
PredSym: Estimating Software Testing Budget for a
Bug-Free Release

Arnamoy Bhattacharyya
Department of Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
arnamoyb@ece.utoronto.ca

Timur Malgazhdarov
Department of Electrical and Computer

Engineering
University of Toronto

Toronto, Canada
timur.malgazhdarov@mail.utoronto.ca

ABSTRACT
Symbolic execution tools are widely used during a software
testing phase for finding hidden bugs and software vulnera-
bilities. Accurately predicting the time required by a sym-
bolic execution tool to explore a chosen code coverage helps
in planning the budget required in the testing phase. In this
work, we present an automatic tool, PredSym, that uses
static program features to predict the coverage explored by
a symbolic execution tool – KLEE, for a given time budget
and to predict the time required to explore a given coverage.
PredSym uses LASSO regression to build a model that does
not suffer from overfitting and can predict both the coverage
and the time with a worst error of 10% on unseen datapoints.
PredSym also gives code improvement suggestions based on
a heuristic for improving the coverage generated by KLEE.

CCS Concepts
•Computer systems organization → Reliability;

Keywords
Software Testing; Bugs; Symbolic Execution

1. INTRODUCTION
Software testing is resource-hungry, time-consuming, la-

bor intensive, and prone to human omission and error. De-
spite massive investments in quality assurance, serious code
defects are routinely discovered after software has been re-
leased [16], and fixing them at so late a stage carries sub-
stantial cost [17]. It is therefore imperative to overcome the
human-related limitations of software testing by developing
automated software testing techniques.

Automated techniques like model checking and symbolic
execution, are highly effective [1, 18], but their adoption
in industrial generalpurpose software testing has been lim-
ited. We blame this gap between research and practice on
three challenges faced by automated testing: scalability, ap-

plicability, and usability. Path explosion – the fact that the
number of paths through a program is roughly exponential
in program size – severely limits the extent to which large
software can be thoroughly tested. One must be content
either with low coverage for large programs, or apply auto-
mated tools only to small programs.

During the software testing phase, it is often useful to have
a good estimate on the time required for testing. This helps
in planning the time and resources to be invested, to test
the software before a solid release. Different static program
features can be used to determine the coverage provided
by a symbolic execution engine. If the testing team has a
given coverage to reach, they can get an estimate of the
time necessary to reach that estimate. On the other hand,
if there is a fixed time allotted for the testing purpose, based
on the estimated coverage, the team can decide whether the
software can be released with a given tolerance of security
vulnerabilities.

In this research we use machine learning techniques to
predict the coverage explored by a symbolic testing engine
for a fixed time as well as the time required to explore a given
coverage. We use a publicly available symbolic execution
tool KLEE to test our approach on a variety of applications.
We try to answer the following research questions:

1.1 Research Questions

• What are a set of static program features that deter-
mine the coverage explored by a symbolic engine?

• Can the coverage and time be predicted reasonably
using the static program features?

• Can suggestions be given on slight modifications of the
code that may result in a higher coverage?

2. RELATED WORK
Dynamic symbolic execution has been implemented by

several tools from both academia and research labs (e.g., [4,
5, 1, 6, 7, 8, 9, 10, 11]). These tools support a variety of lan-
guages, including C/C++, Java and the x86 instruction set,
implement several different memory models, target different
types of applications, and make use of several different con-
straint solvers and theories. In this section we discuss briefly
a few existing popular symbolic execution tools.

EXE [7] is a symbolic execution tool for C designed for
comprehensively testing complex software, with an emphasis
on systems code. To deal with the complexities of systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

A-TEST’16, November 18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4401-2/16/11...$15.00
http://dx.doi.org/10.1145/2994291.2994294

16

code, EXE models memory with bit-level accuracy. This is
needed because systems code often treats memory as un-
typed bytes, and observes a single memory location in mul-
tiple ways: e.g., by casting signed variables to unsigned, or
treating an array of bytes as a network packet, inode, or
packet filter through pointer casting. As importantly, EXE
provides the speed necessary to quickly solve the constraints
generated by real code, through a combination of low-level
optimizations implemented in its purposely designed con-
straint solver STP [7, 13], and a series of higher-level ones
such as caching and irrelevant constraint elimination.

