
iTest: Testing Software with Mobile Crowdsourcing

Minzhi Yan, Hailong Sun, Xudong Liu
School of Computer Science and Engineering

Beihang University, Beijing, China
{yanmz,sunhl,liuxd}@act.buaa.edu.cn

ABSTRACT
In recent years, a lot of crowdsourcing systems have emerged
and lead to many successful crowdsourcing systems like Wiki-
pedia, Amazon Mechanical Turk and Waze. In the field of
software engineering, crowdtesting has acquired increased
interest and adoption, especially among personal develop-
ers and smaller companies. In this paper, we present iTest
which combines mobile crowdsourcing and software testing
together to support the testing of mobile application and we-
b services. iTest is a framework for software developers to
submit their software and conveniently get the test results
from the crowd testers. Firstly, we analyze the key prob-
lems need to be solved in a mobile crowdtesting platform;
Secondly, we present the architecture of iTest framework;
Thirdly, we introduce the workflow of testing web service in
iTest and propose an algorithm for solving the tester selec-
tion problem mentioned in Section 2; Then the development
kit to support testing mobile application is explained; Final-
ly, we perform two experiments to illustrate that both the
way to access network and tester’s location influence the
performance of web service.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Human Factors

Keywords
Software testing, mobile crowdsourcing, web service, mobile
application

1. INTRODUCTION
Crowdsourcing[1][2] has emerged in recent years and draws

lots of attention. Wike-pedia define crowdsourcing as: ”the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CrowdSoft’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3224-8/14/11 ...$15.00.

process of obtaining needed services, ideas, or content by so-
liciting contributions from a large group of people, and espe-
cially from an online community, rather than from tradition-
al employees or suppliers”[3]. Notable examples of this nov-
el model include Amazon Mechanical Turk1, Threadless2,
InnoCentive3, Wiki-pedia4, Waze5 and user-generated ad-
vertising contests. All of these systems are very successful
which illustrates that crowdsoucing can take advantage of
the wisdom of crowd with a low cost and get great outputs.

As crowdsourcing has meet great success in many fields,
can we adopt this model into software engineering area? Ac-
tually, open source software has adopted crowdsourcing for
software development for years. In the development process
of open source software, software’s design or blueprint is u-
niversally accessible via free license and anyone can provide
improvements to it which helps make the software robust
and stable. However, in the open source model, every par-
ticipant is a professional programmer or an amateur one,
which means you need certain knowledge to take part in.
If we adopt crowdsourcing into software testing, the thresh-
old is significantly lower and much more testers and their
devices can be employed for testing. Crowdtesting enables
software developers to get their products tested on all ma-
jor platforms, devices, system configurations and country
or region-specific aspects under real-world conditions. With
crowdtesting, the developers can get test results on function-
al testing, security testing, load & performance testing, us-
ability testing and localization testing with reduced costs in
shorter time. For instance, Raphael Pham et al.[4] propose
an approach utilizing the phenomenon of drive-by commits
in social coding sites that capable users quickly and easily
build test suits in others’ projects and move on. Di Liu et
al. explored crowdsourcing as an alternative way to conduct
remote usability testing and found that some important us-
ability problems can be identified via crowdsourced usability
tests[5]. In brief, crowdsourcing is a great opportunity for
making software testing cheaper, quicker and comprehen-
sive.

Thanks to the improved, technological smartphone fea-
tures in the recent years, including reliable GPS, very good
cameras and high-speed network environment, mobile phone
users can work on crowdsourcing tasks without any fur-
ther difficulties. Thus, mobile crowdsourcing arises. Mobile

1https://www.mturk.com/mturk/welcome
2https://www.threadless.com/
3http://www.innocentive.com/
4http://www.wikipedia.org/
5https://www.waze.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CrowdSoft’14, November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3224-8/14/11...$15.00
http://dx.doi.org/10.1145/2666539.2666569

19

crowdsourcing [6] is a term that describes crowdsourcing ac-
tivities that are processed on smartphones or other mobile
devices. Adding software testing tasks onto mobile crowd-
sourcing would make it more convenient for testers finish-
ing crowdtesting tasks anywhere and anytime. With mobile
crowdtesting, mobile applications can be crowdtested and
the web services used by these mobile applications can al-
so be tested under diverse hardware environment, network
situation and locations.

