
Efficient Recovery of Algebraic Specifications for Stateful
Components

Carlo Ghezzi
DEI

Politecnico di Milano
Via Ponzio 32
Milano, Italy

carlo.ghezzi@polimi.it

Andrea Mocci
DEI

Politecnico di Milano
Via Ponzio 32
Milano, Italy

andrea.mocci@mail.polimi.it

Mattia Monga
DICo

Universit „a degli Studi di Milano
Via Comelico 39

20135 Milano, Italy
mattia.monga@unimi.it

ABSTRACT
Specification recovery is a necessary step of many reverse en-
gineering and reuse efforts. This paper deals with recovering
the semantic part of a component’s interface. It focuses on
stateful components that provide data abstractions. Recov-
ery is achieved by following a black-box strategy, i.e. by
observing the component’s dynamic behavior. Among the
published approaches, Heureka recovers algebraic specifica-
tions from Java classes. Another approach (Adabu) recovers
behavioral models. The work we describe here adapts the
latter, which provides an approximate semantic description
for the class, to significantly optimize the former. The re-
sulting approach, called Adiheu, is described in the paper
with a preliminary assessment.

1. MOTIVATIONS
An interface specification for a software component describes
what a component can do on the client’s behalf. It is com-
posed of two parts. The syntactic part describes the compo-
nent’s signature, i.e., the syntactic form of how the com-
ponent may be used by the clients. The semantic part
describes the visible effects for the clients, which may ob-
tained as a result of using the component through its in-
terface. In an ideal world, the semantic part is associated
with the component in terms of formal documentation, for
example described in some notation, like the Java Model-
ing Language (JML) [10] in the case of Java components.
JML is a specification language that follows the design by
contract approach of Eiffel [11] using Hoare-like precondi-
tions, postconditions and invariants. In practice, the formal
documentation is often given informally. Sometimes, it is
totally absent, and even inconsistent with the actual imple-
mentation.

The problem of recovering a specification from an existing
implementation arises in many practical contexts. A typi-
cal case occurs during software evolution, when we need to
reconstruct a high-level view of a software component as we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE’07, September 3-4, 2007, Dubrovnik, Croatia. Copyright 2007
ACM ISBN 978-1-59593-722-3/07/09...$5.00.

become engaged in a reverse engineering activity. Other pos-
sible cases may occur when we examine existing components
as candidates for possible reuse within an application. Even
though the component might have some associated seman-
tic description, we often do not know how faithful it is and
thus it would be useful to extract from the component some
formal interface description that may support its reuse on
more reliable and sounder grounds. Finally, there are cases
in which we cannot even examine the internals of the com-
ponent to extract information. All we can do is to observe
the run-time behavior. This happens, for example, in the
case of a service oriented architecture (SOA), such as web
services, where services are exposed by service providers to
be used by service users.

The techniques for recovering specifications from an existing
application can be classified in two categories. Specifications
may be extracted through static analysis of code or through
dynamic analysis. In the former case, classical static anal-
ysis techniques are used to extract a high-level view of the
component’s behavior [14, 12, 13]. In the latter case, the
component is examined as it behaves at run-time; i.e., by
observing the values provided as input data and computed
as results, to infer possible high-level views of the compo-
nent [5, 3, 9, 1]. Of course, the latter technique may be the
only one available in the case of web services.

The techniques can also be classified along another dimen-
sion, which distinguishes between stateless and stateful com-
ponents. A stateless component behaves as a procedural ab-
straction [7] and its interface specification may be given in
terms of pre- and post-conditions. The behavior of a state-
ful component, instead, depends on its state, which is often
encapsulated and not visible directly through the compo-
nent’s interface. Understanding stateful components is often
harder, because the effect of certain operations may depend
on the history of previously executed operations.

In this paper we focus on a specific class of stateful com-
ponents that define data abstractions [7]. A component is
thus an implementation of an abstract data type, whose in-
ternal state is hidden to the clients and made available only
through operations. A typical example is a Java collection,
such as a queue, a set, etc. We also focus on recovering a
specification by applying dynamic analysis.