KLEE [1] is a redesign of EXE, built on top of the LLVM
compiler infrastructure [15]. Like EXE, it performs mixed
concrete/symbolic execution, models memory with bit-level
accuracy, employs a variety of constraint solving optimiza-
tions, and uses search heuristics to get high code coverage.
One of the key improvements of KLEE over EXE is its abil-
ity to store a much larger number of concurrent states, by
exploiting sharing among states at the object-level, rather
than at the page-level as in EXE. Another important im-
provement is its enhanced ability to handle interactions with
the outside environment – e.g., with data read from the file
system or over the network – by providing models designed
to explore all possible legal interactions with the outside
world. As a result of these features, EXE and KLEE have
been successfully used to check a large number of different
software systems, including network servers, file systems,
device drivers and library code.

3. BACKGROUND
The term symbolic execution has different meanings in

different settings. Informally, we understand symbolic exe-
cution as a way of interpreting programs that contain sym-
bolic values. A symbolic value is defined by the symbol and
the set of concrete values it can range over. For instance, we
can define α to be a symbol that can range over any value
from the set of all 32-bit integers (such a set can be viewed
as the type of the symbol). To perform symbolic execution
on C programs, we let variables store symbolic values (e.g.,
variable x stores symbol α rather than a concrete integer
like 3).

To interpret a program with symbolic values, we have to
extend the usual semantics of the program. For example,
executing the statement y = x+ 3 where x = α should yield
y = (α + 3), a symbolic expression. The symbolic executor
maintains the program state throughout the execution.

The state comprises two parts: Var, a mapping from vari-
ables to values which include symbolic expressions (e.g., af-
ter executing y = x + 3, Var becomes x = α, y = (α+ 3))
and a set of constraints on symbolic values. For example, we
can constrain symbols by ranges (e.g., α > 0, 1 6 β < 10),
or constrain the relationship between symbols (e.g., α < β).
Constraints on symbols can be provided as part of the pro-
gram specification, or can be induced from the execution.

The symbolic executor runs a program in very much the
same way as how an ordinary interpreter does. However,
things start becoming different when it comes to condition-
als, where the execution has to branch according to the
state. In C, conditionals correspond to if-statements. An
if-statement consists of a condition, which is an expression,
a true branch, which is executed if the condition is evaluated
to true, and a false branch, which is executed otherwise. If
the condition is a symbolic expression, it could be that the

condition may evaluate to either true or false, hence both
branches could be feasible. To completely explore all pos-
sibilities, the symbolic executor must conceptually fork the
execution to examine both branches.

Constraint solvers are used to reason about symbolic ex-
pressions automatically. A constraint solver is a procedure
that, given a set of constraints over variables, finds an as-
signment of the variables that satisfy the constraints. Today,
there are many types of constraint solvers available, and they
vary in the problem domains that they are designed for. The
choice of constraint solvers depends on the language and the
nature of the program being executed.

To summarize, symbolic execution, in its simplest form
described above, explores all possible paths in a program
that a normal run can execute. No abstraction on values
is made, and therefore symbolic execution retains complete
information of how values flow through the program.

The code coverage (fractions of paths explored as com-
pared to the number of possible paths in a program) depends
on a number of program features. To predict the coverage
given a time or to predict the time required to explore a
given code coverage, therefore, we have to extract the fea-
tures first and then build the prediction model. In the next
section, we describe the program features we use to train our
machine learning model and provide description on how to
actually utilize them to build the prediction model without
over-fitting.

4. APPROACH
The performance of a symbolic execution tool is measured

by the code coverage provided by the tool for a given time
budget [1]. For detecting bugs, this is crucial because given
an arbitrary code, more coverage indicates a higher probabil-
ity of finding a random bug in the code. On the other hand,
if for a release of a bug-free software, a certain coverage test-
ing is sufficient, the testing time estimation helps plan the
budget that will be used for the testing phase. Our approach
for predicting the performance of a symbolic execution tool
based on program behaviour is done in the following three
steps:

4.1 Step 1: Extract Static Program Features
The code coverage provided by a symbolic execution tool

depends a number of non-trivial program features. For ex-
ample, a lower lines of code (LOC) does not necessarily mean
that given the same time budget, the symbolic execution tool
will explore more coverage as compared to a program with
higher LOC. If the program with a lower LOC has more
branches for example, the symbolic execution tool will take
more time to generate a reasonably high coverage.