For engaging more crowdtesters into software testing, e-
specially mobile application and web service testing, with
mobile phone, we present iTest: A mobile crowdtesting plat-
form for software testing. With iTest, testers can easily take
part in web service and mobile application testing tasks any-
where and anytime. Thus, more useful test results from di-
verse test environment are collected in a short time. Major
contributions of this work are listed asl followsčž

(1) We identify the key problems in mobile crowdtesting
platform, including incentive mechanism, tester selection,
tester management and test result aggregation.

(2) We present a framework for mobile crowdtesting: iTest
and introduce the functions of each component in it.

(3) We propose a greedy algorithm for solving the tester
selection problem when crowdtesting web services which can
significantly reduce test task number and then save test costs
for service developers.

(4) We provide a preliminary development kit to log and s-
napshot the running process of mobile applications and gath-
er the logs and snapshots to our iTest server.

The remainder of this paper is organized as follows. Sec-
tion 2 provides analysis to the key problems of mobile crowd-
testing. The framework of iTest is introduced in Section 3.
Section 4 describes how we test web services in iTest and the
tester selection algorithm. The tools for mobile application
testing are introduced in Section 5. Then, Section 6 presents
two experiments to evaluate the influence of network type
and location of the test device. In Section 7, we provide the
introduction to related work. Finally, we conclude this work
and propose the direction for future work.

2. PROBLEM ANALYSIS
We are now in a world where almost everyone has one or

more devices and the hardware-software combinations are
almost countless. This means software developers have to
make sure their applications perform correctly and look good
on a host of different devices. Significant quality improve-
ment on the application or service would be achieved when
testing is done across a wide set of platforms, locations and
approaches etc. Mobile crowdtesting is the best way to cov-
er these needs and execute test tasks anytime and anywhere
with network access. However, we still need to face the chal-
lenges mobile crowdsourcing brings.

To make a mobile crowdtesting platform work well, we be-
lieve that these problems should be properly solved: tester
management, tester selection, incentive mechanism, and test
result aggregation. The details of these problems are de-
scribed in the next subsections.

2.1 Tester Management
Tester management in mobile crowdtesting platform, just

like the user management in many other systems, of course
need to manage the basic information of each tester. Howev-
er, this is not its only responsibility. In a mobile crowdtest-

ing platform, tester management subsystem should also s-
tore the historical information of when and where did a
tester participate which test task, the quality of each test
result submitted by a tester. These historical information
can be used to analyze a tester’s test habit like in which time
interval he likes to take a test task, which kind of task he is
interested in. The test habit can then be adopted for tester
selection which is explained in the next subsection. How to
get the test habit of a tester precisely is a challenge.

2.2 Tester Selection
The target of tester selection is to ensure that each test

task is taken by the right tester who can complete it very
well, meanwhile, reduce the number of total test tasks for
saving cost. Selecting testers that mirror target user de-
mographics is more crucial. If one application or service is
designed for a specific group of people, a man who dose not
belong to the group isn’t the ideal tester. We want tester
who will use the application like your end users. If the soft-
ware under test is intended for more general consumption,
testers that represent all types of consumer should be in-
cluded. How to meet the test requirements while cost the
least is also a great challenge in mobile crwodtesting.

2.3 Incentive Mechanism
In crowdsourcing systems, incentive mechanism is very

important to excite the works participate in micro tasks.
The incentive in these systems can be money, fun, socialize,
earn prestige, altruism, learning something new, unintended
by-product, create self-serving resource and the combina-
tion of them[7]. Among these incentives, money is the most
popular way to reward the workers. If the money reward is
too low then few testers would take the test task, but if the
money reward is set too high, many unskilled tester would
swarm into for the money and the quality can not be guar-
anteed. How to price a test task properly is a great challenge
in a mobile crowdtesting platform.

2.4 Test Result Aggregation
The test results generated by all the testers for a test task

would be submitted to the crowdtesting platform. In mobile
crowdtesting platform , the test results are mostly textual
logs and sometimes the screen snapshots of the application’s
exception. The test results from different testers could con-
flict, and it is difficult to solve this conflict automatically.
How to aggregate the test results together without conflic-
t and provide useful analysis for the application or service
developer is also a challenge to a mobile crowdtesting plat-
form.

Among all these problems we analyzed, the tester selection
problem for reducing duplicate test tasks is solved in this
paper with a greedy algorithm introduced in Section 4.2.
The other problems could be our future research directions.

