
Development and Maintenance Efforts Testing
Graphical User Interfaces: A Comparison

Antonia Kresse
Berner & Mattner Systemtechnik GmbH

Berlin, Germany
antonia.kresse@berner-mattner.com

Peter M. Kruse
Berner & Mattner Systemtechnik GmbH

Berlin, Germany
peter.kruse@berner-mattner.com

ABSTRACT
For testing of graphical user interfaces many tools exists.
The aim of this work is a statement regarding the advan-
tages and disadvantages of various testing tools with regard
to their use in the economic context to be taken. It is com-
pared, inter alia, whether there are differences in the gen-
erations of test tools in terms of finding defects and which
tool has the lowest development and maintenance costs. Re-
sults show that with QF-Test test suites can be created the
quickest while EggPlant has the shortest maintenance time.
TestComplete performs worse in both disciplines. For test
robustness, no clear picture can be drawn. The selection of a
test tool is typically done once in a project at the beginning
and should be considered carefully.

CCS Concepts
•Software and its engineering → Software testing and
debugging; •Human-centered computing → User inter-
face programming;

Keywords
GUI Testing; Empirical study

1. INTRODUCTION
In many industries driven by the market, the time between

releases of new software products has significantly shortened.
This results in a higher pressure and hence shorter develop-
ment cycles for commercial manufacturers. The high cus-
tomer expectations regarding quality are of major impor-
tance and give the software testing and debugging an im-
portant role [11]. Consequently, testers can no longer test
manually, as this is too lengthy, costly and error-prone [7].
As part of the ever-changing requirements, the tests must be
run on a regular basis to check the quality of the software
continuously (regression testing) [23]. Automated tests can
be a good solution [9].

Most automated test techniques work on a deeper level,
a well-known example is unit testing [22]. With the help
of these tests defects in various software components of the
system under test (SUT) can be found, however, in this
way the interactive view of the user through the graphical
user interface (GUI) will not be checked. In addition to the
underlying functions of a system, the GUIs are not negli-
gible. Their increasing importance is also reflected in the
source code, in which the program code for the graphical
user interface itself can take up to 60% [19]. Accordingly, it
is important to consider the functionality of the GUI when
testing the SUT. For the GUI tests, capture and replay tools
are used which record mouse and keyboard events and play
them back again. Testing with these tools simulate actions
of end users and thus constitutes a good way of GUI test-
ing [13, 19]. Furthermore, the tests can be played back as
often as needed, which is why they are more effective than
the manual testing of the GUI.

The development of tests with capture and replay tools,
however, is very labor and time-consuming [19], which is why
it is particularly important that the tests are created with
a reasonable quality and not lead to errors with repeated
executions. Even the smallest changes in the source code
may lead to failing tests [19].

1.1 Background
Capture & Replay is a test method which is based on

two steps [6]: In a first step mouse and keyboard events are
recorded and automatically saved in a script, which can be
replayed in the second step. To date, there are three gener-
ations of this testing technique, which are distinguished by
their different interactions with the SUT. The first genera-
tion accesses the SUT using coordinates of the surface [8].
This variant is somewhat error prone and already leads to
complications with the smallest changes in the GUI. Thus
alone a higher resolution of the screen can cause to fail tests.
Due to the high maintenance costs and lack of robustness,
this generation is no longer used today [3, 13]. The second
generation of GUI-based testing tools directly accesses the
components / widgets of the GUI and thus interacts with the
SUT. The tools use the properties of GUI components and
extract for example the name, ID, type, etc. and interact
with them. This makes the tools of the second generation
more robust against minimal changes in the presentation,
such as a change in resolution, which no longer have to lead
to errors. However, the components can change in develop-
ment or maturity, thus the identification of components fails
which again leads to failing tests [21]. Furthermore, this ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

A-TEST’16, November 18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4401-2/16/11...$15.00
http://dx.doi.org/10.1145/2994291.2994299

52

1. Develop

T1

T3

T2

SUT v1

SUT v2

SUT v3

4. Repair

7. Repair

2. Execute

5. Execute

8. Execute

…

Figure 1: Study Design

proach does not correspond to the normal behavior of a user
and does not reflect completely the clicks on the surface. A
new method is the Visual GUI Testing (VGT), which inter-
acts via image recognition with the SUT and thus forms the
third generation [3]. The idea of VGT emerged already in
the early 90s, however, has been only been realized now in
the industry due to the required high and strong hardware
resources. The main difference from Visual GUI Testing to
the other variants, the ability of image recognition, so test
scripts can be created that can interact with each graphi-
cal component on the monitor. These include buttons, text
boxes, images, and more. Furthermore, the image recog-
nition allows a way of testing which is the most similar to
user behavior. It just interacts with shown elements in a flat
structure, without using properties of the objects, etc.