We identify the following program features that determine
the coverage generated by a symbolic execution tool:

4.1.1 Total Number of Instructions
Intuitively, a code with more number of instructions takes

more time than a code with fewer instructions. Therefore it
is an important metric that indirectly determines the time
needed by a symbolic execution tool.

4.1.2 Total Number of Branch Instructions
This is an important code feature that determines the

coverage of a symbolic execution. Each branch instruction
in the program adds a pair of new paths in a program. When

17

the branches are nested, there is an exponential increase in
the number of paths the program has. Therefore, we have
used the total number of branch instructions in a program
as a feature.

4.1.3 Average Depth of Branch Instructions
The total number of branch instructions alone does not

give a total picture of the number of distinct paths taken
during the program run. For the same number of branches,
with a higher branching depth, the number of dynamic paths
increases combinatorially. We therefore consider the aver-
age branch depth for estimating the total number of paths
explored by the symbolic execution tool. This metric is cal-
culated by the following formula:∑n

i=1 depthi

n
(1)

Where depthi is the depth of a starting branch (if statement)
in a block of nested branches and n is the number of starting
branches in the program.

4.1.4 Average number of exit points from programs
The number of paths in a program will have a direct rela-

tion with the number of exit points from the program, where
each exit point adds to at least one path in the program. To
get the program termination points, we look at the calls to
the exit from all the functions and return statements from
main. To have a normalized value that can be comparable
across benchmarks, we divide the total number of exit points
by the total number of functions in the program.

4.1.5 Number of program inputs
Symbolic execution considers symbolic values to the in-

puts for a program instead of concrete values. In this way it
can generate a lot more input testcases by constraint solv-
ing. Therefore, the total number of inputs for a program
will have an effect on the coverage generated by the sym-
bolic execution tool. The higher the number of inputs, more
conditions needs to be checked with a possible increase in
input dependent path exploration.

4.1.6 Average Loop Depth
This feature is necessary due to its importance in deter-

mining which paths the symbolic execution tool will explore
to maximize coverage. As loops with high depth takes a
long time to execute and the symbolic execution tool may
wait infinitely waiting to finish exploring the path containing
the loop, most tools try to avoid exploring paths containing
deep loop nests. But if there is no other path to explore,
a program with a large number of deeply nested loop will
have low coverage given a specific time budget. This metric
is calculated by the following formula:∑m

i=1 depth loopi

m
(2)

Where depth loopi is the depth of the outermost loop in a
nested loop block and m is the number of outermost loops
in the program.

4.1.7 Total number of recursive calls
Similar to the case of deep loop nests, recursions also cause

more time to execute programs symbolically. Therefore we
add the total number of recursive function calls to the fea-
ture set as well.

We use static analysis to extract the above mentioned
program behaviour metrics except the number of program
inputs. We can not determine automatically the number
of program inputs because it is not easy to determine the
number of inputs of an arbitrary program.

4.2 Step 2: Profiling
After extracting the program behaviour metrics for a num-

ber of programs, we run them using the same time and sym-
bolic inputs (the number of inputs that are symbolic) to get
the coverage profile. The time and coverage information
along with the static program feature information create a
training file that is fed to a machine learning algorithm de-
scribed in the next section.

4.3 Step 3: Building Performance Model
After collecting all the coverage and time information for

a number of programs along with their statically identified
features, we use machine learning to generate a performance
model that can predict the time budget for a preferred cover-
age of any arbitrary program. This is not an easy task given
the arbitrary interaction between the non-trivial program
features. Also we have to be careful so that the model does
not overfit on the training dataset and it gives reasonable
prediction on unseen test data.

4.3.1 Enriched Feature Space Using LASSO
For building a model that can reasonably predict the cov-

erage or the time, a simple linear model is not enough. With-
out prior knowledge about the interaction of the parameters
(our static program features) and how they together deter-
mine the coverage and time is a non-trivial difficult problem.
We can make guesses about the interaction of different pa-
rameters but in that case, finding out the correct subset from
all the guesses is difficult.

