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ABSTRACT
In this paper we investigate the relationship between class
dependency and change propagation in Java software. By
analyzing 35 large Open Source Java projects, we find that
in the majority of the projects more than half of the de-
pendencies are never involved in change propagation. Fur-
thermore, our analysis shows that only a few dependencies
are transmitting the majority of change propagation events.
An additional analysis reveals that this concentration can-
not be explained by the different ages of the dependencies.
The conclusion is that the dependency structure alone is a
poor measure for the change dynamics. This contrasts with
current literature.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.8 [Software
Engineering]: Metrics

General Terms
Design, Measurement

1. INTRODUCTION
As Parnas [11] noted, software is aging and constant change

effort is needed to keep a piece of software up to date. There-
fore, as Bohner and Arnold [3] and Bennett and Rajlich [2]
point out, a good software architecture should be evolvable,
flexible. An obstacle is the fact that, a change in one part
often induces changes in dependent parts. Rajlich [12] and
Lehman et al. [7] call this problem “change propagation”
or “ripple effects”. Consequently, to pass judgment on the
evolvability of a given software architecture it is important
to understand these propagation dynamics. Many scholars
believe that the network of dependencies between modules
is particularly relevant in this context as changes propagate
along exactly these dependencies. The predominant analy-
sis methodology is the Design Structure Matrix, originally
developed by Steward [14] to model engineering tasks. The
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idea is to represent a system as an adjacency matrix in which
the entries codify the strength of dependency. Sullivan et al.
[15] applied this approach to software architectures. Based
on this MacCormack et al. [10] present a method to calcu-
late the so-called “Propagation Cost” of a software based on
the dependency structure. Also Sangal et al. [13] point out
that a high concentration of dependencies acts as a prop-
agator of change. We argue that this entirely dependency
focused approach to change propagation leaves several im-
portant questions unanswered. Assuming that dependencies
matter, are really all of them relevant? The answers to this
question has important practical ramifications: If the major-
ity of dependencies are a significant transmitter of change
propagation, they should be minimized just as Lieberherr
and Holland [8] suggest. On the other hand, if only some
dependencies matter, we could profit from code reuse with-
out worrying about the generated dependencies. Apart from
this, we cannot assume that propagated changes are evenly
distributed. In this paper we answer these questions by con-
trasting the dependency structure of 35 large Java projects
with their change dynamics. The analysis of the change
dynamics takes its cues from previous work in this field.
In particular Ball et al. [1], Clarkson et al. [4], Gall et al.
[5], Hassan and Holt [6], Rajlich [12]

2. RESEARCH DESIGN
This section describes our research design. In the first

two subsections we explain how data on change coupling
are extracted from version control systems as well as how
the dependency structure is calculated. In the next two
subsections the analyzes are presented which measure the
impact of dependencies on the change dynamics and the
concentration of change propagation. Finally, we describe
the particular data set used.

2.1 Class Dependencies
We model Object Oriented software as network of classes

which are dependent on each other. Consequently, this net-
work may be represented as a graph containing nodes and
edges or as an adjacency matrix. In this paper we stick to
the adjacency matrix view used in the Design Structure Ma-
trix community. We refer to the dependency matrix as D
were Di,j = 1 means that i depends on j. Di,j = 0 on the
other hand is interpreted as independence. There is a de-
pendency between classes i and j if i extends or implements
j, i calls a method provided by j, i references members of j,
i uses j as member or variable. In each of these cases we set
Di,j = 1. Please note that D is an asymmetric matrix. This

269



procedure is in line with previous works by Sullivan et al.
[15] and Sangal et al. [13]. Of course, D is only valid at one
particular point in time as not only elements of a system
change but also the structure of the dependency network
itself: Software projects grow; new modules are added and
sometimes old ones are removed. In our case we take the
latest snapshot of D. Removed nodes are no longer of inter-
est and that the currently existing nodes are of different age
does not interfere with our analysis. The only serious issue
are changing dependencies. Fortunately, with rare excep-
tions, the following rule holds true throughout the projects
in our data set: A dependency between two classes i and
j comes into existence simultaneously with the creation of
the younger class. This also facilitates the calculation of
dependency ages. The dependency is removed with the re-
moval of either i or j. In between dependencies are basically
constant. Thus, only the different ages of the dependencies
might interfere with our analyzes. We address the issue in
section 2.5.

