con et al. [9, 10] that investigates the adoption of scoring systems
in the context of software development.

With respect to the state of the art described above our idea is
to propose a methodology that can be repeatable for the different
phases of a software engineering process and be used to understand
and assess the effects of the gamification approaches already iden-
tified, as well as possible new ones. The benefit of this research
will be first in the educational sector, since the learning process of
software engineering has widely shown to benefit from gamifica-
tion strategies; second in the industry sector, since employees may
be continuously motivated to improve the performance and qual-
ity of the produced software artifacts with very small investment in
time and money from the company.

3. RESEARCH APPROACH
3.1 General Approach

We propose a research strategy that is based on three different
sets of complementary activities. The first is the set of analysis ac-
tivities, which analyze different gamification approaches and iden-
tify the most appropriate mechanisms to be applied to the different
phases of the software development process. The second is the set
of integration activities, which integrate the identified mechanisms
into the existing software development toolchain through ad-hoc
modules/plugins. Finally, the third is the set of evaluation activ-
ities, which evaluate the identified solutions. An abstract view of
the activities is reported in Figure 1 and discussed as follows.

The analysis activities consider a set of gamification strategies,
which aim at establishing a collaboration game between develop-
ers and the stakeholders, and a competition game between peo-
ple in the same role. We also propose to investigate the defini-
tion of game rules, the use of reward and penalty mechanisms and
metrics, achievement systems, reputation mechanisms, and cheat-
ing/overfitting prevention. We envision that the knowledge base
produced by analysis activities will be the conceptual foundation of
the gamification mechanisms for the design, implementation, test-
ing, and maintenance phases of a software engineering process.

The integration activities focus on the development of software
modules/plugins for introducing gamification elements into the soft-
ware development process. These tools are intended to be used to
perform evaluations with students and organizations willing to ex-
periment these novel techniques. For these activities we propose
to target development environments such as Visual Studio, auto-
matic code analysis and reporting tools (e.g., Hudson/Sonar [2]),
and collaborative development frameworks (e.g., Application Life-
cycle Management [4]). Finally, the evaluation activities consist
in the application of the methodologies and the software modules
developed during analysis and integration activities in real usage
scenarios. Possible evaluation settings can be the educational sce-
nario and the industrial scenario. The final goal is to analyze the
benefits and the risks of a software development process that uses
gamification mechanisms against an equivalent software develop-

Analysis

activities

Integration
activities

available to support these phases

Evaluation
activities

*What actors are involved in the game? > Identification of gamification strategies and metrics
*How to play the game? > Identification of game rules
*How to win the game? - Identification of penalty and rewarding mechanisms

+What phases of software development can be supported by a gamification tool? > Relate the
outcome of analysis activities to the software development phases they refer to

+*What tools are already used to support these phases? > Identify the software tools that are already

+How can the tools be gamified? > Identify how to use the identified tools to provide gamification data to
the developers and how the tools can be modified (e.g., by adding plug-ins) to provide such data

*How to evaluate development performance? - Identify metrics (different from the ones used in the
analysis phase) to assess the performance of the developers

+Does the identified gamification approach (and tools) perform better than a non-gamified or
differently-gamified process? - Compare performance measured by the identified gamification strategies
with that obtained using different strategies: higher performance will be an indicator of a good gamification
approach that can be standardized and replicated in similar contexts

Figure 1: Research activities for assessing gamification in a software development context.

ment process that does not rely on them. Obtained results are com-
pared and evaluated using metrics already established in the soft-
ware engineering community such as the time needed to complete
the project, design quality, test coverage, number of bugs, etc.

