
What is the Long-Term Impact of Changes?
— Short Position Paper —

Irina Ioana Brudaru
Saarland University, Saarbrücken, Germany

brudaru@cs.uni-sb.de

Andreas Zeller
Saarland University, Saarbrücken, Germany

zeller@cs.uni-sb.de

ABSTRACT
During their life cycle, programs undergo many changes.
Each of these changes may introduce new features—or new
problems. While most of the impact of a change is imme-
diate, some of the impact may become evident only in the
long term. For instance, suppose we make the internals of
a component accessible to its clients. In itself, this does not
introduce a problem. In the long term, though, this will
most likely lead to maintainability issues.

We are currently exploring ways to identify this long-term
impact of change. We want to show how a change eventu-
ally impacts program quality (in terms of defects), program
maintainability, and development effort. Identifying those
changes with the greatest impact will foster our understand-
ing of a program’s history, and help us in learning lessons for
future projects. Eventually, such lessons may come as au-
tomated recommendations regarding long-term impact: “In
the long run, this change will cause maintainability issues.
Do you want to reconsider?”

1. INTRODUCTION
During their life cycle, programs are subject to a con-

stant stream of changes. Changes are made for a number
of reasons: to adapt the program to a changing environ-
ment, to add new features, to fix bugs, or to enhance the
general structure and maintainability. Besides the short-
term purpose at hand, changes may also have long-term
consequences—some intended, some unintended. Here are
some examples of such a long-term impact of changes:

Example 1. Suppose that we are changing all the visibil-
ity modifiers of a class from private to public. This
change in itself does not affect the program quality (or
even semantics) in any way, but will likely cause higher
coupling and therefore maintainability problems in the
future.

Example 2. There is a current discussion about removing
some code from the Big Kernel Lock (BKL) in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RSSE ’08, November 10, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-228-3 ...$5.00.

Linux OS that turned the BKL non-preemptible. Re-
moving the BKL entirely is also not a good idea, since
in 15 years of project history, a lot of dependencies
have been created and removing it might lead to lower
stability. Then, what is the long-term impact of adding
and removing kernel locks? What is the direction the
developers should take?

Example 3. Suppose a function readline() is introduced in
a program. The method reads a line of input from the
user and returns the input as a character string. How-
ever, if the user enters an end-of-file (Control-D) char-
acter, readline() returns a null pointer—a condition
rarely checked and therefore a source of bugs. Should
programmers have used readline() in the first place?

2. THE IMPACT OF CHANGE
To assess the long-term impact of change, one first needs

to measure the impact—in terms of quality, effort, and main-
tainability. All of these features, however, come to be as
future changes:

Quality. A defect eventually manifests itself as a bug fix.
Therefore, we can assess the quality of a program by
assessing its fixes. Likewise, new features also manifest
themselves via changes—for instance, by having a new
test added to the test suite. The nature of changes
thus reflects the quality of the system.

Effort. Effort means programmer activity, which manifests
itself in terms of changes to project artifacts.

Maintainability. The greater the extent of a single log-
ical change, i.e. the more files are influenced by this
change, the lower the modularity of the program—and
therefore, the higher the effort it takes to change and
maintain a system.

In all three cases, the long-term impact of a change can be
measured by assessing future changes. Therefore, we need
to come up with a model of how changes impact each other.

3. BUILDING CHANGE GENEALOGIES
We are currently exploring how to express the history of a

project in a genealogy of changes—a directed acyclic graph
in which an edge A → B means that the change A enables
(and thus impacts) a change B; the change B thus depends
on A. For instance, the change A may make class internals
accessible (example 1), introduce a kernel lock (example 2),

30

...

7 defects

10 LOC

0 defects

43 LOC

9 defects

15 LOC

4 defects

11 LOC

0 defects

50 LOC

Qlty. 0,66

ZX Y

Y1

Z1

Z2

X2

X1

Figure 1: A change genealogy graph. The change Y enables the changes Y1 and Z, which both lead to defects.

or define the readline() function (example 3); the change B
accesses the class internals (example 1), uses the kernel lock
(example 2), or uses the readline() function (example 3).
Dependencies are transitive: that is, if change B depends on
change A and change C depends on change B, then change C
also depends on change A.

A change genealogy graph is a graph that contains the
sequences of changes that take place in a project, as ex-
tracted from version archives. This is a graph which incor-
porates further dependencies between changes, derived from
the changed code.

As an example of a genealogy graph, consider Figure 1.
Here change X enables X1, X2 and Y , Y enables Y1 and Z
and Z enables Z1 and Z2. Some of these changes (Y1, Z1, Z2)
are bug-introducing, that is, they introduce code that was
later found to contain a defect (because it was fixed in a
later change).

These changes, (Y1, Z1, Z2), were made possible by ear-
lier changes: By following back the dependencies, we can
find that change Y enabled both “bad” changes Y1 and Z.
Change Y thus is a change with a bad long-term impact—
in contrast to, say, change X which had a more positive
long-term impact.

The first question we are currently working on is: How
do we know a change B depends on change A? We want
to determine such dependencies from version archives and
from code.

One straightforward, but computationally intensive way is
to experiment: we try to build the project without change A,
but with change B applied. If the project cannot be con-
structed, then B depends on A.

For projects with hundreds of thousands of changes, this
becomes far too expensive to determine. We therefore need
to come up with heuristics based on the definition and usage
of individual program items.

