
Practical Symbolic Verification of Regular Properties
Hengbiao Yu

College of Computer, National University of Defense Technology

Changsha, China

hengbiaoyu@nudt.edu.cn

ABSTRACT
It is challenging to verify regular properties of programs. This paper

presents symbolic regular verification (SRV), a dynamic symbolic

execution based technique for verifying regular properties. The key

technique of SRV is a novel synergistic combination of property-

oriented path slicing and guiding to mitigate the path explosion

problem. Indeed, slicing can prune redundant paths, while guiding

can boost the finding of counterexamples. We have implemented

SRV for Java and evaluated it on 16 real-world open-source Java

programs (totaling 270K lines of code). The experimental results

demonstrate the effectiveness and efficiency of SRV.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Regular property; Verification; Slicing; Guiding

ACM Reference Format:
Hengbiao Yu. 2017. Practical Symbolic Verification of Regular Properties. In

Proceedings of 2017 11th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),
3 pages.

https://doi.org/10.1145/3106237.3121275

1 INTRODUCTION
A regular property is a property that can be specified by a finite

state machine (FSM) [10]. In terms of property specification, regular

properties are widely used in software analysis and verification (e.g.,
model-based testing [17], typestate analysis [9], model checking [4],

and performance analysis [16]). It is challenging to verify regular

properties for real-world programs in software engineering.

Existing works for verifying regular properties can be divided

into two categories: static verification and dynamic verification.

Static methods (such as [7–9]) abstract the programs soundly, and

carry out the verification on the abstracted models. Static verifi-

cation usually achieves high code coverage, but is limited by the

false alarms. In contrast, dynamic methods (such as [1, 3]), perform

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00

https://doi.org/10.1145/3106237.3121275

verification along with the program’s concrete execution. Hence,

every reported violation by dynamic verification is real. However,

dynamic verification can only verify the program’s behavior under

the given inputs.

Symbolic execution [2, 11, 14] runs the program using sym-

bolic values. It can systematically explore the program’s path space

through forking states or re-executing the program when encoun-

tering a branch. Given a regular property 𝜙 and program 𝑃 , a

transition event in 𝜙’s FSM corresponds to the execution of one

or more statements of 𝑃 . We use 𝑆𝑒𝑞(𝑝) to denote the generated

event sequence of path 𝑝. 𝑝 is a relevant path if 𝑆𝑒𝑞(𝑝) is not empty;

otherwise, 𝑝 is irrelevant. Property 𝜙 is checked along with the path

exploration. If there exists a path 𝑝 that 𝑆𝑒𝑞(𝑝) can drive the FSM of

¬𝜙 to an accepted state, a counterexample path is found; otherwise,

𝑃 satisfies 𝜙. Compared with static and dynamic approaches, sym-

bolic execution achieves better precision or coverage, respectively.

To mitigate the path explosion problem — the path space in-

creases exponentially with the number of branches in the program,

we propose a scalable dynamic symbolic execution (DSE) [11, 21]

based verification technique, called symbolic regular verification
(SRV). The main intuition behind SRV lies in two aspects: (1) w.r.t.
the regular property 𝜙, there usually exist a large number of irrele-

vant paths, and many of the relevant paths are equivalent; (2). only

the relevant paths with specific event sequences can violate the

property 𝜙. SRV integrates property-oriented slicing based on path

slicing [12] with property guiding [23]. Slicing prunes irrelevant

and equivalent relevant paths during DSE, and guiding steers DSE

to find counterexample paths quickly.

We have implemented SRV for Java based on a regular prop-

erty guided symbolic execution engine [23] and a dynamic slicer

Javaslicer [5]. We evaluate SRV on 16 real-world open-source Java

programs against representative regular properties, and the experi-

mental results are promising.

2 SRV: SYMBOLIC REGULAR VERIFICATION
The main framework of SRV is shown in Algorithm 1. The input

consists of a program 𝑃 , an FSM M¬𝜙 corresponding to the nega-

tion of the regular property 𝜙 and an initial input I0 to 𝑃 . The

candidate branches to be explored and accepted event sequences

are stored in 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 and 𝒳 , respectively. PC denotes the path

condition, and I is the input to DSE.

SRV performs a two-staged analysis. In the first stage, Program

𝑃 is statically analyzed w.r.t.𝑀¬𝜙 through a backward data flow

analysis [20] to calculate the future behavior (denoted as 𝑃𝑜𝑠𝑡𝑠𝑒𝑡)
for every program location (Line 3). The 𝑃𝑜𝑠𝑡𝑠𝑒𝑡 of a location 𝑙𝑜𝑐
contains the states of 𝑀¬𝜙 that can reach an accepted state of 𝑀¬𝜙

through executing the program after 𝑙𝑜𝑐. In the second stage, The

property is checked during DSE (Lines 4-14). Additionally, SRV

uses the runtime information to calculate the history information

1053

https://doi.org/10.1145/3106237.3121275
https://doi.org/10.1145/3106237.3121275

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Hengbiao Yu

Algorithm 1: DSE-based Regular Property Verification

SRV(𝑃,𝑀¬𝜙, 𝐼0)
Data: program 𝑃 , FSM 𝑀¬𝜙 and an initial input 𝐼0

1 begin
2 worklist ,𝒳 ← ∅; PC ← true ; I ← I0 ;