3. ITEST ARCHITECTURE
Based on the understanding to the key problems of mobile

crowdtesting, we present a framework for mobile crowdtest-
ing: iTest, and implement a prototype of iTest which sup-
ports web service and mobile application testing. Figure
1 shows the architecture of iTest which contains the iTest-
Client, iTestServer and the target web service and software
on the internet. In iTestServer, there are two repositories

20

Figure 1: The Framework of iTest

which stores software information and the running log (or
test results), respectively.

We have collected over 30,000 Web services. The WS-
DL addresses and corresponding information about these
services are stored in the software repository in Figure 1.
This repository maintains all the services and software need-
ed to be tested. On the client side, we have developed an
Android App based on PhoneGap(http://phonegap.com/)
framework that provides support for developing mobile App-
s with standard Web technologies. Currently, we only im-
plement iTestClient on Android platform, as shown in Fig-
ure 2. Once iTestClient is installed on an Android mobile
phone, the mobile phone will be registered to the server side
as a mobile software testing volunteer called iTestWorker.
The iTestServer is responsible for managing all the regis-
tered volunteers, scheduling testing tasks and maintaining
the test results. When an iTestWorker goes online, it will
notify iTestServer and the latter will respond with a list of
Web services to be tested. Then the user can select a We-
b service to test. Meanwhile, the download links of mobile
applications to be tested are also pushed to the iTestWork-
er. These applications are developed with our development
kit (Please see Section 5 for detail) and the running log of
them would be collected and transmitted to the running log
repository in iTestServer.

4. WEB SERVICE TESTING
Considering that Web service invocation is highly relat-

ed to invocation context like time and location, we choose
to leverage mobile phones to collect the Service QoS data
since the use of mobile phone is largely diversified in terms
of geo-location, time and client environments. Invoking a
Web service usually involves a lot of programming work to
construct, send, receive and parse SOAP messages, therefore
we must hide the programming complexity so as to let users
easily fulfill the Web service testing task without knowing
too much technical details.

In this section, we introduce how iTest works when testing
a web service by describing the testing workflow and the
algorithm for tester selection.

4.1 Testing Workflow
As seen in Figure 3, the testing workflow of web service is

divided into 5 steps:

Figure 2: Screenshots of iTestClient

Login
& Probing

Information
Uploading

Tester
Selection

Invoking
Web Service

Test Results
Uploading

Figure 3: Workflow of Testing Web Service

(1) Login & Probing: Firstly, the tester need to login with
their username and password. While doing this, the time of
communicating with iTestServer is probed by calculating the
round trip time cost of the login request.

(2) Information Uploading: After probing the time cost
of communicating with iTestServer, iTestClient uploads this
time cost with other basic information of this tester and
device, including username, location, network type etc.

(3) Tester Selection: In this step, iTestServer select proper
testers from the online users for each web service based on
the testers information and existing test results. The selec-
tion algorithm would be introduced in the next subsection.

(4) Invoking Web Service: After tester selection, the ser-
vices for each tester are determined and pushed to the corre-
sponding iTestClient. Then a tester can select a web service
from the list, read its description and input the necessary
parameters after the client fetches the WSDL file of the ser-
vice and parses the need parameters, then invoke this web
service.

(5) Test Results Uploading: The test result information,
including username, current location of the test device, WS-
DL address of the web service under test, input parameters,
invoking time, returned results and round trip time cost,
are all submitted to iTestServer to store into the test result
repository. Then these test results can be provided to the
service developer to improve their web services, or used for
service recommendation based on the QoS information in
the results.

4.2 Tester Selection Algorithm
For avoiding to execute a web service test task under sim-

ilar running environment repeatedly so that reducing the
test cost. We need to design an efficient tester selection al-
gorithm which only dispatch a web service test task to one
tester out of those with similar running environment, includ-
ing same network type and nearby location. Before stating
our algorithm, we provide two definitions here:

Definition 1. We assume that two testers’ positions on
the map whose distance is smaller than a certain number,
say R, would provide similar test results and we just need to

21

obtain one of the results. Then R is defined as the Effective
Radius of a test result.

R is an empirical value which could be adjusted in practice.
Here we set it as 5 km.

Definition 2. For each online tester T whose location
is P , other online testers whose distances to P are smaller
than Effective Radius R are called the homogeneous points
of P, and P is called the central point of all these points.