2. STUDY DESIGN
We propose the following tool comparison: A set of test

programs is selected and the same tests for a selected SUT
are recorded with them. A conventional desktop application
will be used as SUT. The tests are first designed for the first
version of the SUT and then executed on the second and
third version. The aim is to compare the necessary develop-
ment and maintenance costs of testing tools with each other
and so to find out which tools are best suited for economic
purposes with respect to a constantly changing SUT. For
the proposed study, only one SUT is used, which will be
precisely described in the work with respect to its proper-
ties such as size, release cycles, etc. The complexity of the
underlying source code is not in focus, as the tools deal with
the GUI [3].

Table 1: TESTONA Releases
4.1 to 4.3 4.3 to 4.5

Time between Releases 37 weeks 27 weeks
Tickets 22 111
- New Features 10 27
Changed LOC
- Changed Files 187 488
- Added LOC 2814 8177
- Deleted LOC 1936 4504

The study design for each single tool is described in Fig-
ure 1. First tests T1 for version 1 are developed (step 1).
Subsequently, the tests are executed on version 1 (step 2)
and then on version 2 (step 3) to check which tests are bro-
ken due to the changes between the two versions (1 and 2).
In step 4, the tests T1 will be repaired resulting in the sec-
ond version of tests T2, which are executed against version
2 (step 5) and version 3 (step 6) of the SUT. In step 7, the
tests T2 are adapted for SUT version 3 (resulting in T3) and
are consequently executed against SUT version 3 (step 8).
This approach can be repeated for further versions of the
SUT.

Several aspects are considered: First, when designing (step
1) and repairing the tests (steps 4 and 7) the time required
for developing / repairing of tests is considered. In the ex-
ecution steps (steps 2, 3, 5, 6, and 8) we first look at the
number of failing tests. Subsequently we consider what kind
of test are not running through (possibly they can be cate-
gorized) and why (tool or development problem).

The above described study design is executed by a set of
different test tools and then provides a respective result per
test tool. These results are finally compared among each
other to draw pros and cons between the individual tools.

3. EXECUTION
The SUT isTESTONA,1 a desktop application program-

med in Java using the Eclipse platform running on the Win-
dows operating system (Figure 2). TESTONA is the graph-
ical editor [16, 27] for the classification tree method [10], a
black box test design technique. Two main steps are per-
formed to create a classification tree: Identification of rel-
evant factors (classifications) with their values (classes) of a
system under test and Combination of a single class from
each classification into test cases.

The initial set of tests is developed for TESTONA 4.1.
Maintenance efforts are then considered for TESTONA 4.3
and TESTONA 4.5. Changes between different versions of
the SUT are given in Table 1.

Though the creation of TESTONA 4.3 took longer than
TESTONA 4.5, it contains less new features. This is also
reflected by the number of changes, both in terms of lines of
code (LOC) and number of touched files.

Test scenarios are then chosen by analyzing tickets from
change report (Table 1) with respect to affected GUI ele-
ments in the application. Therefore, results are not repre-
sentative for a complete GUI test suite and its maintenance
between releases.

26 test scenarios containing as many different parts of the
software and underlying GUI components as possible are

1http://www.testona.net/

53

Table 2: Used GUI Components in Tests

B
u
tto

n
s

M
en
u

M
en
u
b
a
r

T
ex
tb
ox

P
o
p
u
p
M
en
u

T
ree

T
o
o
lb
a
r

D
ro
p
d
ow

n
m
en
u

T
ree

N
o
d
e

T
estca

seT
ree

S
u
b
N
o
d
e

P
ro
p
erties

L
istv

iew
E
n
try

C
h
eck

b
ox

R
a
d
io
b
u
tto

n

T
a
b
s
/
T
a
b
b
a
r

T
reeta

b
le

T
reev

iew

T
a
b
elle

S
lid

er

C
o
lo
r
P
ick

er

L
in
k

C
o
m
b
o
b
ox

S
cro

llb
a
r

CreateNewTree 1 2 2 1 4 9 4
EditTree 6 3 2 1 6 11 5 2 1 2
FoldTree 1 2 2 1 5 8 1 1