Our first attempt in defining dependencies is by finding
common data (variables, methods) that different changes ac-
cess to modify or use. When such a connection is found be-
tween two changes, an edge in the genealogy graph is added,
between the nodes that define the respective changes (their

revision numbers). We further define the dependency con-
cept between two changes.

Definition. Dependency between two changes. A
change A enables a change B iff:

• Change A has an earlier timestamp than change B,

• There exists a set of common identifiers that appear
in the two changes, and

• The project containing the changes from B and not
from A, would not compile.

4. LEARNING FROM CHANGE IMPACT
Once we have extracted full-fledged genealogies from real

systems, we need to develop models on how to compute
which changes have the greatest impact on program features.
For this, we are currently defining appropriate metrics for
maintainability, quality, and effort—and setting up models
to determine how these are impacted in the long term.

4.1 Evaluating Quality
If a particular change has issued a lot of code, one can say

that this change has had a high contribution to the project.
On the other hand it might also have lead to a high number
of errors. One can measure the quality score as the average of
the ratios between the number of defects and the amount of
code introduced, on the path between the particular change
we chose to look at, and the last descendants of this change,
coming from the version history data of the project.

Let A1, ..., An be the changes that depend on change A,
with n > 0. Let QS(A) denote the quality score of the
change A. Then, if change A is not a final change in the
change genealogy graph, its quality score is:

QS(A) =

Pn
i=1 QS(Ai)

n

If change A is a final change in the change genealogy
graph, then the quality score cannot be computed, simply

31

because we do not know about any future defects fixed. If
a change is a change that induces a final change, its qual-
ity score is the ratio between the number of defects and the
number of lines of code, meaning that the general formula
above will be computed recursively. In Figure 1, the changes
X1, X1, Y1, Z1 and Z2 are annotated with the number of
defects and lines of code. With this information we can
compute recursively that:

QS(Z) = (QS(Z1) + QS(Z2))/2 = 0.48,

QS(Y) = (QS(Y1) + QS(Z))/2 = 0.59,

QS(X) = (QS(Y) + QS(X1) + QS(X2))/3 = 0.19

from which we suspect that change Y is a change with a
bad long-term impact, in contrast to X which has a more
positive impact — some of its descendants issued no defects.

The lower the score of a change is, the higher its quality.
Moreover, for each node on these paths, the ratios above or
their partial averages can be computed. Moving from the
last descendants of the change, back in time, towards the
considered change, the values of the quality in each node will
vary. By analyzing the variation of these numbers I hope to
find a way to compute tipping points. In the neighborhood
of a change that has induced a lot of problems (a tipping
point), the quality numbers of the nodes will be high in
comparison with changes further away from the bad change
(see Figure 1: branches that bring 0 defects decrease the
score, i.e. have a higher quality).

If a change leads to deleted code in the end, then it might
be a clue that the particular code that was added in the
change initially should have maybe never been added.

5. RECOMMENDATIONS
Once we know which changes are the ones with the great-

est impact, the next step is to find out whether they would
have specific characteristics to learn from—be it in the na-
ture of the change, or the components affected. If we can
determine appropriate characteristics, these may be helpful
features to learn from—both by humans as well as by ma-
chine learners. As data collection is fully automatic, the
recommendations would be produced automatically as well:
“This change is risky, because in the past, similar changes
have led to severe long-term maintenance issues.”

To make such recommendations, we need to define a no-
tion of similarity between changes. Useful features may in-
clude changes to types and accessibility (example 1); inter-
action between modules (example 2); or program structures
and data flows (example 3). Large-scale evaluations will help
establishing the most useful similarity features.

6. RELATED WORK
Maintenance of continuously evolving software systems is

one of the most frequent activity performed by software de-
velopers. There are various approaches and tools that ana-
lyze the effects of the current programming task.

Hassan and Holt [2] have built a tool that attaches var-
ious code properties to static dependencies, naming these
attached properties Software Sticky Notes. The static de-
pendencies come from source control repositories. The tool
assists developers who investigate dependencies in a large
system to annotate the structure of the current system, pro-
viding a historical record of its evolution.

The Chianti [3] tool analyzes two versions of an appli-
cation and decomposes their difference into a set of atomic
changes, later reporting the change impact, in terms of af-
fected regression or unit tests whose behavior may be mod-
ified by the performed changes.

Change distilling [1] finds fine-grained changes that occur
across different versions of a project.

Hatari [4] highlights locations in the source code, indi-
cating the level of risk for each part of code, by relating
the version history data with a bug database for a particu-
lar project. The tool detects those locations where changes
have been risky in the past versions and makes this visible to
developers, also helping them by providing ways to analyze
the risk history.

7. CONCLUSION
Most of us have been involved in projects where, with

hindsight, a great deal of pain could have been avoided
with a little more up-front assessment of the consequences.
With the present project, we want to provide some of this
hindsight—and with a little luck, turn it into foresight. We
look forward to fruitful discussions at the RSSE workshop.
Acknowledgments. The concept of long-term impact of
changes was originally sketched by Michael Godfrey, An-
dreas Zeller, and Tom Zimmermann at the SARS 2007 work-
shop. Rahul Premraj provided helpful feedback on earlier
revisions of this paper.

8. REFERENCES
[1] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change

distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng.,
33(11):725–743, 2007.

[2] A. Hassan and R. Holt. Using development history sticky
notes to understand software architecture, 2004.

[3] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of java programs.
SIGPLAN Not., 39(10):432–448, 2004.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller. Hatari: raising
risk awareness. In ESEC/FSE-13, pages 107–110, New York,
NY, USA, 2005. ACM.

32