2.2 Change Coupling
In the previous section the dependency matrix was de-

fined. In contrast to this static view, we now define a dy-
namic view on the software architecture based on change
propagation. We show how a matrix similar to the depen-
dency matrix D can be calculated. Its entries do not indi-
cate dependency, but the number of times classes have been
changed simultaneously. Let us refer to this matrix as C
and to the event of two classes being changed at the same
time as “co-change”. To construct C we need: First, the
set of classes. Let us use n to denote their number. Sec-
ond, change events which record modification of the classes.
Henceforth we use m to refer to the number of recorded
change events. An event in the change history can be ex-

pressed as an n-dimensional vector �h. Each entry shows in
binary form whether a class has been modified. Imagine for
example a piece of software with three classes. The change

event �h1 = (011)T indicates that classes two and three were

modified. Each �h thus corresponds to one commit in the
version control system. The change history consisting of all
�h can be written in matrix form: Each change vector forms
a column in the change history matrix H .

H = (�h1
�h2 . . .�hm) (1)

H is of size n × m. By multiplying H with its transposed
HT the co-change matrix C is derived:

C = HHT . (2)

C has dimension n×n and indicates how many times each
element has been modified concurrently with other elements.
An entry Ci,j = 3 tells us that classes i and j have been
modified 3 times together. Please note that C in contrast
to D is symmetric.

2.3 Dependencies and Change Propagation
To reveal the connection between dependency and change

propagation we need to compare the change dynamics of
dependent classes with the one between independent ones.
The fact that two classes (i and j) have been modified at
least once simultaneously is expressed by Ci,j ≥ 1. Further,
the fact that two classes are connected by a dependency
is expressed by Di,j = 1. A straight forward measure for

the influence of dependencies on change propagation is the
conditional probability PD := P (Ci,j ≥ 1|Di,j = 1) given
i �= j. Read: the probability that two different classes have
at least once been modified together, given that they are
connected by a dependency. PD is calculated from the data
as follows:

PD =
|{Di,j = 1 ∧ Ci,j ≥ 1}|

|{Di,j = 1}| (3)

As a reference we also compute the conditional probability
P¬D := P (Ci,j ≥ 1|Di,j = 0) that two unconnected classes
Di,j = 0 have at least once been modified together. P¬D is
calculated as follows:

P¬D =
|{Di,j = 0 ∧ Ci,j ≥ 1}|

|{Di,j = 0}| (4)

2.4 Concentration of Propagated Change
In 1905 the economist Max Otto Lorenz proposed a con-

cise method to analyze and visualize income inequalities [9].
Since then the so-called Lorenz curve has be used to de-
scribe concentration and inequality in various contexts. We
will use it now to analyze the concentration of propagated
changes. To calculate the Lorenz curve, we first need the
number of propagated changes for each single dependency.
Let us refer to this set as Π = {Ci,j : Di,j = 1} First, Π
is normalized such that its entries sum up to one. Let us
refer to the result as π. The elements of π are addressed
by using subscripts. Second, the entries of π are rearranged
in ascending order such that r < s ⇒ πr ≤ πs Finally, the
Lorenz curve L(x) with x ∈ [0, 1] is calculated by cumulating
the first x percent of the elements of π.

L(x) =

�x∗|π|�X

k=0

πk (5)

L(x) is interpreted as follows: The x percent least active
dependencies cause L(x) percent of the propagated changes;
the x percent most active dependencies cause 1 − L(1 − x)
percent of the propagated changes. For clarity’s sake, we
refer to 1 − L(1 − x) as ¬L(x). Please note that an equal
distribution leads to L(x) = x. Any unequal distribution
results in a convex curve. The higher the concentration or
inequality the higher the curvature and thus the deviation
from the diagonal line.