CopyPasteOfSubtrees 4 4 4 2 6 7 2
WriteProtectedFiles 4 5 5 2 4 1 1 1

PropertiesView 5 4 4 3 2 3 6
Autolayout 15 3 2 2 3 2 2

Outline1 6 3 2 1 1 1 4
Outline2 4 3 2 3 12 2 9

CreateRenameTests 5 3 2 3 5 2 3 2 7
ChangeMarktypes 6 4 4 1 3 2 1 1 2 10
GenerateTestcases 16 6 6 3 2 1 2 4 2 3
ManuellTestcases 12 4 4 4 2 2 1
RenameGroups 5 2 2 5 5 4 5 7
TestSequences 2 2 2 1 5 8 3

BoundaryValues 10 4 4 8 1
CreateEditTags 12 4 4 3 6 3 4 1 1

VariantsView 10 7 6 2 6 2 4 2 1 1 1 1 1
Help 7 4 4 2

SearchingElements 6 3 3 5 7 2 2 1 5
Logical Dep. 14 4 4 3 2 3

Numeric Dep. 11 4 4 2 2 1 3 2 1 1 1
ExportExel 10 5 5 3 2 3 2 2 1

ExportHTML 7 4 4 4 1 1 2 1
Import 7 2 2 2 1 1 1 1 2

Testcoverage 1 4 4 1 2 1 1 1 1 1 1 4
Clicks 117 95 89 68 67 59 32 16 22 18 17 13 10 9 6 4 19 13 4 3 3 4 3 1

In Tests 26 26 26 26 13 13 13 10 8 8 7 5 5 5 4 4 3 2 2 2 2 1 1 1

Figure 2: TESTONA Main Window

54

specified (Table 2). Lines contain the respective test sce-
nario, columns indicate number of included GUI components
(e.g. buttons, text boxes, check boxes, radio buttons, etc.).
The last two lines indicate the total number of clicks on
items per type and the occurrence of each component type
in tests.

We have grouped the test scenarios according the main
steps of the classification tree method. The first nine tests
(CreateNewTree, . . ., Outline2) cover the creation and lay-
out of the classification tree. The CopyPasteOfSubtrees test
contains copy and paste operations using the system clip-
board. The WriteProtectedFiles test contains file han-
dling, especially an attempt to save a write-protected file.

In the second group (CreateRenameTests, . . ., TestSe-

quences) we have the creation of test cases and test case
handling in general, covering the seconds main step of the
classification tree method.

The last group (BoundaryValues, . . ., Testcoverage) con-
tains enhancements to the classification tree method—such
as constraints (LogicalDep., NumericalDep.) [15] or the an-
notation of meta-data using tags (CreateEditTags) [18]—
and features of TESTONA, that are not explicitly part of
the classification tree method—such as Import and Export

functions [27].
For this work, we use Eggplant,2 QF-Test3 and Test-

Complete.4 Eggplant (Version 16.01) is considered a third
generation Visual GUI Testing tool, QF-Test (Version 4.0.10)
and TestComplete (Version 11.31) are second generation
conventional Capture and Replay Tools (according to the
classification by Alégroth et al. [2, 3]). Tools are chosen ar-
bitrarily based on their availability and their perceived mar-
ket share. All three of them are actively marketed by their
respective vendors for the same task: Interactive GUI Test-
ing. All vendors offer online training and webinars (2–3h
each), which we have participated in.

The 26 specified tests are now implemented (in the same
order as given in Table 2) for the first GUI testing tool:
Eggplant. The test implementation is then executed against
TESTONA 4.3. This allows for identification of broken tests
requiring maintenance efforts. Maintenance is done in the
same order as given Table 2. The step is then repeated, the
now repaired tests are executed against TESTONA 4.5 to
identify broken tests and perform test suite maintenance.

The whole procedure (implementation of 26 tests, running
against 4.3, maintenance, running against 4.5, maintenance)
is then repeated with both, QF-Test and TestComplete.