Specification inference via dynamic analysis is a relatively

98

98

new field of research. Interesting existing results are pre-
sented in [5, 3, 9]. [9] and [3] explicitly focus on specification
inference for data abstractions. The method described in [9]
(called Heureka) infers algebraic specifications of abstract
data types, while [3] (called Adabu) infers nondeterministic
finite state machines which describe legal sequences of the
operations. Our work combines the two methods and shows
the benefits that can be achieved through such combina-
tion. More precisely, we propose a method, called Adiheu—
ADabu Improves HEUreka, in which we adapt [3] to be used
in combination with [9] to provide an optimized method to
infer algebraic specifications.

The paper is organized as follows: Section 2 provides back-
ground concepts and clarifies the terminology. Section 3
illustrates the Heureka approach, defined by [9] for discov-
ering algebraic specifications of a component implementing
a data abstraction. Section 4 shows our method which im-
proves Heureka inspired by Adabu, defined by [3]. Section 5
provides an initial assessment of our proposal and shows the
improvements we obtained with respect to Heureka. Finally,
Section 6 contains some conclusions and outlines directions
for future research.

2. BACKGROUND CONCEPTS AND TER-
MINOLOGY

This section provides a brief overview of the background
concepts underlying our approach and the terminology used
throughout the paper. A reader who is familiar with them
may safely skip the section.

We focus on components that provide data abstractions by
encapsulating and hiding the local data attributes and ex-
porting only the methods through which objects may be
accessed. More precisely, components are Java classes that
implement an abstract data type. Class methods can be
classified according to the following roles:

• constructors: they produce a new instance object.

• observers: these methods inspect the internal state
of an object, by returning values through which they
expose information about the internal state.

• mutators: these methods change the internal state of
an object.

It is possible for a method to play more than one role: typ-
ically, it can behave both as a mutator and as an observer
at the same time. For example, Fig. 1 shows the inter-
face of a Java ObjectStack class. Method ObjectStack() is
a constructor; methods isEmpty() and size () are observers,
method push(Object) is a mutator and method pop() is both
an observer and a mutator. Method pop() is also called an
impure observer, because it has side effects, as opposed to
size (), which is pure.

There are two different notions of equality among objects
defined by an abstract data type: behavioral equivalence
and structural equivalence. Behavioral equivalence defines
two objects as equivalent if they cannot be distinguished

public class ObjectStack {
..

public ObjectStack() { .. }

public void push(Object element) { .. }
public Object pop() { .. }

public boolean isEmpty() { .. }
public int size() { .. }

}

Figure 1: The public interface of ObjectStack

by applying to them any sequence of operations. Struc-
tural equivalence defines two objects as equivalent if their
internal representation is the same. If two objects are struc-
turally equivalent they are also behavioral equivalent, but
the converse is not necessarily true. In this paper we consis-
tently use the concept of behavioral equivalence. For brevity,
we will thus use “equivalence” as a synonym for behavioral
equivalence. If needed, we explicitly use the term “struc-
tural equivalence” otherwise.

The formal specification of an abstract data type imple-
mented by a Java class may be given by using different
notations. Since Java classes are stateful components, the
key issue is how to specify the behavior of public methods,
which depends on the state, without disclosing the hidden
encapsulated state. The approach adopted by JML gen-
eralizes pre- and post-conditions by using abstract models.
Algebraic specifications, which were initially proposed and
investigated by [8, 6] and are supported by languages like
[2, 4], take a different approach. The hidden state is implic-
itly taken into account by specifying axioms on sequences of
operations.

An algebraic specification has two parts: the algebraic signa-
ture and the set of axioms. The algebraic signature defines
the types used in the algebra (sorts) and the signatures of
operations. Each axiom is a universally quantified formula
expressing an equality among terms in the algebra. For ex-
ample, Fig. 2 shows the algebraic specification for the class
ObjectStack described in Fig. 1 1.

3. DISCOVERING ALGEBRAIC SPECIFI-
CATIONS

Henkel and Diwan proposed a tool for discovering algebraic
specifications of Java classes [9]. The tool, named Heureka,

supports the task of writing formal documentation for reusable
components, such as containers, in which the use of algebraic
specifications is particularly powerful and effective.

In order to define a proper algebraic signature for a Java
class, Heureka maps each Java class to a sort with the same
name; each method belonging to the public interface of a

1For simplicity, we assume that a null object is returned by
a pop() operation on an empty stack, and that null objects
cannot be pushed onto a stack.

