
Building and using pluggable type systems

Michael D. Ernst
University of Washington

mernst@cs.washington.edu

Mahmood Ali
MIT CSAIL

mali@csail.mit.edu

Abstract
Are you a practitioner who is tired of null pointer excep-
tions, unintended side effects, SQL injections, concurrency
errors, mistaken equality tests, and other run-time errors
that appear during testing or in the field? A pluggable type
system can guarantee the absence of these errors, and many
more.

Are you a researcher who wants to be able to quickly and
easily implement a type system, giving you the ability to
evaluate it in practice and to field it? You need a framework
that supports these essential activities.

This demo is aimed at both audiences. It describes both
the theory of pluggable types and also the practice of im-
plementing them. A simple pluggable type-checker can be
implemented in 2 minutes, and can be enhanced thereafter.
A type checkers is easy to create, easy for programmers to
use, and effective in finding real, important bugs.

The demo uses the Checker Framework, which enables you
to create pluggable type systems for Java, while your code
remains backward-compatible with all versions of Java. The
ideas translate to other languages and toolsets. The tools
are freely available at http://types.cs.washington.edu/

checker-framework/.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.4 [Software Engineering]: Software/Program
Verification; D.3.3 [Programming Languages]: Language
Constructs and Features; D.3.4 [Programming Languages]:
Processors

General Terms
Design, Documentation, Experimentation, Languages, Reli-
ability, Security, Verification

Keywords
Pluggable type-system, user-defined type system, Checker
Framework, Java, type checking

1. Motivation
Buggy software is costly to society: in 2002, insufficient

software testing and verification were estimated to cost the
US economy $22–60 billion annually [9]. One approach to re-
ducing this cost is program verification via type systems. A
static type system helps programmers to detect and prevent

Copyright is held by the author/owner(s).
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
ACM 978-1-60558-791-2/10/11.

errors. However, a language’s built-in type system does not
help to detect and prevent enough errors, because it can-
not express certain important invariants. A user-defined,
or pluggable, type system enriches the built-in type sys-
tem by expressing extra information about types via type
qualifiers. Example qualifiers include nonnull, readonly,
interned, locked, and tainted, as well as much more com-
plex type systems. Pluggable types permit more expressive
compile-time checking and guarantee the absence of addi-
tional errors.

We present the Checker Framework for defining pluggable
types in a backward-compatible way, in the context of a
real-world programming language. Our implementation is
for Java, but the ideas and techniques translate to other
languages. The Checker Framework is available in source
and binary forms from http://types.cs.washington.edu/

checker-framework/.
The framework makes it easy to define type-checkers ei-

ther declaratively or procedurally. The framework makes
use of a syntax for type qualifiers that is usable today and
is planned for inclusion in a future version of the Java lan-
guage. The framework is in daily academic use by type
system designers who are creating new type systems and
evaluating them in a realistic context. The framework is in
daily industrial use by programmers who want a guarantee
that certain types of errors cannot occur. The framework
has been applied to millions of lines of code and has found
errors in every codebase to which it has been applied.

The framework ships with the following checkers:

• Nullness checker for null pointer errors
• Interning checker for errors in equality testing and in-

terning
• IGJ checker for mutation errors (incorrect side effects),

based on the IGJ type system
• Javari checker for mutation errors (incorrect side ef-

fects), based on the Javari type system
• Lock checker for concurrency and lock errors, inspired

by the Java Concurrency in Practice (JCIP) [5] anno-
tations

• Fake enum checker for integers used as enumerations
• Tainting checker for trust and security errors
• Linear checker to control aliasing and prevent re-use
• Regex checker to prevent use of syntactically invalid

regular expressions
• Internationalization checker to ensure that code is prop-

erly internationalized: user-visible text is obtained from
a localization resource, and proper keys are used for a
localization resource

375

• Property file checker to check keys used for property
files and resource bundles, and to check international-
ization and compiler messages

• Basic checker for customized checking without writing
any code

Additional checkers written by third parties are also avail-
able. The Checker Framework comes with a 100-page man-
ual, mostly describing each of the pluggable type systems.

2. Benefits to the profession
Program types are the shining success of formal methods.

Types are widely adopted by rank-and-file programmers to
detect errors and — more importantly — to verify that no
more errors (of particular varieties) exist. However, the up-
take of types into practice has been limited by their mi-
gration into mainstream programming languages, a process
that takes decades. Our work shortcuts this process, offering
benefits both to practitioners and to researchers.