3.2 Approach Development in an Education
Scenario

Since the general research approach proposed above is meant to
be used in different scenarios (e.g., basic education, advanced edu-
cation, professional training, general professional productivity, and
so on), in this subsection we discuss a possible way to develop it
in the context of basic education of object-oriented software engi-
neering for undergraduate students in computer science that have
to demonstrate their software engineering skills through the devel-
opment of a project. We assume that the goal of the project is to
acquire the ability to design software, implement it, document it,
and finally test it. At the end of the project a final mark is as-
sessed. Typically, during classes students are told some best prac-
tices. For example that copy/paste should be avoided, that all the
exposed interfaces of their code should be properly documented,
that their test cases should cover — ideally — all their code (lines
and branches), to commit working code only, and so on. Since sev-
eral of these best practices can be expressed in terms of metrics
that can be measured from the code, in the analysis phase a good
decision would be to adopt the optimizations of such metrics as
simple game rules. For example, in the case of test coverage met-
ric 0% would be the most negative reward, while 100% would be
the most positive reward. When analyzing and deciding metrics it
is important to also identify and discourage possible cheating be-
haviors. A possible cheating behavior is when some students try
to maliciously maximize their rewards by adding test cases without
assertions or with obviously true assertions to the code base. Cheat-
ing phenomena such as the one described above can be partially
prevented by letting students know that their code will get random
manual/automatic checks (without disclosing how) and that in case
of confirmed cheating they will likely lose the game (e.g., fail the
course). In the integration phase of our approach a possible tool
that could analyze the code and report the metrics to the students
is needed. As said in the previous subsection the Hudson/Sonar [2]
tool can be used for this purpose: by using this software students
would receive a report every time they submit some code modi-
fications. The report contains information about their metrics (the
default settings of Sonar include the compliance against 1000+ pre-

661

defined rules, the lines of code, test coverage, duplications, and
JavaDoc API documentation). This way students would be given
the challenge to improve all those numbers (reward) and at the same
time fulfill the functional requirements of the project. To evaluate
the results of the chosen game rules and integration tools we need
to define an evaluation phase. In this phase the work of the students
must be evaluated using an evaluation metric that is different from
the ones used as game rules and, at the same time, unknown to the
students: this is important to prevent and detect cheating behaviors.
Finally the evaluation metric should be assessed for every student.
A good metric that has the above characteristics is the final non-
normalized mark of the project derived from a manual code review.
That metric should also be evaluated in another group of students
whose learning process has been gamified in a different way, or
not gamified at all. If after the evaluation we obtain a correlation
between high marks and the proposed gamification strategy that is
higher than a non-gamified or differently gamified approach, then
the proposed gamification strategy is likely to be useful and can be
reused in similar contexts.

4. PRELIMINARY RESULTS

In our software engineering courses taught at Politecnico di Mi-
lano we have seen a significant increase in the quality of software
artifacts produced by the students with the gamification approach
described in the previous section with respect to the artifacts pro-
duced by students without it. The reason is that students during
their coding activities get addicted at removing code smells as soon
as Sonar reports them to preserve their rules compliance score. In
this section we want to give a practical example of gamification
assessment to understand the effect of competition in the same sce-
nario. Our experiment involved two sections of information engi-
neering students that had to develop a software as a final activity
to obtain their bachelor degree. Each section was composed of 32
groups, each one composed of 2 to 3 students. The project con-
sisted in the implementation of a popular board-game in Java ei-
ther using Swing or Android SDK. The gamification strategy was
the same one proposed in Section 3.2 with the following varia-
tion: groups of the first section (section A) could only see their
own Sonar metrics in Sonar reports, while groups of the second
section (section B) could see the metrics of all the other groups of
the same section, thus stimulating competition. The main consid-
ered Sonar metrics were the lines of code (LOC), the percentage of
Sonar rules compliance, the percentage of branch coverage of test

Table 1: Project results for section A (no competition)

