
Predicting the Cost-Effectiveness of Regression Testing Strategies 

D a v i d  S. R o s e n b l u m  a n d  E l a i n e  J. W e y u k e r  

A T & T  R e s e a r c h  

600 M o u n t a i n  A v e n u e  

M u r r a y  Hill ,  N J  07974 

{dsr, weyuker}©research, att. com 

A b s t r a c t  

Selective regression testing strategies aim at choosing an ap- 
propriate subset of test cases from among a previously run 
test suite for a software system, based on information about 
the changes made to the system to create new versions. Al- 
though there has been a significant amount of research in 
recent years on the design of such strategies, there has been 
significantly less investigation of their cost-effectiveness. In 
this paper some computationally efficient predictors of the 
cost-effectiveness of the two main classes of selective regres- 
sion testing approaches are presented. A case study is de- 
scribed in which these predictors are used to assess the ap- 
propriateness of using a particular regression testing strat- 
egy to test multiple versions of a widely-used software sys- 
tem. 

K e y w o r d s - - c o s t  estimation, regression testing, software 
analysis, test coverage 

1 I n t r o d u c t i o n  

Selective regression testing strategies aim at choosing an 
appropriate subset of test cases from among a previously 
run test suite for a software system, based on information 
about the changes made to the system to create new ver- 
sions [1, 3, 4, 5, 6, 8, 9, 11, 12, 13]. The motivation for such 
strategies is the desire to keep the cost of regression test- 
ing manageable. The intuition is that if, instead of rerun- 
ning the entire test suite (the so-called retest-all strategy), 
a systematically-selected subset is chosen to be rerun, then 
substantial resources will be saved due to the limited size of 
the test suite. Although there has been a significant amount 
of research in recent years on the design of such strategies, 
there has been significantly less investigation of their cost- 
effectiveness. The primary exception to this statement is a 
simple cost model described by Leung and White, to enable 
the comparison of regression testing strategies [10]. There 
also has been little investigation of the various factors affect- 
ing cost, including CPU time, disk space, effort of testing 

Permission to make digital/hard copy of part or all of this work for personal 
or classroom use is granted without fee provided that copies are not made 
or distributed for profit or commercial advantage, the copyright notice, the 
title of the publication and its date appear, and notice is given that 
copying is by permission of ACM, Inc. To copy otherwise, to republish, to 
post on sewers, or to redistribute to lists, requires prior specific permission 
and/or a fee. 

SIGSOFT'96 CA, USA 
~) 1996 ACM 0-89791-797-9/96/0010...$3.50 

personnel, the cost of business opportunities gained or lost 
through increased or reduced testing, and so on. 

Rothermel and Harrold group a number of selective re- 
gression testing approaches into three categories [12]. Safe 
approaches require the selection of every existing test case 
that exercises any program element that  could be affected 
by a given program change. Minimization approaches at- 
tempt to select the smallest set of test cases necessary to 
test affected program elements at least once. Coverage ap- 
proaches at tempt to assure that  some structural coverage 
criterion is met by the test cases that  are selected. Because 
minimization approaches typically at tempt to select a min- 
imal subset of test cases satisfying some coverage criterion, 
minimization approaches tend to be special types of coverage 
approaches. For this reason, for the purposes of this paper, 
we will only distinguish between approaches that at tempt 
to select all affected test cases, and those that at tempt to 
select a minimal set of affected test cases. 

Many coverage criteria do not actually require that a 
minimal test set be selected. In a sense, safe strategies and 
minimization strategies can be thought of as being at the two 
endpoints of a continuum of strategies. In practice, a tester 
may be satisfied using near-minimal test sets. The search for 
small test sets is based on the intuition that repeatedly re- 
exercising code units during testing is "wasteful". However, 
the effort needed to minimize the test set can be substantial 
and therefore may not be worthwhile. Note that in gen- 
eral, most of the selective regression testing strategies that 
have been described in the literature are independent of any 
coverage criterion that  may have been used to create the 
original test suite. In fact, regression testers are frequently 
unaware of how the original test suite was designed. 

The main thrust in papers on safe selective regression 
testing has been to show that by using the proposed al- 
gorithm to selectively choose a regression test suite, faults 
detected by the full test suite are guaranteed to be detected 
by the selected subset. For minimization methods, it is as- 
sumed that it is unlikely for faults to go undetected com- 
pared with the straightforward retest-all approach. The 
fundamental assumption underlying all these selective re- 
gression testing strategies is that the cost of the analysis 
necessary to do the selection is offset by the savings realized 
by the reduced test set size. 