99

99

sorts:
ObjectStack, Object, Boolean

operations:
ObjectStack → ObjectStack
push ObjectStack ×Object→ ObjectStack
pop ObjectStack → ObjectStack ×Object
isEmpty ObjectStack → Boolean
axioms:

isEmpty(ObjectStack()) = true
isEmpty(push(s, e)) = false

pop(push(s, e)) =< s, e >
pop(ObjectStack()) =< ObjectStack(), null >

Figure 2: An algebraic specification of a stack of
elements

class is mapped to an operation between the related sorts.
Each operation which is not a constructor has a right hand
side (codomain of the operation) which is the Cartesian
product of the sort whose specification is being constructed
and the return type of the operation. This means that an
implicit assumption is made that any operation can modify
the current object through a side effect. Should an oper-
ation be a pure observer, additional equations will be dis-
covered by the tool, which states equivalence between ob-
jects before and after the application of the operation. This
mapping between the method signature and the algebraic
signature is implemented by using queries to the Java re-
flection API. For example, the algebraic signature of method
Boolean isEmpty() (see Fig. 1) is isEmpty : ObjectStack →
ObjectStack ×Boolean.

Given a class and its method signatures, Heureka generates
a list of terms up to a given length. A term is a sequence
of legal method applications with fixed actual parameters,
starting from a constructor. The length of a term is the num-
ber of method applications that appear in it2. For example,
consider the class ObjectStack shown in Fig. 1.

push(ObjectStack().state, Object@3).state

is a term of length two (expressed in the Heureka syntax)
denoting a stack resulting from a call to push, by using as
actual parameters the stack resulting from the invocation of
the constructor and a constant object of the Object sort.
Two terms are defined to be equivalent iff they generate
equivalent objects.

The set of the generated terms is then analyzed by an equa-
tion generator, which tries to find equivalent terms.

The tool may discover three kinds of equations:

• State equations: A state equation represents an equiv-
alence between two states generated by the execution
of two different mutator terms. For example:

pop(push(ObjectStack().state, Object@3)).state =
ObjectStack().state

2Actually, Heureka uses a different definition of length that
also implicitly depends on the parameters (see [9]). Our
approach takes this notion into account, but we prefer to
explain the way it works by using a simpler definition.

• Observer equations: These equations represent the equal-
ity between the return value from an observer term and
a constant. For example:

size (push(ObjectStack().state, Object@3)).retval = 1

• Difference equations: These equations represent a con-
stant difference between the return values from two
observer methods. For example:

size (ObjectStack().state). retval + 1 =
size (push(ObjectStack().state, Object@3)).retval

State equations are generated by verifying equivalence be-
tween terms according to an algorithm described in [9]. In-
tuitively, for each pair of terms to be compared, the algo-
rithm generates a sequence of zero or more stub operations
which are applied to both terms; then the algorithm evalu-
ates equivalence by comparing the results of applying every
observer.

Equations are then generalized by replacing subterms with
universal quantifications among typed variables, thus pro-
ducing the set of axioms. Finally, each axiom is checked with
several automatically generated test cases to determine if it
is likely to hold; the resulting set of axioms is then polished
to eliminate redundancies.

The term generation part exploits two main optimization
techniques. First, it uses static analysis to identify side-
effect free operations (pure observers)3. Second, to reduce
the term set, it generates only the minimal term for any gen-
erated object representation. If two terms generate struc-
turally equivalent objects (evaluated by object serialization)
only the shortest one is kept. The minimal term generation
is also used to build up equations. When a term generates
an object which is structurally equivalent to an object gener-
ated by a previous term, a corresponding equality equation
between the two terms is generated.

4. OPTIMIZING DISCOVERY
In its search for equivalence, Heureka’s equation generator
is completely blind: it only knows about the method sig-
natures, but no behavioral information is used. In order to
improve performance we should try to reduce the number
of terms to be compared for behavioral equivalence. The
next section describes an approach (inspired by [3]) which,
given the maximum length of terms to generate, signifi-
cantly reduces the number of terms to be compared in order
to produce equations. A further optimization concerns the
procedure described by [9] which checks for equivalence of
terms. These optimizations were suggested by the approach
followed by Adabu [3], a tool that infers a behavioral model
for a Java class. The next section provides an introduction
to Adabu. Our optimizations are described in sections 4.2
and 4.2.2.