Least Angle Shrinkage and Selection Operator (LASSO)
is a variation of linear regression that can select the best
parameters that describe the model from a pool of param-
eters. In this way, LASSO makes it possible to select the
most significant parameters for predicting the success rate
of commits of the transactions from an initial pool of guessed
parameters. In this section, we describe briefly how LASSO
works and also describe how we build our initial set of pa-
rameters with an educated guess.

4.3.2 Background on LASSO
Shrinkage is a method in statistics where a penalty is ap-

plied to the coefficients of the regression predictor model
and thus the coefficients values are shrunk to bring them
close to zero. Shrinkage techniques are useful in cases where
there is high correlation between the model parameters or in
cases where some parameters cause the model to overfit. By
selecting the parameter that best describe the model, these
shrinkage methods often result in better prediction accuracy.
Ridge regression technique [19] adds a L2 penalty to the co-
efficients and thus shrink the coefficients of models close to
‘0’ but does not shrink any coefficient to ‘0’ and therefore
cannot eliminate any parameter. Therefore, although the
ridge regression technique builds model with better predic-
tion accuracy, the generated models are not different from
the simple linear regression in terms of user interpretability.

By adding a L1-penalty to the regression coefficients, the
Least absolute shrinkage and selection operator (LASSO)

18

applica&on	
compiler	

applica&on
.bc	

Training	
profile	

Sta&c	info	

Symbolic	
execu&on	

Sta&c		
Analysis	

Merged	
training	data	

Models	

Machine		
learning	

Test	
applica&on	

compiler	 Test	
applica&on

.bc	
Sta&c	info	

Sta&c		
Analysis	

predic&on	

Figure 1: Workflow of PredSym.

technique [20] bridges the gap between user interpretabil-
ity and prediction accuracy of the generated models.

Here we describe the regular (offline) LASSO briefly: LASSO
assigns an L1 penalty to the coefficients of input parame-
ters (predictors) which leads to sparse solutions and thus
achieves results that are easier to interpret. LASSO accepts
n training examples or observations (yi, xij) ∈ R × Rm, i =
(1, 2, . . . , n) and j = (1, 2, . . . ,m). We assume we have m
input parameters for the model.

Here y is the performance metric we want to model and x
is the set of input parameters. We wish to fit a linear model
to predict the success ratio of commits yi as a function of xij
and a feature vector θ ∈ Rm, yi = xTi θ + vi, where vi repre-
sents the noise in the observation. The LASSO optimization
problem is given by

min
θ

1

2

n∑
i=1

(xTi θ − yi)2 + µn ‖θ‖1 (3)

where µn is a regularization parameter. The solution of
Equation 3 is typically sparse, i.e. the solution θ has few en-
tries that are non-zero, and therefore identifies which dimen-
sions in xi are useful to predict the response yi. The original
LASSO proposal [20] did not have the additional 1

2
multi-

plied with the first term of Equation (3). It was later shown
that the LASSO problem is equivalent to the Basis Pursuit
Denoising (BPDN) optimization problem which needs the
multiplier 1

2
. Also BPDN representation of LASSO makes

it algorithmically easier to solve. LASSO is particularly use-
ful in our case because LASSO is used in cases where the
number of observations is less than the number of predic-
tor variables and it generates a model that is more inter-
pretable than Ordinary Least Square Regression or Ridge
Regression [19].

4.3.3 Forming an Initial Search Space

Though LASSO can select the most relevant parameters
from a pool of initial parameters, forming the initial param-
eter space is non-trivial, as there can be infinite number of
transformations (e.g. squares, cubes, logarithms, exponen-
tials etc.) that can be applied to each hyperparameter and
then each of these transformed hyperparameters can react
in infinite number of ways to build a model, giving a com-
binatorial explosion in the number of hyperparameters to
build a model from.