When the cost of running individual test cases is substan- 
tial, the size of the test set can be an especially important 
issue. However, as we shall see, it is not always possible to 
intelligently select a relatively small subset of the regression 
test suite, and the cost of the analysis necessary for mak- 

118 



ing this de te rmina t ion  may  well offset the  savings realized 
by the  reduced test  set size. It  is this issue tha t  we inves- 
t igate  in this paper.  In part icular ,  we discuss the design 
of predictors of cost-effectiveness tha t  we will use to deter- 
mine whether  or not  the  savings a selective regression test ing 
me thod  achieves through a reduct ion in test  cases is likely 
to be worth the  cost of the analysis needed to achieve this 
reduction.  Our goal is to define relatively inexpensive and 
simple calculations tha t  can provide such a basis for predic- 
tion. In this way, we may be able to prevent  the  waste of 
significant analysis costs when the  s t rategy under  investiga- 
tion is likely to select all or most  of a test  suite for regression 
testing. In this case, the savings realized by the  reduced test  
set size may well be less than  the  analysis costs and therefore 
not  worth doing. 

2 A Model of Regression Testing 

In this section we present a formal model  of selective re- 
gression testing. Many of the  methods  tha t  have been de- 
scribed in the l i terature can be reasonably characterized by 
this model.  We will use this model  as a basis for comput ing  
our predictors.  

Informally, selective regression tes t ing involves the  sys- 
t emat ic  selection of a subset of test  cases from a perma-  
nent regression test  suite. This selection is made  each t ime 
changes are made  to a system under  test.  These changes 
might  be due to such things as fault  removals, planned 
enhancements ,  specification changes, por t ing to new plat- 
forms, and so on. The  selection is driven by two kinds of 
analysis: coverage analysis and change analysis. Coverage 
analysis is used to identify the  relat ionship between the  test  
suite and the entities in the  system under  test  tha t  are exer- 
cised by the  test  sui te3 Entities might  include such things 
as s ta tements ,  branches, functions or definition-use associ- 
ations. Change analysis (also known as impact analysis) is 
used to identify the entities tha t  have been modified or could 
be affected by any modificat ions made  to the  system under  
test. Test selection involves choosing test  cases tha t  cover 
affected entities. Safe methods  select all test  cases tha t  cover 
affected entities, while minimizat ion  methods  a t t emp t  to se- 
lect the smallest subset of test  cases such tha t  each affected 
enti ty is covered at least once. 

One of the main things tha t  distinguishes the various se- 
lective regression test ing methods  tha t  have been proposed 
is the choice of the ent i ty  or entities on which the  cover- 
age and change analysis is performed. This  choice affects 
the  level of granular i ty  of the  analysis, and hence both  the 
precision and efficiency of the  analysis. Precision is defined 
to be the ability of a me thod  to avoid selecting test  cases 
tha t  do not cause the modified program to produce outputs  
tha t  differ from the  original version. Efficiency assesses the 
computa t ional  cost and au tomatab i l i ty  of a selective regres- 
sion tes t ing strategy. These terms,  proposed by Harrold 
and Rothermel ,  are two of the  five cri teria they used to 
evaluate  selective regression tes t ing methods  [12]. For in- 
stance, TESTTUBE is a system for selective regression test-  
ing of C programs in which the  entities tha t  are analyzed are 
function definitions, global variable definitions, type  defini- 
tions and preprocessor macro  definitions [3]. On  the  other  
hand, dataflow-oriented approaches (such as the  approach 

1Note t ha t  this  coverage analysis m a y  be different f rom any cov- 
erage analysis t h a t  was used to c rea te  the  tes t  suite initially. 

described by Ost rand  and Weyuker  [11]) t rea t  definition- 
use associations as the entities of interest.  Still o ther  meth-  
ods focus on other  kinds of entities, such as s ta tements ,  code 
segments,  or backward slices from the  place of each program 
edit. 

More formally, let P be the  system under  test,  and let 
S be its specification. Let  T be the  regression test  suite for 
P ,  wi th  ITI denot ing the  size of T.  Let  M be a selective 
regression test ing me thod  to be used to select a subset of T 
to test  P ;  M may  depend on P ,  S, T,  execution histories 
for T,  and other  factors. Let  E be the set of entities of the  
system under  test  tha t  are analyzed by M.  We assume tha t  
T and E are non-empty,  and tha t  every syntact ic  element  
of P belongs to at least one ent i ty  in E.  