4.1 Mining Object Behavior with Adabu
Adabu [3] is a tool designed to infer the object behavior models
of Java classes. Each class is modeled by a non-deterministic

3This optimization can be performed only if the internals of
the component are accessible.

100

100

isEmpty()

size()==0
ObjectStack()

!isEmpty()

size()>0

push(Object)

push(Object)

Object pop()

Object pop()

Figure 3: The Adabu model of the ObjectStack class.

finite state automaton which captures the relationship be-
tween mutator and pure observer methods. The strong as-
sumption behind this tool is that common behavior is often
correct behavior ; thus, the models derived by observing com-
mon behaviors represent universal likely invariants.

The generated automaton consists of a set of semantically-
labeled states and transitions. Each state corresponds to
an abstracted set of possible return values of pure observer
methods; each label on a transition corresponds to a muta-
tor application. Initial states are reached from constructor
applications. The automaton provides a semantic descrip-
tion of the component’s interface. The behavior model of
the ObjectStack class in Fig. 1 is shown in Fig. 3.

As the model shows, after a call of the push(Object) method,
the observer isEmpty() always returns false. Note that
models are built by observing the real, dynamic object be-
haviors, i.e. by executing observers after manipulating ob-
jects via mutators. For instance, the fact that in the is -
Empty() state there is no exiting transition labeled pop()
does not strictly mean that this operation is illegal or ex-
ceptional according to the specification and implementation
of the class; it simply means that since the method invoca-
tion has not been observed during a concrete use of the class
it surely is an uncommon operation, and according to the
normal behavior assumption, we might just assume that it
is reasonably illegal.

The model of the object behavior is built through the fol-
lowing steps:

1. Pure Observer Detection: This step recognizes meth-
ods that behave as pure observers. Pure observers
must have a non-void return type; they must be side-
effect free, and have no parameters. It is possible to
use a static analysis tool to identify methods that do
not change the state of the object. Any other method
is considered to be a mutator.

2. Instrumentation: After detecting pure observers, the
code is instrumented to trace the state of each in-
stance of the class. First, a new generic state-extractor
method is added, which calls every pure observer method.
Each mutator of the class is enriched with a call of
the state-extractor method before and after the actual

code of the mutator; then a call for the addition of a
new transition on the model is added.

3. Execution: The execution of the instrumented pro-
gram provides the information needed to infer the be-
havior models.

Given a sequence of observer methods (o1, . . . , on), a con-
crete state is a vector of the corresponding return values
(v1, . . . , vn). A trace for each object instance of the class to
be modeled consists of a sequence of triples (vi, mi, v

′
i) where

vi and v′
i are the concrete states before and after the execu-

tion of a mutator mi. Obviously, the possible return values
of observers generate a very large number of possible con-
crete states. Adabu uses abstraction over the return values
of observers to reduce the number of states. Specifically:

• For numerical values of types such as int or float, it
uses three abstracted states: negative values, positive
values, and 0. Thus, for methods like size (), only
size()==0 and size()>0 are observed (and meaning-
ful).

• Object references (for any kind of class) are mapped to
the abstract state null and instanceof c, where c in
one of the possible classes the object can be a reference
of.

• Enumerations and boolean values are not abstracted,
i.e. there is one state for each possible value of the
object.

After executing the program, for each instance of the class to
be modeled, Adabu mines an object-related state machine by
abstracting the concrete state and adding transitions with
regard to the observed traces. At the end, the global class
model is generated by merging the single object models.

Fig. 3 shows the automaton inferred for ObjectStack. The
automaton has one concrete and one abstract state, which
describes all non-empty stacks. The inferred automaton is
in general nondeterministic, for two main reasons: first, pure
observers can only expose a limited view of the internal
state; this means that two objects are considered to be-
long to the same state even if their internal state is different
but this difference is not unconvered by the pure observers.
Second, the built-in abstraction mechanism collapses a large
number of concrete state into the same abstract state.