Bhattacharyya et al. [14] provides a solution that uses
an educated guess about how most parameters behave in
regression models and define a normal form called Extended
Performance Model Normal Form (EPMNF) that can be
used to define an initial search space for parameters. The
EPMNF has the following form:

phybrid = {ιki logl ιki ∪ Cw(ιki logl ιki)}, {ιi, ι2, . . . , ιr} ∈ I
(4)

Here Cw represents the interaction terms constructed from
hyperparameters generated after applying transformations
using the EPMNF definition, taken w at a time. If from
EPMNF we have κ transformed hyperparameters initially,
we construct new hyperparameters by taking all different
combinations of the transformed hyperparameters in groups
of size w where 2 ≤ w ≤ κ. For example, if EPMNF gives
us three hyperparameters ι21, log ι2,

1
ι3

, we will construct the
following new hyperparameters in groups of size 2 and 3:

ι21 · log ι2,
log ι2
ι3

,
ι21
ι3
,
ι21·log ι2

ι3
. Bhattacharyya et. al mentions

that the predictive quality of the models using the values
w = 2, 3, 4 greatly improves precision of models and a value
of w > 4 marginally improves the model quality. We have
experienced a good trade-off between quality and overhead
with a value of w = 2.

After the initial search space of hyperparameters is formed,
LASSO regression models are generated. LASSO removes

19

insignificant hyperparameters and generates easily interpretable
model for predicting the success ratio of commits.

Figure 1 shows the workflow of our tool.

5. GOING BEYOND: PROVIDING SUGGES-
TIONS FOR IMPROVEMENT

Once we have built a model on which we can test applica-
tions for predicting coverage for a fixed time or for predicting
time for a given coverage, we also provide suggestions about
improving the code that may result in an improved coverage
for a less time. We apply a brute-force search for optimiza-
tion by slightly modifying (both increasing and decreasing)
a single feature (e.g. number of branches) by a small frac-
tion of the original value, keeping all other feature values
the same. This gives us a new predicted value for the metric
of intention (either coverage or time). We repeat this pro-
cedure multiple times for each feature and observe if there
is a gradual decrease in case of time or a gradual increase in
case of coverage. If there is a gradual improvement (either
decrease or increase depending on the metric of interest)
for modifications of a parameter, we suggest changing that
parameter value to the user. If more than one parameter
have gradual decreases, we suggest the one with the high-
est decrease from the original predicted value. One example
improvement is the removal of redundant checks (branches)
in the code.

Figure 2 shows our algorithm for this search.

improve

alter >5

yes

Best
improvement

Suggest

Stop

no

yes

yes
no

no

16

Figure 2: Suggestion Algorithm by PredSym for code im-
provement.

6. IMPLEMENTATION
We have implemented our tool using the latest stable re-

lease of KLEE [1] to gather profile about symbolic execution.
We have written several LLVM compiler passes to extract
the static features from the program. The LASSO machine
learning tool is written in R and we have a web based inter-
face written in python and HTML5 and CSS that enables
users to upload their files in the webserver. After perform-
ing the static analysis on the uploaded code and prediction
based on the existing model, PredSym presents the results
in text format that the user can download. Deploying our

tool in a web-based interface allows us to run heavy machine
learning algorithms in a powerful cloud environment.

7. EVALUATION
In this section, we first try to argue whether our choice

of the program static feature makes sense. Then we pro-
vide prediction results on both seen and unseen data from
a wide range of applications from GNU Coreutils and Bug-
bench [3]. In the end, we rank the program features based
on their effect on improving the code coverage provided by
the symbolic execution engine KLEE [1].

7.1 Importance of Chosen Features
In the first set of experiments, we show how the chosen

static program features affect the coverage with increased
time budget. We ran KLEE on 93 applications the Coreutils
version 6.11, that had bugs reported [1], with the following
symbolic input budget for all applications.

klee –sym-args 0 1 10 –sym-args 0 2 2 –sym-files 1 8 –
sym-stdout

The option combination tells KLEE to use zero to three
symbolic arguments, the first being of size 10 and the last
2 being of size two for the program. It also tells KLEE to
use one symbolic file of maximum size 8 bytes as input and
treat stdout as symbolic. The options given to KLEE has to
come from the deep understanding of the program behaviour
and we chose the options suggested by the authors of KLEE
for the Coreutils package. As our goal is to use KLEE in a
testing phase of the development life cycle, we believe that
the tester will have good understanding of the code and its
inputs so that he can supply the appropriate symbolic input
budgets to KLEE.

We performed experiments with two different time bud-
gets – 30 and 120 seconds for the 93 Coreutils apps and 5
applications from the Bugbench.

We observe that the coverage increases with increasing
time budget (from 60% to 70% maximum). For each of the
metrics, the coverage follows the same statistical distribu-
tion regardless of the time budget.