2.5 Excluding the Effect of Age
Concentration of co-changes is per se not an indication

that dependencies are heterogeneous concerning their change
propagation. Different ages of the dependencies could cause
the concentration. This means that we cannot compare
the Lorenz curve found in the data with the line of perfect
equality. Instead as reference curve we use the hypotheti-
cal concentration which would be caused by the existing age
distribution under the assumption of homogeneous change
propagation. Let us assume that dependencies accumulate
co-changes linearly in time. This means that the expected
number of co-changes c depending on age t of the depen-
dency can be expressed by the following function:

c(t) = b1 + b2t (6)

b1 and b2 are constants specific to a given project. Next, the
average number of co-changes per dependency in the real
data is calculated. We thus have an ĉ(t) to which c(t) can
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be fitted. Based on c(t) we can calculate the number of co-
changes each of the dependencies in the data would exhibit
if the earlier discussed homogeneity of change propagation
assumption held true. From this hypothetical co-change dis-
tribution, the hypothetical Lorenz curve L∗(x) is compiled.
L∗(x) serves as a reference, giving the concentration of co-
changes, the system would exhibit if age was the only differ-
ence between the dependencies. If L(x) is stronger bent than
L∗(x), co-changes concentrate more than we would expect,
based on the existing age differences.

2.6 Data
Our empirical study focusses on Java projects for sev-

eral reasons: Java, unlike other popular languages such as
C++, was designed from scratch to be an object-oriented
language. Each class is defined in a separate file. For
this reason, file changes can be directly mapped to class
changes. Furthermore, Java enjoys a high popularity in the
Open Source community. The project set used in this pa-
per comprises 35 projects, and is listed in table 1. Source-
Forge served as our main data source, contributing 33 of the
projects. Detailed information on each of them can be found
at http://NAME.sf.net, where NAME stands for the name of
the project. As for the selection, we took the 36 largest
Java projects using CVS as version control system. Next we
verified the data quality which led to the exclusion of three
projects: EasyEclipse was excluded as it only constitutes a
repackaging of the Eclipse IDE. Furthermore, the projects
OpenQRM and OACBPMF were excluded as their version
log files show hardly any activity. Finally, the set of Source-
Forge projects was complemented with two further projects:
AspectJ (see http://www.eclipse.org/aspectj/) and Eclipse
(see http://www.eclipse.org/), both hosted by IBM. This
makes all in all 35 projects.

3. EMPIRICAL RESULTS
In this section we present and interpret the empirical re-

sults of the analysis described in the previous section.

3.1 Active and Change Neutral Dependencies
Table 1 (columns one and two) shows PD and P¬D for

our sample set of 35 projects. PD ranges between approxi-
mately 15% and 60%, P¬D is less than 5% for all projects
except the project AspectJ. This means that the existence
of a dependency between two classes significantly raises the
chance of change propagation. Yet, we have to acknowledge
that in all analyzed projects except for three, the majority
of the dependencies are “change neutral”: More than half
of the dependencies never propagated change in the entire
development history. As pointed out in the introduction,
many authors implicitly assume an equal distribution. In
the light of the just presented results, this seems to be prob-
lematic. If half of the dependencies are change neutral, the
dependency structure of a piece of software is a very crude
measure for its change dynamics.

3.2 Co-Changes Concentrate
Figure 1 shows in black the Lorenz curve for the Eclipse

project considering all dependencies. It can be seen, that
this curve is strongly bent. As a reference, the dashed line
marks the line of equality (diagonal line) and the dotted lines
mark the point where x = 90%. The graph indicates that
the most active 10% of the dependencies are responsible for

over 70% of the change propagation along dependency links.
This result is based on approximately 235 000 dependencies
and nearly 284 000 thousand co-changes.
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Figure 1: Concentration of co-changes. Solid black
line: The Lorenz curve L(x) for Eclipse. Solid gray
line: The reference curve L∗(x) (see section 2.5).

The reference curve L∗(x) is shown in gray. It indicates
the hypothetical co-change distribution resulting from an
architecture with homogenous change propagation but the
same age distribution as the real world architecture (see sec-
tion 2.5 for the definition). L∗(x) shows clearly less concen-
tration than L(x): It predicts only 19.96% of co-changes for
the most active 10% dependencies. This means that differ-
ent ages of the dependencies are not a sufficient explaina-
tion for the high concentration of co-changes found in the
data. We ran the same analysis for the other projects in
the data set. To reproduce the results here in a compact
way, we condensed each curve to the point ¬L(0.1) (respec-
tivly ¬L∗(0.1)) which indicates how much change events are
propagated along the 10% most active dependencies. See ta-
ble 1, column three and four. In the majority of the projects
the value is above 50%. This means that in most projects
only 10% of the dependencies are responsible for over half
of the change propagation along dependency links. In all
projects ¬L(0.1) > 0.2. The higher the concentration of
change propagation and thus the value of ¬L0.1) the better
the refactoring effort can be targeted. In all projects except
for Jazilla, ¬L(0.1) is higher than ¬L∗(0.1). The case of
Jazilla is particular as the curves L∗(x) and L(x) take very
different forms and cross each other1.