4.2 Driving term generation with a behavioral
model

The behavioral models that can be inferred by Adabu pro-
vide a useful, high-level description that provides a concise
semantic view of data abstractions. Algebraic descriptions,
on the other hand, are more expressive4, but harder to in-
fer. The question we address is whether, and how, the two
approaches can be combined to achieve better results than

4A finite state behavioral model cannot represent an un-
bounded stack, which can instead be described with an al-
gebraic specification. Consequently the behavioral model
like the one in Fig. 3 represents also unacceptable behaviors

101

101

each of them separately. Indeed, we will show that term
generation for Heureka can be driven by a behavioral model
à la Adabu. The underlying idea is that a behavioral model
like the one in Fig. 3 can be used to generate terms by ap-
plying the methods corresponding to each transition on the
model. The resulting approach, called Adiheu, is illustrated
hereafter. We develop a new component to derive behav-
ioral models. As opposed to Adabu, the inference algorithm
implemented by our component does not require a step of
static analysis otherwise needed to detect pure observers.
Hence the approach does not require any knowledge of the
source code of the container component.

4.2.1 First steps towards Adiheu
Our algorithm generates a set of terms, associated with each
state of the automaton, up to a maximum length L. The
terms associated with a state are those that that must be
checked for equivalence. The algorithms works as follows:
Each set is initialized to the empty set. Starting from the
constructors, which are represented by the initial transitions
on the automaton, we generate the terms of length 1. For
each state, if the corresponding set of terms is non-empty, we
generate a new term for each transition exiting the state, and
we add this new term to the target state of that transition.
This process is repeated until the required maximum length
of the terms is reached.

If the model is deterministic, different transitions that bring
to different abstract states always bring also to different con-
crete states. In fact, two abstract states are not equivalent
when at least one observer yields a different value (since the
concrete state is also different).

Using this property, the pairs of algebraic terms which are
generated from transitions which bring to different abstract
states are guaranteed not to generate equivalent objects.
Thus, the terms belonging to the sets associated with states
can be considered to be an abstract likely equivalence class
of terms (ALEC) and we can restrict comparison of terms
for equivalence within each ALEC.

If the model is non-deterministic, the same operation may
bring to different abstract states. We might suspect that
our method does not check for equivalence of some pairs of
terms which are actually equivalent just because they be-
long to two different ALECs. For example, if we consider
the transitions on the model on Fig. 3, the object generated
by the term ObjectStack() belongs to the ALEC associated
with the state isEmpty()==true, while object generated
by the term pop(push(ObjectStack(), Object@3)) belongs
to the ALEC associated with the state isEmpty()==false.
The two terms are equivalent, but they belong to two differ-
ent ALECs. This, however, is not a problem because there
exists another non-deterministic transition which generates
the term pop(push(ObjectStack(), Object@3)) as belonging
to the ALEC associated with the state isEmpty()==true.
This property, which has been informally explained on this
example, can be proved to hold in general. In conclusion,
we can safely restrict the check for equivalence to terms that
belong to the same ALEC.

By reasoning just about the transitions, we ignore the se-
mantics of states. Suppose that we generate terms by follow-

ing transitions until we reach some state with exiting non-
deterministic transitions. The term resulting by appending
the operation labelling these transitions to a term associated
with the state yields a concrete state, which can be retrieved
by invoking observers on the object generated by the term.
Thus, despite non-determinism, the term is inserted in the
ALEC associated with only one of the states reachable by
the non-deterministic transitions. Considering the example
on Fig. 3, the term pop(push(ObjectStack(), Object@3)) is
inserted only with the ALEC associated with the state la-
belled with isEmpty()==true.

The approach we illustrated so far has been implemented
by a preliminary version of Adiheu, which fed Heureka’s
equation generator according to the previously described
term generation algorithm. This straightforward method
provided only minor improvements. In fact the really sim-
ple abstraction function used by Adabu does not provide a
significant distribution of terms among states, which is in-
stead crucial to speed up Heureka. For example, the highly
abstracted state labelled with !isEmpty() and size()>0 ac-
cumulates a very high number of terms while the isEmpty()
state remains with only two terms. If instead we unfolded
highly abstracted states, the size of ALECs could become
smaller and the equation generator much faster. This ob-
servation can lead to a significant optimization that is de-
scribed in the next section.