4. RESULTS
Results from the execution can be found in Table 3. The

first column in the table gives the name of the test. The next
columns give the details for the initial test creation with all
three tools. All times are given in Minutes [m]. Both QF-
Test and TestComplete have an additional column for initial
maintenance. The second and third group of columns then
give expected test breaking (indicated with � in the table)
and the actual results for maintenance effort.

4.1 Initial Implementation
For each tool, the implementation was done in table order.

2http://www.testplant.com/eggplant/
3http://www.qfs.de/en/qftest/
4http://smartbear.com/testcomplete/

For each tool, early test scenarios needed noticeably more
time than later tests (Table 3).

Initial implementation of 26 test scenarios took 2750 min-
utes (45h 50m) with Eggplant. An average test case needed
105m 20s (1h 45m 20s) for implementation. The Help test
was implemented the fastest with 30 minutes, the Change-

Marktypes test with 240 minutes (4h) took the longest.
For QF-Test, the initial implementation required 1395

minutes (23h 15m). Additional 85 minutes (1h 15m) were
needed to have test cases stably executing on the test exe-
cution environment. An average test case needed 56m 24s
for implementation (and stabilization). The TestSequences
and Testcoverage tests were implemented the fastest with
15 minutes, the Help test with 335 minutes (5h 35h) took
the longest.

In TestComplete, the initial implementation was finished
in 1735 minutes (28h 55m). Additional 915 minutes (15h
15m) were required for test stability on the execution envi-
ronment. An average test case needed 101m 24s (1h 41m
24s) for implementation (and stabilization). The Logical

Dep. test was implemented the fastest with 15 minutes, the
PropertiesView test with 240 minutes (4h) took the longest.

Figure 3: Implementation (Time in Minutes [m])

Conclusion: For the initial implementation, the tools
perform quite differently (Figure 3).

QF-Test was the fastest with a total time needed of 24h
30m, or 56m 24s average per test case. It requires some
stabilization effort, but was still almost twice as fast as its
competitors.

TestComplete was the second fastest with a total time of
44h 10m, or 101m 24s (1h 41m 24s) average per test case.
It requires a massive stabilization effort.

Eggplant took the longest with 45h 50m, or 105m 20s (1h
45m 20s) average per test case. It, however, does not require
any stabilization effort.

4.2 Robustness
Based on the change report and our ticket analysis (Ta-

ble 1), we expected three test scenarios (SearchingEle-
ments, ExportHTML, Import) to require maintenance activity
(Table 3, indicated with �) from TESTONA 4.1 to TESTONA
4.3.

For Eggplant, two of the expected tests (SearchingEle-
ments, ExportHTML) where actually broken due to changes
to the GUI. One test case (Import) was still working though
breaking was expected, because all required GUI elements

55

Table 3: Implementation and Maintenance Efforts (Time in Minutes [m])
4.1 4.3 4.5
Egg QF TC Egg QF TC Egg QF TC

CreateNewTree 180 60 150 +80 20
EditTree 180 90 130 +30 10
FoldTree 120 60 240 5

CopyPasteOfSubtrees 120 45 20 +195
WriteProtectedFiles 60 30 30

PropertiesView 120 30 240
Autolayout 150 30 70

Outline1 60 30 70 +20
Outline2 90 60 40

CreateRenameTests 120 20 +20 45
ChangeMarktypes 240 30 40 � 60 10 25
GenerateTestcases 120 30 40 � 25 45 40
ManuellTestcases 120 105 45
RenameGroups 120 60 40 � 5 25 15
TestSequences 90 15 40 10

BoundaryValues 60 20 30 +40
CreateEditTags 90 40 50 20

VariantsView 90 45 25 5 80
Help 30 320 +15 30 +100 5 5

SearchingElements 120 40 +10 30 +130 � 5 20 10 � 20 20 40
Logical Dep. 60 20 15 � 20 10 60

Numeric Dep. 60 50 35 � 10 20 30
ExportExel 60 15 +20 20 +90 10 15 � 5 10 10

ExportHTML 60 20 20 � 15 10 20 � 35 25
Import 60 15 +20 30 +130 � 20 10 15 45

Testcoverage 60 15 15 +30
Auxiliary 110 100 195 +70
TOTAL 2750 1395 +85 1735 +915 30 50 65 180 225 370

were still present in recognizable form. An additional test
(ExportExcel) broke, which was not anticipated, because of
GUI changes in dialogs not reflected by tickets in the change
report.