Group LOC | Rules | Test Cov. | Dupl. | JavaDoc | Mark
AT 1,451 | 743% 22.1% 8.9% 85.3% 20
A2 1,907 | 90.1% 0.0% 14.0% 57.6% 18
A3 3215 | 66.5% 28.9% 36.9% 74.9% 27
A4 3,856 | 95.0% 10.8% 3.2% 70.9% 24
A29 4,155 | 92.9% 38.0% 7.2% 74.3% 30
A30 2,947 | 90.7% 45.8% 0.8% 95.7% 25
A31 2,859 | 99.2% 42.9% 0.3% 81.0% 28
A32 4979 | 99.8% 38.4% 0.9% 100.0% 31

Average | 3,678 | 90.0% 38.8% 4.8% 79.5% 25.13

Table 2: Project results for section B (with competition)

Group LOC Rules | Test Cov. | Dupl. | JavaDoc | Mark
Bl 2,596 | 90.6% 67.4% 0.5% 93.4% 21
B2 4,865 | 80.8% 47.5% 0.7% 77.7% 25
B3 2,772 | 82.0% 48.5% 1.8% 63.9% 24
B4 1,935 | 94.1% 74.8% 2.0% 97.8% 20
B29 5243 | 92.0% 65.6% 3.6% 100.0% 26
B30 5,838 | 95.2% 42.4% 0.4% 97.9% 31
B3l 1,554 | 91.2% 76.3% 1.4% 99.4% 23
B32 3,830 | 82.9% 61.7% 6.9% 76.4% 28

Average | 3,247 | 90.6% 56.9 % 4.3% 88.9% 25.53

cases, the percentage of code duplication, and the percentage of
JavaDoc documentation. The results of the experiments, partially
reported in Tables 1 and 2, show that although the overall results
are not very different, some metrics are better in Section B. The
reason for this is that the students use the metrics of other students
as a benchmark for their behaviors (students were told that having
too many lines of code may be a smell of bad design, therefore a
lower value may be considered better in many groups). We can also
observe that in Section A the students still try to maximize their
metrics (e.g., trying to reach 100% in metrics measured as percent-
ages), but most effort is spent in metrics that were considered more
important by the teaching assistants (i.e., rules compliance), while
that was not true for other metrics such as test coverage and API
documentation. Although these preliminary results do not provide
enough evidence to draw a final conclusion about the role of com-
petition, we have a concrete hint that gamification with competition
may be better than without competition, therefore, as a future work,
it may be worth to perform further investigations with a larger sam-
ple of students.

S. CONCLUSIONS

This paper is part of a long running research stream on gamifi-
cation [14] and education [17, 18]. In particular in this paper we
proposed a research approach for understanding the use of gamifi-
cation for improving the software development process in different
contexts. We experimented our approach in the context of soft-
ware engineering education. Our preliminary experiments indicate
that, while integrating gamification in a software development pro-
cess is a relatively easy task, developing a gamification method and
predicting its effect is much more difficult. Indeed, increasing soft-
ware quality is an emergent property of gamification that is difficult
to derive without a proper experimental evidence. Future work in-
cludes the application of our approach in a non-educational context
and the analysis of causes and effects of specific aspects of gamifi-
cation (e.g., distress levels, cheating behaviors, etc.).

6. REFERENCES

[1] RedCeritter. http://www.redcritter.com.
[2] Sonar. http://www.sonarsource.org.

[3] StackOverflow. http://stackoverflow.com.
[4] Visual Studio — Application Lifecycle Management. http:
//www.microsoft.com/visualstudio/eng/alm.

662

(5]

(6]
[7]

[8
(9]

—

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
(22]

(23]

[24]

[25]
[26]

(27]
(28]
[29]
[30]

[31]

Visual Studio Achievements. http://channel9.msdn.
com/achievements/visualstudio.

Work. http://work.com.

N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nesic. A survey of
social software engineering. In ASE, 2008.

A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing stack
overflow for the IDE. In RSSE ’12, pages 26-30. IEEE, 2012.
D. F. Bacon, Y. Chen, D. Parkes, and M. Rao. A market-based
approach to software evolution. In ACM SIGPLAN OOPSLA
"09 conference companion, pages 973-980, New York, NY,
USA, 2009. ACM.