Let  eoversM(t, e) be the  coverage relation induced by M 
for P and defined over T x E.  We define covers M(t, e) to be 
t rue if and only if the  execut ion of P on test  case t causes 
ent i ty  e to be exercised at least once. If e is a function 
or module  of P ,  e is exercised whenever  it is invoked. If 
e is a simple s ta tement ,  s t a tement  condition, definition-use 
association or other  kind of execut ion subpath  of P ,  e is 
exercised whenever  it is executed.  If e is a variable of P ,  e 
is exercised whenever  it is read or wri t ten.  If e is a type of 
P ,  e is exercised whenever  a variable of type  e is exercised. 
If e is a macro  of P ,  e is exercised whenever  its expansion 
is exercised. If e is a slice of P ,  e is exercised whenever 
all of its const i tuent  s ta tements  are exercised. Appropr ia te  
meanings for "exercised" can be defined similarly for other  
kinds of entities of P .  

Let  E c denote the  set of covered entities. E c is defined 
as follows: 

E c = {e • E I3t  • T(eoversM(t ,e ) )  } 

We use IECl to denote the  number  of covered entities. 
It  is sometimes convenient  to represent  covers M (t, e) by 

a 0-1 ma t r ix  C,  whose rows represent  elements of T and 
whose columns represent elements of E c. We then  define 
element  Ci,j of C as follows: 

1 if coversM(i , j )  
Ci,j = 0 otherwise. 

We define C C  to be the amount  of cumulative coverage 
achieved by T (i.e., the  to ta l  number  of ones in the 0-1 
matr ix) :  

ITt IECl 
cc=EEc,  

i=1 j = l  

Note tha t  if we were to ex tend  C to include columns for the 
uncovered entities in E ,  the  cumulat ive  coverage C C  would 
remMn unchanged since these addi t ional  columns would con- 
tain only zeroes. 

Let  TM be the subset of T selected by M for P ,  and let 
]TMI denote its size. Formally, 

TM = {t e T I M selects t} 

Let  SM be the  cost per test  case of applying M to P to select 
TM, and let r be the cost per test  case of running P on a test 
case in T and checking its result. Leung and Whi te  show 
tha t  the  following relat ionship must  hold in order for M to 
be a cost-effective me thod  of selecting test  cases [10]: 2 

s M ITMI < r (ITI - ITMI) 

2Note t h a t  we have  changed  the  no ta t ion  and represen ta t ion  used 
by Leung  and Whi te .  

119 



Cost rat io 
(sM/r) 

15 

14 

13 

12 
11 

10 
9 

8 
7 

6 

5 
4 

3 

2 

1 

0 
0 

f I I I I I I I I - -  

Cost -ef fec t lve  ~ ~  

I I I I I I I I I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Selection rate (ITM I/ITI) 
Figure 1: The Leung-White Cost-Effectiveness Curve. 

That is, the cost of the analysis needed to select TM should 
be less than the cost of running the unselected test cases, 
which form the set T - TM. This relationship is captured in 
the cost-effectiveness curve of Figure 1, in which the selec- 
tion rate [TMi/IT[ is plotted along the x-axis, and the cost 
ratio SM/~" is plotted along the y-axis. The curve appearing 
in the plot is the break-even curve--points lying below the 
curve represent cost-effective situations, while points lying 
above the curve represent cost-ineffective situations. For ex- 
ample, if the selection rate is 50%, for every test case that 
is selected, one test case is eliminated, and thus the cost of 
selecting one test case must be less than the cost of run- 
ning one eliminated test case. If the selection rate is 25%, 
three test cases are eliminated for every one that is selected, 
and thus the cost of selecting the one test case must be less 
than the cost of running the three eliminated test cases (i.e., 
less than three times the cost of running one eliminated test 
case). 

Although we will use the Leung-White cost model to il- 
lustrate the application of our predictors, it is important 
to notice that the Leung-White model makes a number of 
simplifying assumptions that may well be inappropriate for 
large systems with certain characteristics. For instance, 
their model assumes that the costs SM and r are constant 
for all test cases. Even though such an assumption does 
make it feasible to apply the model, it is surely not accu- 
rate, and empirical research is needed to consider the effects 
of this simplification. More importantly, it is assumed that 
all costs can be quantified in terms of simple dollar (or other 
numeric) figures and are therefore interchangeable and uni- 
form throughout. Again this is not in general a realistic 
assumption, and more empirical research is needed to assess 
the effects of this assumption as well. 