QF-Test had similar results as Eggplant: The same two
tests (SearchingElements, ExportHTML) required changes
due to changes in the GUI. Again, the (Import) test was
working unexpectedly. There also was an additional test
case breaking, which was CreateEditTags in this case: The
internal structure of some dialog button had changed.

TestComplete performed slightly worse: All three expected
tests broke. Additionally, also the ExportExcel test broke
(similar to Eggplant), giving a total of four test cases to be
maintained.

From TESTONA 4.3 to TESTONA 4.5, again based on
change report and ticket analysis, we expected eight test
scenarios to require maintenance (Table 3, indicated with
�). In Eggplant, there were 11 tests requiring updates due
to GUI changes, containing seven of the eight anticipated
tests. One test case (ExportHTML) was still working unex-
pectedly. Although there were several added GUI elements,
the test was still working. There were four unexpected bro-
ken tests (EditTree, TestSequences, Help, Import). For the
first two, it was due to changed elements in popup menus
(also reflected by tickets, but missed in our analysis). The
Help test failed due to then longer loading times of the help
window. The Import test was affected by changes to the
internal structure of listview entries.

In the QF-Test test suite, there were 13 broken tests, con-
taining all eight expected ones. The five additional broken
tests were (CreateNewTree, FoldTree, VariantsView, Help,
Import). For the first two, it was again due to changed el-
ements in popup menus. The VariantsView test failed due

structural changes to the GUI (all elements were still their,
having slightly different containers). Reasons for Help and
Import tests failing are similar to Eggplant.

For TestComplete, there were 10 broken test cases, con-
taining all eight expected ones. The two additional broken
tests were (VariantsView, Import), caused by the same rea-
sons as with QF-Test.

Conclusion: In terms of robustness, the tools perform
quite similar. Eggplant has a total of 14 tests requiring
maintenance. TestComplete also has also 14 tests. QF-
Test performs slightly worse with 16 broken tests between
different releases of the SUT.

There is not significant different between generations of
capture and replay tools in terms of robustness.

4.3 Maintenance Effort
For Eggplant, maintenance took 30 minutes total (10 min-

utes average for 3 tests) from TESTONA 4.1 to TESTONA
4.3. From TESTONA 4.3 to TESTONA 4.5 maintenance
took 180 minutes (3h), that is 16m 22s average for 11 tests.
Maintenance effort from both releases was 210 minutes (3h
30m), averaging to an effort of 15m for each of 14 broken
test cases.

For QF-Test, maintenance took 50 minutes total from
TESTONA 4.1 to TESTONA 4.3 (16m 40s average for 3
tests). From TESTONA 4.3 to TESTONA 4.5 maintenance
was done in 225 minutes (3h 45m) for all 13 broken tests
(average maintenance time of 17m 18s). For both releases
combined, maintenance time was 275 minutes (4h 35m) in-
cluding 16 broken tests, with an average of 17m 11s.

With TestComplete, maintenance from TESTONA 4.1 to
TESTONA 4.3 was done in 65 minutes (1h 5m) for 4 bro-
ken tests (average of 16m 15s). From TESTONA 4.3 to
TESTONA 4.5, maintenance for 10 broken test cases re-

56

quired 370 minutes (6h 10m), averaging to 37m per test.
The combined maintenance effort was 435 minutes (7h 15m),
the effort for fixing all 14 broken tests was 31m 4s.

Figure 4: Maintenance (Time in Minutes [m])

Conclusion: The maintenance effort was quite different
between the tools (Figure 4). Eggplant performs best with
the shortest overall fixing time (3h 30m) and the shortest
average time per test (15m).

QF-Test scores second, the overall fixing time is higher
(4h 35m), the average time per test is longer (17m 11s), but
still close to Eggplant.

TestComplete’s performance is the worst of the three con-
tenders: Overall fixing time is 7h 15m, time needed to fix an
average test case is 31m 4s, both values doubling Eggplant.

4.4 Discussion
From the detailed results, there are three main insights:

• Initial Implementation is fastest with QF-Test, both
Eggplant and TestComplete take much longer.

• Robustness offers no clear picture, all tools perform
quite similar.

• Maintenance Effort is best with Eggplant, with QF-
Test still ok. TestComplete shows weak performance.