The basic idea of our tester selection algorithm is to select
the minimum number of central points, each of which stands
for all its homogeneous points. And the union of these cen-
tral points and their homogeneous points can exactly cover
the set of online users’ positions. It is clear that this prob-
lem equals to the typical NP-Complete problem: Set Cover
Problem[8] which doesn’t admit a polynomial time algorith-
m. Fortunately, we can find an efficient greedy algorithm,
which always finds the optimal or an acceptable approximate
solution, for solving this problem[9].

As shown in Algorithm 1, we present a greedy algorithm
for tester selection (GAFTS). Firstly, we need to filter out
the online testers which access Internet with the same net-
work type (Line 15-19) . Secondly, the testers nearby the
positions of existing test result to a specific service under the
same network type should be removed from the candidates
(Line 22-26). Then, every left candidates is grouped with its
homogeneous points and thus we get |P’| subsets of all the
candidates (Line 28-34). And then goes the key step, our al-
gorithm greedily finds the biggest subset obtained in the last
step, and select the central point(corresponding to a tester)
as a tester for the current web service. If there are two candi-
date subsets while finding the biggest subset, the one whose
central point performs better on probing time is selected as
the biggest because . This step is repeated after removing
the central point and its homogeneous points from the can-
didates until there is no candidate any more(Line 35- 49).
Lastly, we can get the selected testers for each web service
and dispatch these test tasks to the corresponding testers.

The complexity of Algorithm 1 is O(MN2) where M is
the number of services to be tested.

5. MOBILE APPLICATION TESTING
Aside from supporting web service testing, now iTest also

provide a preliminary development kit in the form of .jar file
to support testing mobile Android application. This devel-
opment kit mainly consists of a Log4j-based[10] logging tool
and a visual debugging info collector.

5.1 Logging Tool
The logging tool is the Log4j library wrapped with our

adapter for running on Android phones and communicat-
ing with iTestServer. We keep the original advantages of
Log4j which is possible to enable logging at runtime with-
out modifying the application binary. Just like using Log4j,
logging behavior can be controlled by editing a configuration
file, without touching the application binary. The basic in-
formation of the device, system running states, application
name and the logs generated while running the application
would be all stored in the local storage of Android phone
and periodically submitted to the iTestServer.

Submitting logs to iTestServer as soon as they are gen-
erated would be a great communication burden. But sub-
mitting batched logs in a long time may lead to the loss

Algorithm 1 GAFTS

1: Input N, R, P[N], G[N], S[], E[], T[];
2: /*
3: N: The number of online tester,
4: R: Effective Radius,
5: P[N]: Testers’ positions,
6: G[N]: Testers’ network types,
7: S[]: Services under test;
8: E[]: Existing test results;
9: T[]: Time cost on probing an online user’s device;

10: */
11: D[][]=0; //D[s][i]=1 means service s should be pushed

to tester i for test
12: G’[]=removeDupli(G); //Get all the network types in G

13: for all (network type t in G′) do
14: P’[]={null};
15: for (i=0; i<N; i++) do
16: if (G[i]==t) then
17: P’[i]=P[i];
18: end if
19: end for
20: for all (service s in S) do
21: C[][]=0;
22: for (i=0; i<N; i++) do
23: if (isExist(P’[i], E, s, R)) then
24: P’[i]=null;
25: end if
26: end for
27: total=getValidCount(P’);//number of total posi-

tions in P’
28: for (i=0; i<N; i++) do
29: for (j=0; j<N; j++) do
30: if (P’[i]!= null && P’[j]!= null &&

isHomo(P’[i], P’[j] R)) then
31: C[i][j]=1;
32: end if
33: end for
34: end for
35: while (total>0) do
36: i=getPopularCentral(C, T);//find i with the

biggest
∑N−1

j=0 C[i][j]

37: D[s][i]= 1;
38: total = total - 1;
39: for (j=0; j<N; j++) do
40: C[j][i]=0;
41: if (C[i][j]==1) then
42: total = total - 1;
43: for (k=0; k<N; k++) do
44: C[k][j]=0;
45: C[j][k]=0;
46: end for
47: end if
48: end for
49: end while
50: end for
51: end for
52: Output D;

22

of logs because the application could crash anytime. Thus,
it’s an important problem to design efficient log submitting
mechanism to make a tradeoff.