Rothermel and Harrold suggest that it is useful to divide 
regression testing into two phases for the purpose of cost 
analysis. During the preliminary phase, changes are made 
to the software, and the new version of the software is built. 
During the critical phase, the new version of the software is 
tested prior to its release to customers [12]. When using a 

selective regression testing method, it is important to do as 
much analysis as possible during the preliminary phase, al- 
lowing the critical phase to be devoted to running test cases 
as much as possible in order to reduce the likelihood of a 
delayed release. For instance, for some large projects in de- 
velopment organizations that we work with, the use of spe- 
cialized, very expensive equipment requires that most test- 
ing be performed using a specially-equipped test laboratory 
that is shared by many different organizations and sched- 
uled well in advance of its expected use. Such a laboratory 
typically runs continuously, and may be available to a given 
project no more than a few hours per week, typically during 
the middle of the night. As such, it is viewed as a scarce 
resource that is never to be wasted. However, certain types 
of analysis could be performed during off-hours using spare 
cycles. In such cases, any analysis that can be performed 
on individual workstations or PCs in advance of testing may 
well be more cost-effective and feasible than use of the test 
laboratory, even if the cost-effectiveness relationship of the 
Leung-White model is not strictly satisfied. Thus, there may 
be cases in which even though the apparent cost of analysis 
seems not to be worth the small number of test cases elimi- 
nated by a selective regression testing method, the analysis 
is nonetheless worthwhile since different resources are used 
to make the determination, and any savings in test lab use 
is especially important.  

To properly evaluate the cost-effectiveness of a selective 
regression testing method for such a system, the cost model 
would therefore need to balance the high cost of running 
test cases in the test lab against the relatively cheap cost 
of doing analysis on idle processors. In general, it may be 
necessary to employ system-specific cost models, taking into 
account all of the unique characteristics of the system under 
test, the test suite, and the process and resources used to 
test the system. 

120 



3 Coverage-Based Predictors 

In this section we present simple predictors of the number 
of test cases that  need to be rerun when a change is made to 
the system under test, and we examine their strengths and 
weaknesses. We also consider situations that  affect their 
applicability. 

The design of our predictors is based onsome fundamen- 
tal assumptions about the nature of test coverage and also 
the nature and distribution of changes made to a system. 
It is our experience that the relation coversM(t, e) changes 
very little during maintenance, except when new, large sub- 
systems or features are added to P, thereby causing large 
numbers of test cases to be added to T. We also observe 
that  the ability of a method M to eliminate test cases from 
a test suite T for a system P will be fundamentally governed 
by the nature of the relation coversM(t, e). For instance, if 
there is a great deal of overlap in the sets of entities of P 
that each test case covers, then we would not expect a safe 
strategy to be able to eliminate very many test cases, re- 
gardless of the degree to which the system is changed from 
version to version. This is because each entity is covered by 
a relatively large fraction of the test cases in the test suite, 
and each of these test cases would need to be rerun. Thus, 
according to the Leung-White model, the presence of a great 
deal of overlap of this kind would require an analysis cost 
that is far less than the cost of running test cases in order 
for the analysis to be worthwhile. 

3.1 Safe Strategies, Single Entity Changed 
In attempting to predict whether or not a selective regres- 
sion testing method M will be cost-effective when employed 
during the maintenance of software system P, we will first 
try to predict whether M will be cost-effective when only a 
single entity of P is changed. If M is not even cost-effective 
for this smallest possible change to P, then we are guaran- 
teed that  M will never be cost-effective for more complex 
changes to P. If, however, M is found to be cost-effective for 
testing a change to a single entity of P,  then other, more ac- 
curate.predictors must be employed to determine the limits 
and circumstances of M's  cost-effectiveness. 

As a first step in computing the desired predictor, we 
consider the expected number of test cases that  would have 
to be rerun provided only a single entity has been changed 
and that  a safe method M is being used. This number is 
simply the average number of test cases that  exercise an 
entity, which can be computed by taking the ratio of the 
cumulative coverage CC to the size of the entity set E. Call 
this average NM: 

CC 
NM - -  

IEI 

The intuition here is that  if we can expect to have to rerun 
almost the entire test suite, there may be little or no advan- 
tage to doing whatever analysis is necessary to select that  
subset of the test suite unless the cost of running a test is 
very high relative to the cost of the analysis. We emphasize 
that  this predictor is only intended to be used when the re- 
gression testing strategy's goal is to rerun all affected test 
cases. This approximation is therefore intended to be used 
only for safe strategies. 