7.2 Prediction Results
For testing the quality of the prediction tool, we first

gather coverage and time information and also the static pro-
gram features for 85 coreutils applications and 3 Bugbench
applications using the arguments mentioned in the previous
section. We use five different randomly selected times (be-
tween 1 minute to 30 minutes) for gathering the coverage
information. This gives us the training data for the ma-
chine learning model. Then we perform predictions on both
seen and unseen (not used while training) benchmarks – 8
from Coreutils and 2 from Bugbench. Performing predic-
tions on both seen and unseen data reveals whether there
is overfitting on the training data by our machine learning
framework.

Figures 3 and 4 show our prediction results on the both
seen and unseen benchmarks from both Coreutils and Bug-
bench, in the ascending order of the predicted and original
values. Figure 3 shows the predicted and actual times the
code will take to reach 60% coverage. We have an error of
10% for the prediction. Figure 4 shows the actual and pre-
dicted coverages given a time budget of 5 minutes for the
6 applications. The predictions are within 3% of the actual
values. The error in the prediction is reasonable for us, con-

20

firming no chance of overfitting. As seen in the figures, trend
is nicely captured by our prediction.

7.3 Important Program Features for Determin-
ing Coverage and Time

We also conduct experiments for ranking the program fea-
tures that affect the performance of symbolic execution in
the tested benchmarks. As seen in Section 5, we develop
an algorithm for suggesting changing code behaviour that
will produce better coverage given a time budget and a less
time given a coverage budget. Figures 5 and 6 show the
percentage of the applications from the Coreutils and Bug-
bench suite in each category. It is interesting to note that
both for improving time and coverage, a major percentage
of applications need to change the number of branch instruc-
tions and the branch depth in their code, giving an indica-
tion that there may be presence of unnecessary corner case
checks that can be removed. The next major percentage
of applications can benefit from reducing the average loop
depth. Aggressive compiler optimizations on loops may be
applied on these codes to provide a better coverage or a less
time. Our tool provides these suggestions and relies on the
application developer to find opportunities for improvement.

8. CONCLUSION
In this work, we demonstrate our tool PredSym, that can

automatically predict the coverage explored by a symbolic
execution tool for a given time budget and the time neces-
sary to test a given portion of the code. We use program fea-
tures that indirectly determine the total number of program
paths. We make the use of LASSO regression to predict
the performance and also provide an algorithm to suggest
code modifications for improvement. Results agree with our
choice of program features and also the prediction results
are reasonably good on unseen data. We believe that using
this tool, the software testers will be greatly benefited for
estimating a budget for the testing phase of the software,
and thus release the highest quality products that meet the
budget.

9. REFERENCES
[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler.

2008. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on
Operating systems design and implementation
(OSDI’08). USENIX Association, Berkeley, CA, USA,
209-224.

[2] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and
George Candea. 2011. Parallel symbolic execution for
automated real-world software testing. In Proceedings
of the sixth conference on Computer systems (EuroSys
’11). ACM, New York, NY, USA, 183-198.

[3] Cristina Cifuentes, Christian Hoermann, Nathan
Keynes, Lian Li, Simon Long, Erica Mealy, Michael
Mounteney, and Bernhard Scholz. 2009. BegBunch:
benchmarking for C bug detection tools. In Proceedings
of the 2nd International Workshop on Defects in Large
Software Systems: Held in conjunction with the ACM
SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2009) (DEFECTS ’09),
Ben Liblit, Nachiappan Nagappan, and Thomas
Zimmermann (Eds.). ACM, New York, NY, USA, 16-20

[4] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: a
symbolic execution extension to Java PathFinder. In
TACAS’07, 2007.

[5] J. Burnim and K. Sen. Heuristics for scalable dynamic
test generation. In ASE’08, Sept. 2008.

[6] C. Cadar and D. Engler. Execution generated test
cases: How to make systems code crash itself (invited
paper). In SPIN’05, Aug 2005.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D.
Engler. EXE: Automatically generating inputs of death.
In CCS’06, OctâĂŞNov 2006. An extended version
appeared in ACM TISSEC 12:2, 2008.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART:

Directed Automated Random Testing. In PLDIâĂŹ05,
June 2005.