5.2 Visual Info Collector
Our visual debugging info collector is designed to support

the Android application developers collecting the snapshots
when fatal errors occur. It provides interfaces for develop-
ers for take snapshots and submit them to iTestServer. Like
the former Logging tool, this collector firstly stores the snap-
shots of the application into the local storage of the device,
and then upload them to iTestServer.

As a snapshot may be a large file which need long time
network transmission, the transmission is likely to be inter-
rupted because of the crush of application or the shutdown
operation from the tester. For solving this problem, we can
retransmit the interrupted snapshot when the application
under test is launched again. The other problem is how to
make the testers fully trust our collector and believe that
we are not stealing their privacy. We also need to study
strategies for preventing some unreal developers from doing
illegal things.

6. EXPERIMENTS
Many web services perform diversely under different run-

ning environment. For example, invoking a service from
different location and under different network situation and
access approach usually gets various performance. In this
section, we develop a demo web service with three repli-
ca which are deployed in Shanghai(East China), Qingdao(
North China) and Hangzhou (South China), respectively.
Then we design two experiments to evaluate the influence of
network type and geographical location to the performance
of our demo web service. The experiment results are shown
below.

6.1 Network Type Influence on Service Per-
formance

In this experiment, we employ 18 volunteer testers in Bei-
jing whose mobile network type is HSPA, HSPA+, HSDPA,
UMTS, EDGE and LTE (3 volunteers for each type). These
volunteers are asked to install iTestClient and invoke our
demo service replicas with the same input for 10 times both
under Wifi and mobile network.

All the invoking results are submitted to iTestServer, thus
we can obtain service replicas’ performance (average response
time) under different network access fashion as shown in
Figure 4. It can be seen that under different network ac-
cess fashion, the performance of each replica may change
substantially. And the replica with the best performance
differs, for example, under HSDPA replica 1 (Deployed in
Shanghai) performs best, but replica 2 (Deployed in Qing-
dao) wins out under EDGE. These performance information
could be used for dispatching the service invoking request-
s, which come from different network type, to the proper
replica for getting response quicker.

6.2 Location Influence on Service Performance
In this experiment, we ask the volunteers in Beijing, Xia-

men, Xi’an and Hangzhou to invoke the three replicas of our
demo service under Wifi network access fashion. Other ex-
periment setups are just the same as those in the experiment
above.

0

500

1000

1500

2000

2500

3000

Wifi HSPA HSPA+ HSDPA UMTS EDGE LTE

Shanghai

Qingdao

Hangzhou

Figure 4: The service replica performance under di-
verse network type

From Figure 5, we can get similar conclusion with last
experiment that the replica performs the best differs under
different location. These information can also be used for
recommending the perfect replica to invoke when a invoking
request is launched from these cities.

0

200

400

600

800

1000

1200

1400

1600

Beijing Xiamen Xian Hangzhou

Shanghai

Qingdao

Hangzhou

Figure 5: The service replica performance under di-
verse location

These two experiments illustrate that both the way to ac-
cess network and tester’s location influence the performance
of web service. Thus, when testing a web service, it is very
necessary to crowdtest it with diverse network type at dif-
ferent locations to get a full-scale evaluation.

7. RELATED WORK
The related works of iTest can be categorized into two

types: Mobile Crowdsourcing and Crowdsourced Testing.

7.1 Mobile Crowdsourcing
The prevalent use of smartphones with powerful comput-

ing capability and various sensors provides a good oppor-
tunity to incorporate mobile computing into crowdsourcing,
i.e. mobile crowdsourcing. For examples, Moboq[11] is a
location-based real-time social question answering service,
which sends a question to the selected Sina Weibo(a mi-
croblogging service in China:http://www.weibo.com) users
who are around the place related to this question. Yao-
Chung et al. propose schemes for effectively enabling mobile

23

participants to perform place name annotations and bridge
the gap between Wi-Fi signals and human-defined places[12].
The common feature of these systems is to ask the crowd on
site to help. iTest also make use of the position information
of testers together with other test environment properties to
get the on-site performance of web service or mobile appli-
cation.