A slightly refined variant of NM considers E c rather than 
E as the universe of entities. That  is, to determine whether 

M is cost-effective for testing a single change to P,  we com- 
pute the average number of test cases that  cover each covered 
entity, namely NCM: 

c c  
N c _ [ECl 

Then the fraction of the test suite that  needs to be rerun is 
7rM, which is our predictor for [TM I/IT[: 

qr  M - -  IT] 
c c  

IECllrl 

Thus, if a change is made to one "typical" entity, then N c 
test cases (or 7rM of the test suite) will be needed to test 
the change. Restricting the computation of N c to only the 
covered entities produces a more conservative estimate than 
the estimate that  results from considering all entities, as 
was done for NM above. In particular, the use of NdM is 
predicated on the assumption that  a change is made to a 
covered entity and that  therefore at least one test case will 
be selected. 

In order to compute 7rM, it is first necessary to carry out 
the same coverage analysis that  would be used when apply- 
ing M during maintenance. When performing the coverage 
analysis, the cost of the analysis can be computed, as can 
the cost r of running a test case. This gives a lower bound 
on SM, the per-test-case cost of applying M (the other com- 
ponent of the cost being the cost of the change analysis). 
Call this estimate of the per-test-case coverage analysis cost 
Sg,C. Once 7rM and SM,C have been computed, they can 
then be plugged into the Leung-White cost model, along 
with the estimate of r, to determine whether or not M lies 
within the cost-effectiveness range for selection rate 7rM. If 
it does not, then M can be ruled out for the given software 
system; if it does, then more accurate estimates must be 
computed for multiple entity changes. 

It may seem at first that  applying method M (or a por-  
tion of M) to determine whether M is cost-effective defeats 
the whole purpose of avoiding the cost of using M when it is 
not cost-effective. However, as mentioned above, we expect 
the coverage relationship between T and P to change very 
little from version to version of P (at least to the extent that  
this relationship affects the value of 7rM). Therefore, by car- 
rying out part of M on just one version of P to compute 
7rM, it may be possible to determine that  it will not be cost- 
effective to employ M on any version of P. In that  case, the 
costs of using M can be avoided in all future versions of P, 
even though the cost is incurred for only one version of P. 

Note that  using averages in the computation of N c ig- 
nores the fact that  there can be wide variation in the amount 
of change various entities incur. Indeed, because these pre- 
dictors are averages, their accuracy might vary significantly. 
For example, consider the three coverage patterns shown in 
Figures 2, 3 and 4. For the pattern A, shown in Figure 2, 
with a safe selection strategy, two test cases will always need 
to be rerun after a change to a single entity, regardless of 
which entity is changed. Since the test set contains [EC[ 
test cases, 2/[EC[ represents the fraction of the test suite 
that will be selected for any changed entity, and this is ex- 
actly what 71"M predicts. 

Next consider the pattern B, shown in Figure 3. In that  
case, with a safe strategy, exactly two test cases will also 

121 



Figure 2: Coverage Pattern A. 

Figure 3: Coverage Pattern B. 

Figure 4: Coverage Pattern C. 

122 



be rerun regardless of which ent i ty  is changed, but  now the 
test  set size is lEVI -t- 1. So we expect ,  on average, to have 
to rerun 2/(IECl+ 1) of the  test  suite. Again this is exact ly 
what  "/I'M predicts.  

Finally, consider pa t t e rn  C, shown in Figure  4, in which 
each test  case covers the  "core" ent i ty  shown in the center, 
plus one of the  other  "non-core" entities. In this pat tern ,  
there are [EC[- 1 test  cases. 71 M predicts the value 2/[EC[ 
as the  fraction of the  test  suite needed to test  a change to 
a single entity. If any of the non-core entities is changed, 
then only one test  case needs to be rerun, and the  fraction 
required would be slightly less than  the  value predicted (as- 
suming a large value of lEVI). On the  other  hand,  if the  
core enti ty is changed, then  all test  cases would be selected. 
Hence, in no case does 7rM correctly predict  the  exact num- 
ber of test  cases tha t  will be selected, and in one case, the  
prediction significantly underes t imates  the number  of test  
cases tha t  must  be rerun. Still, if each ent i ty  is equally 
likely to be changed, then  over all future versions in main- 
tenance,  7rM accurately predicts the  average fraction of the  
test  suite selected in any one version. 