4.2.2 Unfolding the models
In order to provide a better distribution of generated terms
among abstract states, we provide a semantic unfolding of
behavior models, i.e. a variable and configurable abstrac-
tion function for observers returning numerical values. In
general, by unfolding the states of the automaton, terms
are better distributed among the ALECs, thus resulting in
a reduced number of comparisons to be performed during
equation generation.

For instance, in the case of the ObjectStack class and the
size () observer, we may choose to abstract the returned
value as three possible values (zero, one, or greater than
one) instead of zero or positive. This simple “unfolding”
approach yields the automaton shown in Fig. 4. Similar
abstractions might be provided for all numeric types.

Another useful change of the abstraction function applies
to the observer methods which return non-primitive types.
This can be more easily explained for a modified version
of ObjectStack, called ObjectStack’, obtained by adding a
new pure observer method Object top() which returns the
object on top of the stack, without removing it. We show
later that the approach can be applied also to the original
data abstraction shown in Fig.1 where pop() both returns
an object and removes it from the stack, and in general for
any non-pure observer.

Heureka uses an instance pool for primitive types and for
Objects used as actual parameters. Considering generic con-
tainers, we can expect the object returned by the observers
to be the same objects used as actual parameters of pre-
vious operations. For example, if we use an instance pool
IObject = {obj1, obj2, obj3} for Objects, then we can gener-
ate the following abstraction function for the Object top()

102

102

isEmpty()

size()==0
ObjectStack()

!isEmpty()

size()==1

!isEmpty()

size()>1

push(Object) push(Object)

Object pop()

push(Object)

Object pop()

Object pop()

Figure 4: An unfolded version of the behavior model of ObjectStack

method: { top()==null, top()==obj1, top()==obj2, top()
==obj3, top() /∈ IObject}. This approach leads to a signifi-
cant state unfolding if the class exposes several observers re-
turning Object, and a significant number of non-deterministic
transitions. Fig. 5 shows an example of an unfolded model
of ObjectStack’ using an instance pool of three values for
Object. Solid arcs represent push() operations and dashed
arcs represent pop()s; a state labeled with si,j means that in
that state size()==i and top()==objj

5. Transitions rep-
resenting methods with formal parameters are labeled not
only with the name of the method, but also with the ac-
tual parameters taken from the instance pool. For example,
the transition from state s1,1 to state s2,1 is labeled with
push(obj1).

The case of observers with side effects can be treated as
follows. After applying the method, we check whether the
object has changed (by applying a simple hashing function
to the serialized state). In case of change, we retrieve the
state of the object before executing the impure observer by
re-applying the corresponding sequence of operations that
generated it. With this approach, Fig. 5 represents a be-
havioral model not only for ObjectStack’ (with the pure ob-
server top()), but also for the original ObjectStack data ab-
straction described in Fig. 1, using the impure pop() method
both as a modifier and an observer. Observers with parame-
ters can also be handled by our method, but their treatment
is omitted for space reasons.

4.3 Driving the Equality Engine
In the previous section we described an approach that im-
proves the number of terms to be compared for equivalence
with respect to Heureka. In this section we show how the
step of stub generation in Heureka, which was reviewed in
Section 3, can also be driven by a behavioral model.

If we consider two terms to be checked for equivalence, we
must check that for every possible test stub they observa-
tionally behave in the same way, by checking the result of
observers. The stub check stops when a limit on stub length
is reached.

5The isEmpty() return value is omitted for brevity because
of the invariant size()==0 ⇔ isEmpty() ∧ size()>0 ⇔
! isEmpty()

With our approach, we are sure that every pair of terms
to be compared belong to the same ALEC. First, we must
check that the actual values returned by the observers are
equal; if they are not, the two terms are not equivalent.
Otherwise, we adopt a heuristic method which more likely
tries to uncover non equivalent pairs of terms. To do so, the
stub is created by appending first the methods labelling non-
deterministic transitions exiting the state. The motivation
is that the behavioral model introduces non-deterministic
transitions either because the observers are not powerful
enough to distinguish as non equivalent two terms that lead
to the same abstract state or because the abstraction we
provided in the behavior model collapses non equivalent con-
crete state in the same abstract state.