From our figures, QF-Tests offers the best initial perfor-
mance. In our case, EggPlants maintenance advantage over
QF-Test would pay off after 581 changes. Due to its perfor-
mance, we would not recommend TestComplete for future
GUI testing tasks.

The rather slow pay off of EggPlant is in line with latest
results by Alégroth et al.[1].

4.5 Threats to Validity
This section discusses some of the threats addressed in [24].
Construct validity. With respect to the efficiency and

learning effort, we could not fully mitigate the threat caused
by self-reported working times (e.g. by means of working di-
aries). Accuracy of these measures could have been affected
by other (e.g. social psychological) factors. However, us-
ing other complementary measures (i.e. SVN logs) helps to
triangulate the observations.

Internal validity. The quality of the test implementa-
tions could have been affected by the level of testing expe-
rience. Although a training program was implemented this
threat could be only reduced.

External validity. The obtained results about the appli-
cability of GUI tools need to be evaluated with more SUTs.
Another issue is the very limited number of participants in
this study. Regarding the GUI testing tools, they were care-
fully selected by the testers.

5. RELATED WORK
There are not many comparisons on the economic aspects

of GUI test creation and maintenance. A Master’s Thesis
by Khazal and Sigurdsson does a comparison with just two
tools involved [14]. They compare HP QuickTest Profes-
sional against HP Unified Functional Testing. 20 test sce-
narios are implemented in both tools. Their focus also is on
development and maintenance time and robustness. Unfor-
tunately, details on the SUT are not disclosed.

Alégroth et al. compare manual system test cases with
their Visual GUI Testing approach [1, 2].

A large body of work is focuses on techniques of cap-
ture and replay and their advances. In our work we rely on
conventional GUI testing using capture and replay. Several
authors suggest that using model-based GUI testing might
have advantages, especially when models can be used for the
generation of actual GUI tests [5, 20, 25].

Bauersfeld and Vos implement a tool for testing GUI sys-
tem: GUITest [5]. Their tool provides the following features:
a) Works on all native GUIs, which are recognized by the
Windows API. b) SUT must not be instrumented. c) Al-
lows the user to define their own actions. d) Generated Test
sequences can be stored and played back.

Memon et al. also offer an implementation for model-
based GUI testing, with prototypical capture, semi-automatic
modeling and automated execution [20]. Memon et al. model
the SUT with GUI forests, event-flow graphs and integration
trees.

Stadie and Kruse [25] have a similar approach, however,
they rely on state charts [12] and classification trees [10].
They propose that state charts are more suitable, because
they are more compact due to hierarchies and orthogonality.

In the context of web applications, there are similar ap-
proaches [4, 17].

6. CONCLUSION
In this work we perform a comparison of GUI testing tools

in terms of creation and maintenance efforts, laying a strong
focus on the economic aspect of testing. We see differences
with respect to different tool generations and in their capa-
bility of finding defects. The search for the tool with the
lowest development and maintenance cost is a main moti-
vation for carrying out the comparison. With respect to
that question, we recommend QF-Test for fast creation of
test suites, though EggPlant has a small advantage when it
comes to maintenance efforts in the long run.

For future work we see the in-depth analysis of the data
acquired, e.g. individual causes for failing test scenarios.
Also the impact of used GUI elements (Table 2) on imple-
mentation and maintenance effort as well as robustness will
be further analyzed. This might allow for gaining develop-
ment recommendations for low-maintenance test modeling.

We also plan to compare with different approaches (such
as TESTAR [26]) for the very same SUT versions. Also we
need to investigate further in bug finding capabilities.

57

7. REFERENCES
[1] E. Alégroth, R. Feldt, and P. Kolström. Maintenance

of automated test suites in industry: An empirical
study on visual gui testing. Information and Software
Technology, 73:66–80, 2016.

[2] E. Alégroth, R. Feldt, and L. Ryrholm. Visual gui
testing in practice: challenges, problemsand
limitations. Empirical Software Engineering,
20(3):694–744, 2015.

[3] E. Alégroth, Z. Gao, R. Oliveira, and A. Memon.
Conceptualization and evaluation of component-based
testing unified with visual gui testing: an empirical
study. In Software Testing, Verification and Validation
(ICST), 2015 IEEE 8th International Conference on,
pages 1–10. IEEE, 2015.