D. F. Bacon, D. C. Parkes, Y. Chen, M. Rao, I. Kash, and
M. Sridharan. Predicting your own effort. In AAMAS ’12,
pages 695-702, Richland, SC, 2012. International Foundation
for Autonomous Agents and Multiagent Systems.

K. Beck and C. Andres. Extreme programming explained:
embrace change. Addison-Wesley, 2004.

C. Crawford. Chris Crawford on game design. New Riders
Pub, 2003.

S. Deterding and R. Khaled. Gamification: Toward a Defini-
tion. In CHI ’11 Gamification Workshop. ACM, 2011.

D. J. Dubois. Toward Adopting Self-organizing Models for
the Gamification of Context-aware User Applications. In GAS
’12 — ICSE Workshop, pages 9-15. IEEE, 2012.

J. McGonigal. Reality is broken: Why games make us better
and how they can change the world. Penguin Press HC, 2011.
D. Nieborg. Am I Mod or Not?-An Analysis of First
Person Shooter Modification Culture. In Creative Gamers
Seminar—Exploring Participatory Culture in Gaming. Hyper-
media Laboratory (University of Tampere), 2005.

M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G. Tamburrelli,
J. Tschannen, N. Aguirre, and V. Kulkarni. Teaching soft-
ware engineering using globally distributed projects: the dose
course. CTGDSD *11. ACM, 2011.

M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and
G. Tamburrelli. The role of contracts in distributed devel-
opment. In O. Gotel, M. Joseph, and B. Meyer, editors,
SEAFOOD, volume 35 of Lecture Notes in Business Infor-
mation Processing, pages 117-129. Springer, 2009.

M. Oja and J. Riekki. Ubiquitous framework for creating and
evaluating persuasive applications and games. In Grid and
Pervasive Comp. Workshops, pages 133—140. Springer, 2012.
E. Passos, D. Medeiros, P. Neto, and E. Clua. Turning Real-
World Software Development into a Game. In SBGAMES ’11.
K. Salen and E. Zimmerman. Rules of play: Game design
Sfundamentals. MIT press, 2003.

W. Scacchi. Modding as an open source approach to extend-
ing computer game systems. Open Source Systems: Ground-
ing Research, pages 62-74, 2011.

S. Sheth, J. Bell, and G. Kaiser. Halo (highly addictive, so-
cially optimized) software engineering. In GAS 11 — ICSE
Workshop, pages 29-32. ACM, 2011.

S. Sheth, J. Bell, and G. Kaiser. A Competitive-Collaborative
Approach for Introducing Software Engineering in a CS2
Class. Technical Report CUCS-017-12, Michigan State Uni-
versity, 2012.

L. Singer and K. Schneider. It was a bit of a race: Gamifica-
tion of version control. In GAS ’12. IEEE.

W. Snipes, V. Augustine, A. R. Nair, and E. Murphy-Hill.
Towards recognizing and rewarding efficient developer work
patterns. In ICSE 13, pages 1277-1280, Piscataway, NJ,
USA, 2013. IEEE Press.

O. Sotamaa. Have Fun Working with Our Product! Critical
Perspectives on Computer Game Mod Competitions, 2005.

T. Taylor. Raising the Stakes: E-sports and the professional-
ization of computer gaming. MIT Press, 2012.

T. Taylor and E. Witkowski. This is how we play it: what a
mega-LAN can teach us about games. In FDG *10. ACM.

T. Xie, N. Tillmann, and J. de Halleux. Educational soft-
ware engineering: Where software engineering, education,
and gaming meet. In GAS 13 — ICSE Workshop. ACM, 2013.
G. Zichermann and C. Cunningham. Gamification by Design:
Implementing Game Mechanics in Web and Mobile Apps.
O’Reilly Media, 2011.