7.2 Crowdsourced Testing
Crowdsourced software testing has witnessed increased in-

terest and adoption, meanwhile, many crowdsourced testing
products have arose. uTest[13] is the world’s largest market-
place for software testing services(http://www.utest.com/)
with 100000+ QA professionals from more than 200 coun-
tries and territories. uTest supports the test for web sites,
mobile applications and games. Pay4Bugs(https://www.
pay4bugs.com/) is a self-serve product in which you can
control testing from your account and test when you want
on your schedule. There are also some other crowdtesting
products, like Mob4Hire, Feedback Army, 99tests etc., which
provide similar functions. The test results in these product-
s are manually submitted. However, in iTest, all the test
results or running logs are submitted automatically which
can ease the burden of the testers and make the test process
more efficient.

8. CONCLUSION AND FUTURE WORK
Web service invocation is highly related with invocation

context like network access type and location, we choose to
leverage mobile phones to collect the Service QoS data s-
ince the use of mobile phone is largely diversified in terms of
geo-location, time and client environments like the way it ac-
cess the Internet. Meanwhile, mobile application developers
are confused by the problem of adapting their application
to thousands of types of mobile devices. Thus, in this pa-
per, we firstly present the mobile crowdtesting framework:
iTest and introduce the functions of each component; then
analyze the key problems in mobile crowdtesting platform,
including incentive mechanism, tester selection, tester man-
agement and test result aggregation. After mapping our
tester selection problem into the typical set cover problem,
we design a greedy algorithm for tester selection when mo-
bile crowdtesting web services which can significantly reduce
test task number and then save test costs; We also provide
a development kit to log and snapshot the running process
of mobile applications and gather the log and snapshots to
our iTest platform. The two experiment results in Section 6
illustrate the influence of geographical location and network
type on web service performance.

Future work can leads to two directions. First, our iTest
framework is limited to a small scale of use due to lack of
appropriate incentives. We will study an effective incen-
tive mechanisms for mobile crowdsourced testing. Second,
we would consider detailed user contexts, including the way
their devices connect to the internet and their geographic

position, in computing the similarity of users, and rec-
ommend the service with the best QoS property based on
historical test result of similar users.

9. ACKNOWLEDGMENT
This work was supported by China 863 program (No.

2012AA 011203), the Fundamental Research Funds for the
Central Universities(No. YWF-14-JSJXY-004), A Founda-
tion for the Author of National Excellent Doctoral Disser-
tation of PR China (No. 201159), and Beijing Nova Pro-
gram(2011022) and the Program for New Century Excellent
Talents in University.

10. REFERENCES
[1] A. J. Quinn and B. B. Bederson. Human computation:

a survey and taxonomy of a growing field. In
Proceedings of CHI 2011, 1403-1412.

[2] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the World-Wide Web.
Commun. ACM 54, 4 (April 2011), 86-96.

[3] Crowdsourcing.
http://en.wikipedia.org/wiki/Crowdsourcing

[4] R. Pham, L. Singer and Kurt Schneider. Building Test
Suites in Social Coding Sites by Leveraging Drive-By
Commits. 35th International Conference on Software
Engineering, pp. 1209-1212, May, 2013.

[5] D. Liu, M. Lease, R. Kuipers and R. Bias.
Crowdsourcing for Usability Testing. March 2012.
arXiv 1203.1468. http://arxiv.org/abs/1203.1468

[6] Mobile Crowdsoucing, http://www.clickworker.com/
en/crowdsourcing-glossar/mobile-crowdsourcing/

[7] L. Guoliang. Crowdsourcing: Challenges and
Opportunities. Tutorial on HotDB 2012. February,
2012.

[8] R. M. Karp. Reducibility Among Combinatorial
Problems. Complexity of Computer Computations.
New York: Plenum. pp. 85́lC103. 1972.

[9] V. V. Vazirani. Approximation Algorithms. Springer :
New York, 2001. ISBN 3-540-65367-8

[10] Apache Log4j Project.
http://logging.apache.org/log4j/2.x/

[11] Y. Liu, T. Alexandrova and T. Nakajima. Using
stranger as sensors: temporal and geo-sensitive
question answering via social media. In Proceedings of
the 22nd international conference on World Wide Web
(WWW ’13), pp. 803-814.

[12] Y. Fan, W. H. Lee, C. T. Iam, G. H. Syu, Indoor
Place Name Annotations with Mobile Crowd, 2013
International Conference on Parallel and Distributed
Systems (ICPADS) pp.546-551, 15-18 Dec. 2013

[13] uTest. White Paper: Crowdsourced Usability Testing.
http://alexcrockett.com/wp-content/uploads/

downloads/Books/Crowdsourced_Usability_

Testing.pdf

24