These scenarios demons t ra te  the l imitat ions of employ- 
ing simple averages to compute  the  desired predictors.  None- 
theless, 7rM does provide us with an es t imate  tha t  at least 
can be used to rule out  M as a cost-effective strategy. In ad- 
dition, if information is available about  the frequency with 
which changes are made  to the  different entities in the  sys- 
t em under  test,  then  this information can be used to weight 
the averages computed  in arM. 

3.2 Safe Strategies, Multiple Entities Changed 
I f  the computat ion of 7rM predicts that  M wil l  be cost- 
effective in the presence of a change to a single entity, then 
changes to mult iple  entities must  be considered, since typical  
software changes will involve several entities. 

As a point  of depar ture ,  we can generalize the  compu- 
ta t ion of NCM and 7rM to predict  the  number  of test  cases 
needed to test  changes to mult iple  entities in coverage pat-  
terns A, B and C. For this discussion, let k be the  number  
of entities changed, where 

1 < k  < I E e l  

are ( ) e  i ios  rom 
a set containing [ECl entities, assuming tha t  each ent i ty  is 
equally likely to be changed. We will typically assume tha t  
there are a relatively large set of entities and a relatively 
small number  of changes k. We therefore assume tha t  

k << lEe[ 

For pa t te rn  A shown in Figure  2, the number  of test  
cases needed will range between k + 1 (if all of the  changed 
entities are "adjacent"  to each other,  and therefore "share" 
test  cases) and 2k (if none of the  changed entities are "ad- 
jacent"  to each other,  and are therefore unable to "share" 
test  cases). 

For pa t te rn  B shown in Figure  3, the  number  of test  cases 
needed will always be k + 1 because every ent i ty  is exercised 
by a test  case tha t  exercises only tha t  entity, as well as by 
the test  case tha t  exercises all entities. Thus,  NCM increases 
linearly wi th  k for this pat tern.  

For pa t t e rn  C shown in Figure  4, the  number  of test  cases 
needed will be ei ther k if the  core ent i ty  is not changed, or 
lEVI- 1 if the  core ent i ty  is changed. We can compute  N c 
as the  sum of these two values weighted by their  frequency 
of occurrence: 

NC M = k + 

k(IECl - k) (lEVI - 1)k 
- -  + 

lEVI IECl 

k (21Eel _ k - 1 )  
lEVI 

(IEC[-1) ( IEkC[_-ll ) 

We refer to the  factor k/lEC[ as the  change rate, the  fraction 
of covered entities tha t  are changed. 

We can compute  7rM as before by dividing NCM by ITI, 
which for pa t te rn  C is equal  to IECl - 1: 

7rM 
ITI 

k 

IECl 
(2lEVI - k - 1) 

IEC I - 1 

We note tha t  when k is 1, 7rM is 2/[ECh which is the value 
computed  using the  formula for 71"M presented in Section 3.1. 

For large vMues of lEVI, we can approximate  ZrM as fol- 
lows: 

k (2]Eel - k - 1 )  
7r M 

lee[  lEVI 

Figure  5 presents a plot of the  selection rate  qrM versus the  
change rate  k/IEC[ for pa t t e rn  C. As the  plot shows, VM 
increases rapidly as k increases, and hence as the  the  change 
rate  increases. 

As was shown in Section 3.1, we can also compute  es- 
t imates  for r and SM,C and use the  Leung-Whi te  model  to 
analyze the  cost-effectiveness of M.  In part icular ,  the  esti- 
mates  for r and SM,C can be plugged into the Leung-Whi te  
model  to de termine  the  m a x i m u m  cost-effective value for 
the  selection rate  7rM. This  m a x i m u m  can then  be used to 
find the  m a x i m u m  number  of changed entities k for which 
cost-effectiveness can still be achieved. The  feasibility of 
achieving such a change rate  can then  be determined by 
consult ing with tes t ing personnel  or th rough an analysis of 
historical change da ta  for P. 

3.3 Minimization Strategies 
Minimizat ion strategies have the  special proper ty  tha t  a 
change to a single ent i ty  requires t ha t  only one test  case be 
rerun regardless of the  na ture  of the  relation covers M (t, e). 
Therefore,  we focus on the more interest ing s i tuat ion in 
which mult iple  entities are changed. We consider next  the  
case in which k entities are changed. 