For example, consider the behavioral model for ObjectStack’
shown in Fig. 5, and consider two terms in the ALEC asso-
ciated with state s2,1:

• push(push(ObjectStack(), Object@3), Object@1)

• push(push(ObjectStack(), Object@2), Object@1)

The stub generation heuristic selects a pop() operation, which
is non-deterministic, instead of a push(objj), which would
yield two undistinguishable resulting terms. Instead, after
one application of pop() as a stub, the two objects are dis-
tinguishable, for example by applying a further pop() as an
(impure) observer.

As a last, critical optimization, we use the behavioral model
to stop stub generation if we reach concrete deterministic
states. If we are testing two terms for inequality and we ap-
ply a stub such that both terms reach a deterministic state,
then every other stub term generated by applying other op-
eration from this stub cannot introduce any further informa-
tion about that inequality. The reason is simple: if after a
particular stub we reach a deterministic state, then the two
terms are undistinguishable. Consider the ObjectStack data
abstraction and suppose that we add an additional clear ()
operation, which eliminates every object from the stack. In
this case, the behavioral model in Fig. 5 must be modified
by adding transitions labeled clear () which would connect
each state with state (s0, null). For every pair of terms,
if we apply the clear () method they surely become undis-

103

103

s0,nullObjectStack() s1,2

s1,1

s1,3

s2,1

s2,2

s2,3

Figure 5: Unfolded model of ObjectStack with instance pool abstraction (Solid arcs represent pop() transi-
tions; dashed arcs represent push(. . .)).

tiguishable, and it is useless to apply any other subsequent
operation, because its result will always generate the same
equivalent object. The same situation applies to states s1,k

in Fig. 5. In fact, all operations labelling transitions exiting
these states are deterministic (note that the three dashed
transitions are labeled push(objj) with different values of
j).

5. PRELIMINARY ASSESSMENT
Our optimization of Heureka mainly regards the generation
of state equations and axioms between states. Our approach
provides a smaller number of comparisons between terms
during equation generation and a better performance of the
equality engine. To provide a quantitative assessment of our
optimization, we propose three performance metrics:

1. the total number of comparisons (i.e. the number of
calls to the equality engine) needed by the equation
generation;

2. the total number of method invocations on the target
class; in the case of our approach, this includes the
overhead invocations needed for the generation of the
behavioral model;

3. the average number of method invocations on the tar-
get class for each invocation of the equality engine.

Table 1 shows the test results for the ObjectStack class and
a SymbolTable class implementing a symbol table abstract
data type. The former considers the state equation gener-
ator with minimal state optimization, while the latter uses

the state equation generator without the minimal state term
optimization (used for axioms completeness).

In the case of the ObjectStack class, Adiheu significantly
reduces the average number of method invocations used by
the equality engine. This reduction shows the benefits of us-
ing a behavioral model to drive both the proof of inequality,
which is discovered sooner, and the assumption of equality,
where many test cases for indistinguishable terms are ig-
nored. The reduction varies from 45% in the worst case to
72% in the best case. A reduction is also noticeable on the
total number of method invocations, despite the additional
invocations due to behavior model generation. In this case,
the degree of reduction varies from 65% to 83%. Analogous
reduction of an order of magnitude were obtained by apply-
ing Adiheu to the SymbolTable class, even if this experiment
did not exploit the minimal state term optimization.

6. CONCLUSIONS
Recovering specifications from run-time observation of the
bevavior of existing code is a practically relevant and the-
oretically challenging problem. This paper focused on re-
covering algebraic specifications from Java classes imple-
menting data abstractions. Our approach is based on the
Heureka method defined by [9], which is significantly mod-
ified and optimized by applying techniques inspired by [3].
Our method has been implemented by a prototype, called
Adiheu. A preliminary assessment of Adiheu shows that it
significantly improves Heureka.

We view this work as an initial step along a path that tries to
identify sound methods and useful heuristics that can help

104

104

Class ObjectStack
Heureka Adiheu

6 17 4 136 3567.0 1891523 13 17 4 13 1158.84 601599
7 45 6 990 11891.06 2.4× 107 13 45 6 123 3283.5 4.5× 106

8 54 15 1431 9209.47 7.5× 107 13 54 15 321 4997.42 2.6× 107

9 138 21 9453 33137.54 1.1× 109 13 138 21 1218 8470.50 1.7× 108

Class SymbolTable
5 51 192 1275 4711.8 4.6× 107 59 51 192 194 213.39 3.8× 106

6 131 1119 8515 9273.84 1.2× 109 59 131 1119 1147 264.5 3.6× 107

m
a
x
S
iz

eO
fT

er
m

s

#
o
f

T
er

m
s

#
o
f

E
q
u
a
ti

o
n
s

#
o
f

C
o
m

p
a
ri

so
n
s

A
v
g
.