3 ComputePostset(𝑃,M¬𝜙);

4 while true do
5 (PC , pc)← runAndMonitor(I ,M¬𝜙);

6 if Seq(pc) is accepted by 𝑀¬𝜙 then
7 𝒳 ← 𝒳 ∪ {LSeq(pc)};
8 Report a counterexample path;

9 𝑆 ← Slice(𝑃, 𝑝𝑐,M¬𝜙);

10 saveAndPrune(worklist ,S ,PC);

11 if worklist = ∅ ∨ Timeout then
12 exit;
13 PC ← Select(worklist);

14 I ← Solve(PC);

(denoted as 𝑃𝑟𝑒𝑠𝑒𝑡) for the candidate branches. The Preset of a

branch b contains the states of 𝑀¬𝜙 that can be reached via the

path from the beginning of the program to b.

Violation Detection. Property 𝜙 is checked along with path

exploration (Line 5). Specifically, for an explored path 𝑝𝑐, we check

whether 𝑆𝑒𝑞(𝑝𝑐) is accepted by 𝑀¬𝜙. If accepted, we add the

event sequence with program location [18] information (denoted

as 𝐿𝑆𝑒𝑞(𝑝𝑐)) to 𝒳 and report 𝑝𝑐 (Lines 6-8).

Slicing. Once a path is completed, SRV invokes the property-

oriented slicing Slice to prune branches along the path (Line 9).

In addition to the control and data dependence analysis used in

path slicing [12], the property-oriented slicing exploits the 𝑃𝑟𝑒𝑠𝑒𝑡
and 𝑃𝑜𝑠𝑡𝑠𝑒𝑡 information to prune additional branches. Specifically,

we proved that when property 𝜙 is only parametric with objects,

and the sensitive objects are not data-dependent on the inputs
1

,

both 𝑃𝑟𝑒𝑠𝑒𝑡 and 𝑃𝑜𝑠𝑡𝑠𝑒𝑡 are sound. Hence, for such properties,

SRV can also prune a branch 𝑏 if one of the following conditions is

satisfied: (1). the intersection of 𝑏’s 𝑃𝑟𝑒𝑠𝑒𝑡 and 𝑃𝑜𝑠𝑡𝑠𝑒𝑡 is empty;

(2). all the possible accepted event sequences by concatenating the

event sequence before 𝑏 and the possible event sequences after 𝑏
belongs to 𝒳 . After slicing, saveAndPrune will save the candidate

branches remained in the slicing result 𝑆 to the 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 (Line 10).

Guiding. The size of the intersection of 𝑃𝑟𝑒𝑠𝑒𝑡 and 𝑃𝑜𝑠𝑡𝑠𝑒𝑡
is used as the main heuristic value of each branch. Select selects

the branch with larger heuristic value to generate the path condi-

tion for the next iteration (Line 13). Then, A backend SMT solver

(Line 14) solves the path condition to generate the inputs for the

next iteration. We enhance the guiding technique [23] to support

multi-object properties.

Guiding and slicing [22] are two orthogonal techniques for the

verification. Slicing prunes redundant paths, while guiding helps to

find counterexample paths quickly. In addition to the compatibility,

1

A large number of regular properties satisfy this condition, such as all the properties

used in the experiments.

they strengthen each other: slicing can boost the efficiency of guid-

ing through pruning equivalent relevant paths, and the guiding

information can help slicing to prune additional paths.

3 EVALUATION
To evaluate SRV, we apply it to verify 16 real-world open source

Java programs (shown in Table 1) w.r.t. representative regular prop-

erties. The properties can be classified into two categories: (1). type-

state properties, such as a reader/writer cannot read/write a closed

stream, the Iterator/Enumeration should call hasNext/hasMoreEle-

ment before next/nextElement, and A collection cannot be modified

while being iterated
2

; and (2). user-defined properties, such as the

property defined for htmlparser requires the input string to be

the JSP format, i.e., “ <% . . .%> ”. Since most programs are vio-

lation free, to further evaluate SRV, we generate three mutants [13]

for the first 6 programs in Table 1 through injecting an event to a

randomly selected branch. The time threshold of verification is 24

hours.