For pa t t e rn  A shown in Figure  2, the  number  of test  cases 
needed when a minimizat ion  selection s t rategy is used will 

123 



Selection rate 
(PM) 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 I I I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Change  rate  (k/IE cl) 

Figure 5: Plot of ~rM versus k/IE¢l for Coverage Pattern C of Figure 4 (Safe Strategies). 

range between k/2 and k, again depending on the "proxim- 
ity" of the changed entities. 

For pattern B shown in Figure 3, the number of test cases 
needed will always be 1, since the test case that exercises all 
of the entities can be selected. 

For pattern C shown in Figure 4, the number of test cases 
needed will be either k - 1 if the core entity is not changed, 
or k if the core entity is changed. As in Section 3.2, we can 
compute N c as the sum of these two values weighted by 
their frequency of occurrence: 

g c = 

_ k ( I E C l - k )  + - -  
IECl 

_ k (iECl _ 1) 
IECl 

( k - l ) (  'EC~I  1 ) 

+ 

(k - 1)k 

IEcl 

As before, normalizing NCM by dividing by ]Th.we get 

~rM = IT I 

k I E C l -  1 
[ECl IECl- 1 

k 

This last value is simply the change rate, i.e., the fraction 
of the entity set that is changed. Thus, when minimization 
strategies are applied to pattern C, the selection rate is equal 
to the change rate, and the number of test cases needed is 
simply k, the number of entities changed. 

Estimates for ~rM can then be plugged into the Leung- 
White model as was discussed in Section 3.2, along with 
estimates for r and SM,C. 

4 Experience 

When new test selection strategies of any kind are pro- 
posed, it is generally necessary to assess their effectiveness 
and cost. A safe, code-based selective regression testing ap- 
proach described by Chen, Rosenblum and Vo, called TEST- 
TUBE, was designed explicitly to address the issue of cost- 
effectiveness [3]. In order to assess the usefulness of the 
approach, a case study was performed on 31 versions of the 
1988 release of the KornShell, a command processor for the 
UNIX (~ operating system [2]. 3 It was found that in only 
six versions (20%, with the first version ignored since all 
test cases were necessarily run on the first version prior to 
analysis), at least one test case was eliminated from the 
entire test set using the TESTTUBE approach; in three of 
these six versions no test cases were selected, either because 
the versions involved changes to documentation or to un- 
covered code. This means that  in the remaining 24 versions 
(80%) the analysis required by the approach was entirely 
wasted. Even in those versions for which less than the en- 
tire test suite was selected for retesting, the savings that 
was achieved was less than the cost of the analysis. This 
lack of cost-effectiveness may be attr ibuted to a number of 
factors--the coarse level of granularity of TESTTUBE's anal- 
ysis, the very low cost of executing the KornShell test suite, 
and the structure and behavior of the KornShell itself. This 
last factor arises from the fact that  the KornShell is essen- 
tially a language processing system, all of whose subsystems 
( input /output  components, tokenizer, parser, semantic an- 
alyzer and command execution component) are invoked on 
even the smallest of inputs. Therefore, changes made to the 
KornShell frequently impact all subsystems of the software. 

In this case study, an average of 88.1% percent of the 
test suite was selected by TESTTUBE to retest each version. 
If we had instead used our predictor to determine whether 
or not we could expect TESTTUBE to be cost-effective for 

3UNIX is a registered t rademark  licensed exclusively by Novell, 
Inc. 

124 



selecting test  cases for KornShell ,  we would have computed  
a value of 87.3% for 7rM for a change to one ent i ty  in the  
first version, which is very close to the  actual  average of 
88.1%. This  indicates tha t  there is a great  deal of overlap 
in the entities covered by the  KornShell  test  suites, leading 
us to conclude tha t  there  is very l imited oppor tun i ty  for the 
TESTTUBE method  to el iminate test  cases during mainte-  
nance of the  KornShell .  Fur thermore ,  comput ing  71"M for 
all 31 versions reveals tha t  the percentage varies very lit t le 
over the version history. For the  31 versions we considered, 
71"M ranged between 82.5% and 87.5%, providing some con- 
f irmation for the hypothesis  tha t  the  relation coversM(t, e) 
is relatively stable th roughout  maintenance.  