[4] D. Amalfitano, A. R. Fasolino, and P. Tramontana.
Rich internet application testing using execution trace
data. In Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International
Conference on, pages 274–283. IEEE, 2010.

[5] S. Bauersfeld and T. E. Vos. Guitest: a java library
for fully automated gui robustness testing. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages
330–333. ACM, 2012.

[6] E. Börjesson and R. Feldt. Automated system testing
using visual gui testing tools: A comparative study in
industry. In Software Testing, Verification and
Validation (ICST), 2012 IEEE Fifth International
Conference on, pages 350–359. IEEE, 2012.

[7] M. Finsterwalder. Automating acceptance tests for gui
applications in an extreme programming environment.
In Proceedings of the 2nd International Conference on
eXtreme Programming and Flexible Processes in
Software Engineering, pages 114–117, 2001.

[8] M. Grechanik, Q. Xie, and C. Fu. Creating gui testing
tools using accessibility technologies. In Software
Testing, Verification and Validation Workshops, 2009.
ICSTW’09. International Conference on, pages
243–250. IEEE, 2009.

[9] M. Grechanik, Q. Xie, and C. Fu. Experimental
assessment of manual versus tool-based maintenance
of gui-directed test scripts. In Software Maintenance,
2009. ICSM 2009. IEEE International Conference on,
pages 9–18. IEEE, 2009.

[10] M. Grochtmann and K. Grimm. Software Testing,
Verification and Reliability, volume 3. John Wiley and
Sons, second edition, July 1993.

[11] B. Hailpern and P. Santhanam. Software debugging,
testing, and verification. IBM Systems Journal,
41(1):4–12, 2002.

[12] D. Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[13] E. Horowitz and Z. Singhera. Graphical user interface
testing. Technical eport Us C-C S-93-5, 4(8), 1993.

[14] A. Khazal and A. D. Sigurdsson. Component-based
capture & replay vs. visual gui testing: an empirical
comparison in industry. Master’s thesis, Göteborg:
Chalmers tekniska högskola, 2015.

[15] P. M. Kruse, J. Bauer, and J. Wegener. Numerical
constraints for combinatorial interaction testing. In
Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, pages
758–763. IEEE, 2012.

[16] P. M. Kruse and M. Luniak. Automated test case
generation using classification trees. Software Quality
Professional, 13(1):4–12, 2010.

[17] P. M. Kruse, J. Nasarek, and N. C. Fernandez.
Systematic testing of web applications with the
classification tree method. In Proceedings of the XVII
Iberoamerican Conference on Software Engineering
(CIbSE 2014), 2014.

[18] E. Lehmann and J. Wegener. Test case design by
means of the CTE XL. Proceedings of the 8th
European International Conference on Software
Testing, Analysis and Review (EuroSTAR 2000),
Kopenhagen, Denmark, December, 2000.

[19] A. M. Memon. Gui testing: Pitfalls and process.
Computer, 35(8):87–88, 2002.

[20] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
ripping: Reverse engineering of graphical user
interfaces for testing. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages
260–260. IEEE Computer Society, 2003.

[21] R. Miller and C. T. Collins. Acceptance testing. Proc.
XPUniverse, 2001.

[22] M. Olan. Unit testing: test early, test often. Journal of
Computing Sciences in Colleges, 19(2):319–328, 2003.

[23] A. K. Onoma, W.-T. Tsai, M. Poonawala, and
H. Suganuma. Regression testing in an industrial
environment. Communications of the ACM,
41(5):81–86, 1998.

[24] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical software engineering,
14(2):131–164, 2009.

[25] O. Stadie and P. M. Kruse. Closing gaps between
capture and replay: Model-based gui testing. In
Proceedings of 1st INTUITEST Workshop, 2015.

[26] T. E. Vos, P. M. Kruse, N. Condori-Fernández,
S. Bauersfeld, and J. Wegener. TESTAR: Tool
support for test automation at the user interface level.
International Journal of Information System Modeling
and Design (IJISMD), 6(3):46–83, 2015.

[27] U. Zeppetzauer and P. M. Kruse. Automating test
case design within the classification tree editor. In
Federated Conference on Computer Science and
Information Systems 2014 (FedCSIS), 5th
International Workshop Automating Test Case
Design, Selection and Evaluation (ATSE), 2014.

58