For practitioners, we offer the ability to adopt new type
systems without breaking compatibility with existing pro-
grams, systems, and languages. This enables faster adoption
of new ideas. Our work also permits programmers to define
application-specific type systems that verify important prop-
erties of their systems. We believe that these changes have
the potential to transform the way that software is written,
and the way that programmers think about their programs.
Rather than testing to try to eliminate as many bugs as pos-
sible, types provide a pathway to verification and a mindset
of writing correct code.

For researchers, we offer the opportunity to experiment
with type systems in the context of a widely-used indus-
trial language, Java. To date, evaluating a new type system
has generally required either defining a new language, or ex-
tensive and incompatible changes to an existing language.
Incompatibility with existing tools and programs limits the
scope of experimentation, and it limits adoption in prac-
tice. This has too often led to flawed theory — say, the
approach is unscalable, or it does not handle features like it-
erators, generics, or the visitor pattern, or a proof of sound-
ness makes unrealistic simplifications. Empirical evaluation
is not optional — it is a necessary part of programming lan-
guage research. By lowering the bar to experimentation,
while retaining compatibility with existing tools and pro-
grams, we hope to change the way that researchers think
about implementing and evaluating their ideas. The result
should be more relevant and worthwhile theory and systems,
achieved more quickly.

3. Related work
This document only skims the surface of related work. For

a more extensive discussion, please see [8].
The most closely related frameworks are JQual [6], and

JavaCOP [1]. These two frameworks, like the Checker Frame-
work, have been used to implement the Javari [10] type sys-
tem for enforcing reference immutability. The version im-
plemented in our framework supports the entire Javari lan-
guage (5 keywords). The JQual and JavaCOP versions have
only partial support for 1 keyword (readonly), and neither
one properly implements method overriding, a key feature
of an object-oriented language. Neither JQual nor JavaCOP
scales to real programs — either in terms of program size or
of language features.

The JastAdd extensible Java compiler [2] includes a mod-
ule for checking and inferencing of non-null types [3], though
it is less featureful and correct than our nullness checker.
JastAdd could theoretically be used as a framework to build
other type systems.

The goal of a bug-finder such as FindBugs [7] is to find
just a few errors, not all errors. FindBugs discards most
reports to avoid false positives. Its benefit is that it requires
few user annotations.

The Type Annotations (JSR 308) Specification [4] ex-
plains how Java will support expressing pluggable type sys-
tems.

References
[1] Chris Andreae, James Noble, Shane Markstrum, and

Todd Millstein. A framework for implementing
pluggable type systems. In Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2006), pages 57–74, Portland, OR, USA,
October 24–26, 2006.

[2] Torbjörn Ekman and Görel Hedin. The JastAdd
extensible Java compiler. In Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2007), pages 1–18, Montréal, Canada,
October 23–25, 2007.

[3] Torbjörn Ekman and Görel Hedin. Pluggable checking
and inferencing of non-null types for Java. Journal of
Object Technology, 6(9):455–475, October 2007.

[4] Michael D. Ernst. Type Annotations specification
(JSR 308).
http://types.cs.washington.edu/jsr308/,
September 12, 2008.

[5] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph
Bowbeer, David Holmes, and Doug Lea. Java
Concurrency in Practice. Addison-Wesley, 2006.

[6] David Greenfieldboyce and Jeffrey S. Foster. Type
qualifier inference for Java. In Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA 2007), pages 321–336, Montréal, Canada,
October 23–25, 2007.

[7] David Hovemeyer, Jaime Spacco, and William Pugh.
Evaluating and tuning a static analysis to find null
pointer bugs. In ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2005), pages 13–19, Lisbon,
Portugal, September 5–6, 2005.

[8] Matthew M. Papi, Mahmood Ali, Telmo Luis
Correa Jr., Jeff H. Perkins, and Michael D. Ernst.
Practical pluggable types for Java. In ISSTA 2008,
Proceedings of the 2008 International Symposium on
Software Testing and Analysis, pages 201–212, Seattle,
WA, USA, July 22–24, 2008.

[9] Research Triangle Institute. The economic impacts of
inadequate infrastructure for software testing. NIST
Planning Report 02-3, National Institute of Standards
and Technology, May 2002.

[10] Matthew S. Tschantz and Michael D. Ernst. Javari:
Adding reference immutability to Java. In
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2005), pages 211–230,
San Diego, CA, USA, October 18–20, 2005.

376