In
v
o
ca

ti
o
n
s

o
n

E
q
u
a
li
ty

E
n
g
in

e

T
o
ta

l
M

et
h
o
d

In
v
o
ca

ti
o
n
s

#
o
f

S
ta

te
s

T
o
ta

l
#

o
f

T
er

m
s

T
o
ta

l
#

o
f

E
q
u
a
ti

o
n
s

T
o
ta

l
#

o
f

C
o
m

p
a
ri

so
n
s

A
v
g
.

In
v
o
ca

ti
o
n
s

o
f

E
q
u
a
li
ty

E
n
g
in

e

T
o
ta

l
M

et
h
o
d

In
v
o
ca

ti
o
n
s

Table 1: Tests on ObjectStack and SymbolTable classes.

recover specifications by observing the run-time behavior
of software. This problem has an important practical rele-
vance, as it could help establish trust on third-party software
used as a service.

7. REFERENCES
[1] Briand, L. C., Labiche, Y., and Miao, Y. Towards

the reverse engineering of uml sequence diagrams. In
IEEE Working Conference on Reverse Engineering
(WCRE’03) (2003), pp. 57–66.

[2] CoFI (The Common Framework Initiative). Casl
Reference Manual. LNCS 2960 (IFIP Series). Springer,
2004.

[3] Dallmeier, V., Lindig, C., Wasylkowski, A., and
Zeller, A. Mining object behavior with Adabu. In
WODA 2006: ICSE Workshop on Dynamic Analysis
(May 2006).

[4] Diaconescu, R., Futatsugi, K., and Iida, S.
Component-based algebraic specification and
verification in CafeOBJ. In World Congress on Formal
Methods (1999), pp. 1644–1663.

[5] Ernst, M. D. Dynamically Discovering Likely
Program Invariants. Ph.D., University of Washington
Department of Computer Science and Engineering,
Seattle, Washington, Aug. 2000.

[6] Goguen, J. A., Thatcher, J. W., and Wagner,
E. W. An initial algebra approach to the specification,
correctness and implementation of abstract data types.
In Current Trends in Programming Methodology,
Volume 4:Software Specification and Design, R. T.
Yeh, Ed. Prentice Hall, 1978, ch. 5, pp. 80–149.

[7] Guttag, J., and Liskov, B. Program Development
in Java: Abstraction, Specification and
Object-Oriented Design. Addison-Wesley, 2001.

[8] Guttag, J. V., and Horning, J. J. The algebraic
specification of abstract data types. Acta Informatica
10, 1 (1978).

[9] Henkel, J., and Diwan, A. Discovering algebraic
specifications from Java classes. In ECOOP 2003 -

Object-Oriented Programming, 17th European
Conference (Darmstadt, July 2003), L. Cardelli, Ed.,
Springer.

[10] Leavens, G. T., Baker, A. L., and Ruby, C. JML:
A notation for detailed design. In Behavioral
Specifications of Businesses and Systems, H. Kilov,
B. Rumpe, and I. Simmonds, Eds. Kluwer Academic
Publishers, 1999, pp. 175–188.

[11] Meyer, B. Design by Contract: The Eiffel Method.
In TOOLS 1998: 26th International Conference on
Technology of Object-Oriented Languages and Systems
(1998), p. 446.

[12] O’Callahan, R., and Jackson, D. Lackwit: a
program understanding tool based on type inference.
In ICSE ’97: Proceedings of the 19th international
conference on Software engineering (New York, NY,
USA, 1997), ACM Press, pp. 338–348.

[13] Rountev, A., and Connell, B. H. Object naming
analysis for reverse-engineered sequence diagrams. In
International Conference on Software Engineering
(2005), pp. 254–263.

[14] Sagiv, M., Reps, T., and Wilhelm, R. Parametric
shape analysis via 3–valued logic. In Symposium on
Principles of Programming Languages (1999),
pp. 105–118.

105

105