Table 1: Programs in the experiments

Program LOC Brief Description
rohino-a 19799 Javascript interpreter

schroeder 11092 Sampled audio editor

soot-c 32358 Static analysis editor

jlex 4400 Lexical analyzer

bloat 45357 Java bytecode optimization

bmpdecoder 531 BMP file decoder

ftpclient 2436 FTP client in Java

pobs 5488 Java parser objects

jpat 3254 Java string parser

jericho 25657 Jericho HTML Parser

nano-xml 3317 Non-validating XML parser

htmlparser 21830 HTML parser in Java

xml 5138 XML parser in Java

fastjson 20223 JSON library from alibaba

jep 42868 Mathematics library

udl 26896 UDL language library

Total 270734 16 open source programs

A verification task comprises the verified program (or the pro-

gram’s mutant) and the given regular property. For the total 47

verification tasks, SRV can complete
3

39 tasks, while the default

DFS, pure guiding and pure slicing can complete 30, 30 and 32 tasks,

respectively. Compared with them, SRV achieves the improvements

30%, 30% and 22%, respectively. For the successfully verified 39

tasks, SRV has an average 249X, 248X, and 206X time speedups,

over DFS, pure guiding and pure slicing, respectively. For the un-

successfully verified 8 tasks, the reason is that the programs have

complex control flows, causing very few paths can be pruned and

the slicing is time-consuming.

4 RELATEDWORK
ESP [7] is a static verifier, and achieves good scalability by merging

symbolic states. The typestate verifier [9] is based on parametric

2

The property involves multiple objects, i.e., collection and iterator.

3

A verification task completes means all the path space has been explored.

1054

Practical Symbolic Verification of Regular Properties ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

abstract domain, and adopts a staged analysis to reduce false alarms.

Compared with them, SRV ensures the completeness with the help

of DSE. JavaMOP [3] and Tracematches [1] are two representative

runtime verification [15] methods for Java programs. While SRV

is a DSE based method that can obtain higher code coverage and

find more bugs. YOGI [19] integrates model checking with DSE

to find real counterexamples faster. In comparison, SRV is light-

weight and scalable. Woodpecker [6] uses path slicing to prune

redundant paths for verifying system rules via symbolic execution.

Compared with Woodpecker, SRV can prune more paths and find

counterexample paths faster.

5 CONCLUSION
We have presented SRV, a practical DSE-based technique for veri-

fying regular properties. To improve the scalability, we have intro-

duced a synergistic combination of property-oriented slicing and

guiding. Slicing prunes redundant paths, while guiding helps find

counterexample paths quickly. We have implemented SRV for Java

and the experimental results are promising. Future work lies in

several directions: (1) techniques to further reduce the overhead

of slicing (e.g., better guiding strategies to generate shorter paths

earlier) and (2) further improvements to our tool’s usability and

feasibility for releasing to and benefiting the community.

ACKNOWLEDGMENTS
This work was supported by National 973 (2014CB340703) and

NSFC (61472440, 61632015, 61690203, 61532007) of China.

REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with

free variables to AspectJ. In OOPSLA, pages 345–364, 2005.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In OSDI, pages 209–224,

2008.

[3] F. Chen and G. Rosu. MOP: an efficient and generic runtime verification frame-

work. In OOPSLA, pages 569–588, 2007.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.

[5] Clemens Hammacher, Martin Burger, and Valentin Dallmeier. JavaSlicer. https:

//www.st.cs.uni-saarland.de/javaslicer/, 2008.

[6] H. Cui, G. Hu, J. Wu, and J. Yang. Verifying systems rules using rule-directed

symbolic execution. In ASPLOS, pages 329–342, 2013.

[7] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in

polynomial time. In PLDI, pages 57–68, 2002.

[8] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using

system-specific, programmer-written compiler extensions. In OSDI, pages 1–16,

2000.

[9] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate

verification in the presence of aliasing. In ISSTA, pages 133–144, 2006.

[10] A. Gill et al. Introduction to the theory of finite-state machines. 1962.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

In PLDI, pages 213–223, 2005.

[12] R. Jhala and R. Majumdar. Path slicing. In PLDI, pages 38–47, 2005.

[13] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. Are

mutants a valid substitute for real faults in software testing? In FSE, pages

654–665, 2014.

[14] J. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[15] M. Leucker and C. Schallhart. A brief account of runtime verification. J. Log.
Algebr. Program., 78(5):293–303, 2009.

[16] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting performance bugs

for smartphone applications. In ICSE, pages 1013–1024, 2014.

[17] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley &

Sons, 2011.

[18] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,

2015.

[19] A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The YOGI project: Software

property checking via static analysis and testing. In TACAS, pages 178–181, 2009.

[20] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In POPL, pages 49–61, 1995.

[21] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In

FSE, pages 263–272, 2005.

[22] X. Yang, J. Wang, and X. Yi. Slicing execution with partial weakest precondition

for model abstraction of C programs. Comput. J., pages 37–49, 2010.

[23] Y. Zhang, Z. Chen, J. Wang, W. Dong, and Z. Liu. Regular property guided

dynamic symbolic execution. In ICSE, pages 643–653, 2015.

1055

https://www.st.cs.uni-saarland.de/javaslicer/
https://www.st.cs.uni-saarland.de/javaslicer/

	Abstract
	1 Introduction
	2 SRV: Symbolic Regular Verification
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