[9] P. Godefroid, M. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. In NDSS’08, Feb. 2008.

[10] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic

unit testing engine for C. In ESEC/FSEâĂŹ05, Sep
2005.

[11] N. Tillmann and J. de Halleux. Pex - white box test
generation for .NET. In TAP’08, Apr 2008.

[12] K. Sen and G. Agha. CUTE and jCUTE : Concolic
unit testing and explicit path model-checking tools. In
CAV’06, 2006.

[13] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV’07, July 2007.

[14] Arnamoy Bhattacharyya and Torsten Hoefler. 2014.
PEMOGEN: automatic adaptive performance modeling
during program runtime. In Proceedings of the 23rd
international conference on Parallel architectures and
compilation (PACT ’14). ACM, New York, NY, USA,
393-404.

[15] Chris Lattner and Vikram Adve. 2004. LLVM: A
Compilation Framework for Lifelong Program Analysis
& Transformation. In Proceedings of the international
symposium on Code generation and optimization:
feedback-directed and runtime optimization (CGO ’04).
IEEE Computer Society, Washington, DC, USA, 75-.

[16] RedHat. RedHat security.
http://www.redhat.com/security/updates/classification,
2005.

[17] Steve McConnell. Code Complete. Microsoft Press,
2004.

[18] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce.
Tackling large verification problems with the Swarm
tool. In Intl. SPIN Workshop, 2008.

[19] Hoerl, A. E. and Kennard, R. W. [1970a]. Ridge
regression: biased estimation for non-orthogonal
problems. Technometrics 12, 55-67.

[20] Tibshirani, R. (1996): Regression Shrinkage and
Selection Via the Lasso, J. Royal Stat. Soc. (B), 58,
267–288.

21

● ● ● ●
● ●

● ●
● ●

● ●
● ● ●

● ● ● ● ●
●

● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ● ● ● ●
● ●

● ●
●

● ●
● ●

● ● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ● ●
● ● ●

● ●

●
●

●

●
●

●
●

●
●

● ●

●
●

●
●

●

●

● ● ●

● ● ● ●

● ●

● ●

● ●

● ●

● ● ●

● ● ● ● ●

●

● ● ●

● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ●

● ●

● ●

●

● ●

● ●

● ● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

● ● ● ●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

0

10

20

30

0 25 50 75 100
Benchmarks

Ti
m

e
(in

 M
in

ut
es

)

●● Actual
Predicted

Figure 3: Predicted and actual values of time (in minutes) required to generate 60% coverage on seen (left of blue line) and
unseen data (right of blue line).

● ● ● ●
●

●
● ● ●

● ● ●

●
● ● ● ● ●

●

●
● ● ● ●

●

● ● ● ●
● ●

●

●
● ● ●

●
●

● ●
● ●

● ● ●

● ● ● ●

●
●

●
● ● ●

● ● ●

●
●

● ●

● ●
●

●
●

● ● ● ●
●

●
● ●

● ● ●

● ●

●

●

● ● ●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ● ● ●

●

●

● ● ●

● ● ●

●

● ● ● ● ●

●

●

● ● ● ●

●

● ● ● ●

● ●

●

●

● ● ●

●

●

● ●

● ●

● ● ●

● ● ● ●

●

●

●

● ● ●

● ● ●

●

●

● ●

● ●

●

●

●

● ● ● ●

●

●

● ●

● ● ●

● ●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

40

60

80

0 25 50 75 100
Benchmarks

C
ov

er
ag

e
%

●● Actual
Predicted

Figure 4: Predicted and actual values of coverage generated in 5 minutes on seen (left of blue line) and unseen data (right of
blue line).

Intr	
5%	

Branch	
22%	

Brnach	
Depth	
28%	

Exit	
5%	

Input	
5%	

Loop	Depth	
25%	

Recursive	
10%	

Factors	Affecting	Time	

Figure 5: Percentage of applications benefited from changing
different program features for test time improvement.

Intr	
5%	

Branch	
15%	

Brnach	
Depth	
30%	

Exit	
2%	

Input	
6%	

Loop	Depth	
35%	

Recursive	
7%	

Factors	Affecting	Coverage	

Figure 6: Percentage of applications benefited from changing
different program features for test coverage improvement.

22