4. CONCLUSIONS
The analysis of PD and P¬D as well as the concentrations

of co-changes show, that any estimation of change propa-
gation based on the dependency network will be highly in-
accurate, as the implicit assumption of homogeneity of de-
pendencies does not hold. We therefor conclude, that a dif-
ferentiated view on dependency between classes is needed.
Theoretical models must take heterogeneity of dependencies
into account. For software engineering practice, we conclude
the following: As many dependencies are never involved in

1Please see the complete set of plots on our website
www.sg.ethz.ch/research/oss
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project PD P¬D ¬L(0.1) ¬L∗(0.1)
architecturware 33.2±1.3 0.5±0.1 58.32 17.96
aspectj 57.8±1.6 18.5±0.1 45.53 15.60
azureus 38.2±1.3 1.2±0.1 60.16 14.92
cjos 36.3±1.1 0.2±0.1 44.36 14.50
composestar 49.0±2.0 1.7±0.1 47.68 28.01
diee-mad 23.0±2.4 1.1±0.1 64.16 16.70
eclipse 21.5±0.3 0.3±0.1 70.02 19.96
enterprise 16.5±1.3 0.5±0.1 64.98 11.56
findbugs 21.1±0.7 0.6±0.1 64.91 21.42
fudaa 34.5±0.9 1.6±0.1 60.06 19.32
gpe4gtk 28.9±1.4 1.1±0.1 66.12 19.79
hibernate 45.6±1.3 1.1±0.1 58.59 19.46
jaffa 29.5±1.5 0.9±0.1 58.71 10.92
jazilla 62.0±1.6 7.1±0.1 22.02 36.44
jedit 58.0±1.8 1.2±0.1 41.80 15.62
jena 33.0±1.1 1.0±0.1 61.41 14.94
jmlspecs 48.2±1.9 3.1±0.1 52.87 14.51
jnode 28.0±0.8 0.5±0.1 65.36 18.14
jpox 35.1±1.2 0.8±0.1 66.80 18.69
openhre 34.6±2.0 1.1±0.1 29.25 12.69
openjacob 24.0±1.3 1.2±0.1 57.94 14.27
openuss 26.8±1.5 1.6±0.1 55.60 13.24
openxava 28.0±1.8 2.0±0.1 82.95 11.08
pelgo 18.1±1.3 0.3±0.1 55.28 10.38
personalaccess 29.8±1.9 1.3±0.1 65.48 15.48
phpeclipse 49.5±1.9 2.0±0.1 42.10 12.96
rodin-b-sharp 21.8±1.0 0.5±0.1 77.01 18.94
sapia 42.4±1.7 1.1±0.1 50.70 16.70
sblim 12.7±0.6 1.5±0.1 88.65 11.26
springframework 33.6±1.2 0.5±0.1 60.87 14.39
squirrel-sql 27.4±1.5 1.2±0.1 63.81 11.76
university 26.8±1.6 4.0±0.1 37.49 10.25
xendra 19.0±1.3 1.5±0.1 52.52 12.95
xmsf 34.8±1.6 2.4±0.1 67.37 16.56
yale 31.5±1.5 2.6±0.1 51.03 13.22

Table 1: P (C|D), P (C|¬D), ¬L(0.1) and ¬L∗(0.1) for
each project. The error margins are given on a con-
fidence level of 99% under the assumption of a bi-
nomial distribution.

change propagation, a lopsided minimization of dependen-
cies will not necessarily improve the architecture in respect
to its flexibility. We should keep in mind that dependencies
serve a purpose: code reuse. Each dependency means that
functionality was not duplicated but reused. Consequently,
a highly connected class in the dependency network is not
necessarily an evidence of flawed design but distinguishes
the class as very important. Only if this importance goes
along with change propagation, the design deserves a critical
look at. This also means that approaches relying solely on
the dependency structure to judge the change dynamics and
flexibility of a software architecture are problematic. We ar-
gue that both the dependency view and the change coupling
view need to complement each other to paint a full picture
of the software architecture. Further investigation is needed
to find out which properties of the dependencies generate
the observed heterogeneity.
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