The  average cost r of execut ing a KornShel l  test  case was 
0.052 CPU-minu te s  on a Sun SPARCsta t ion  1+ workstat ion,  
and the per- test-case cost SM,C of carrying out TEsTTUBE~s 
coverage analysis was 0.765 CPU-minutes .*  Applying the  
Leung-Whi te  cost-effectiveness model  to the predicted se- 
lection rate and test  execution cost indicates tha t  the  to ta l  
per-test-case analysis cost SM must  be less than  0.014 CPU-  
minutes.  Clearly, using this measure,  TESTTUBE would not 
be considered cost-effective for KornShell .  

As a further  test  of the  predictors,  the  cost-effectiveness 
of two selective regression test ing methods  were analyzed 
for possible use on a single version of SFIO,  an I / O  pro- 
g ramming  l ibrary for the  U N I X  opera t ing  system [7]. One 
me thod  was TESTTUBE, while the  other  was a hypothet i -  
cal safe me thod  employing coverage and change analysis at 
the s ta tement  level. To s imulate  the coverage analysis em- 
ployed by the  second method,  the  commercial  test  coverage 
tool PureCoverage  was used. 5 The  per- test-case execution 
cost r of an SFIO test  case was 0.126 CPU-minu te s  or 0.162 
clock-minutes on a Sun SPARCs ta t ion  1+ workstat ion.  6 

For TESTTUBE, ~rM was es t imated  to be 50.9% for a 
change to a single entity, and the per- test-case coverage 
analysis cost SM,C was 0.228 CPU-minu tes  (0.244 clock- 
minutes).  The  Leung-Whi te  model  requires the  to ta l  analy- 
sis cost SM to be less than  0.122 CPU-minu tes  (0.156 clock- 
minutes),  again indicat ing tha t  TESTTUBE would not be 
cost-effective. 

For the  hypothet ica l  s ta tement -based  method,  7l'M was 
es t imated to be 21.6% for a change to a single entity, while 
the per-test-case coverage analysis cost SM,C was 0.179 C P U -  
minutes  (0.487 clock-minutes).  Because of the  lower selec- 
tion rate,  the Leung-Whi te  model  places a higher l imit  of 
0.457 CPU-minu te s  (0.588 clock-minutes) on the  to ta l  anal- 
ysis cost SM, suggesting tha t  this me thod  may be cost- 
effective if s ta tement- level  change analysis could be per- 
formed efficiently enough. Fur ther  analysis of the  s ta tement -  
level coverage relation would be needed to determine  how 
many s ta tements  could be changed before the  me thod  be- 
comes cost-ineffective. 

5 Conclusions 

We have described the use of computa t iona l ly  efficient pre- 
dictors as a way of de termining whether  or not  a tester  
should consider applying a selective regression test ing s trat-  

4SPARC is a trademark of SPARC International, Inc. 
5pureCoverage is a trademark of Pure Software. 
6For the SFIO case study, we computed both CPU times and clock 

times. In general, clock time may be a better measure of execution 
cost than CPU time, since test execution often involves a great deal 
of manual activity that is not performed on the computer. 

egy, given tha t  it may involve considerable resources to per- 
form the analysis necessary to use the strategy. As an initial 
step in this direction, we have proposed a simple, computa-  
t ionally efficient predictor  and applied it to the 1988 release 
of the  KornShell .  Our  predictor  computed  tha t  87.3% of the 
the  test  suite would need to be rerun if a single ent i ty  were 
to be changed in this first version. Coupl ing this predict ion 
with  the Leung-Whi te  cost model,  and using empirically de- 
te rmined values for the average cost of execut ing a KornShell  
test  case and TESTTUBE's cost of performing coverage anal- 
ysis, we could have decided a priori tha t  it would not  have 
been cost effective to use the  TESTTUBE approach to do 
selective regression test ing for KornShell .  We also applied 
our predictors to evaluate  the  cost-effectiveness of two selec- 
t ive regression test ing strategies for a p rogramming  library 
called SFIO.  

In order to i l lustrate the  computa t ion  of our predictors 
for changes to mult iple  entities, we used three sample cov- 
erage pat terns .  While these pat terns  are not  necessarily 
representat ive of actual  coverage pat terns  tha t  occur in real 
software systems, they  do help to demons t ra te  the  range of 
behavior  in cost-effectiveness tha t  might  be encountered in 
practice. Fur ther  empirical  research is needed to identify 
a comprehensive set of representat ive  coverage pat terns  so 
tha t  our results can be generalized to a wide variety of soft- 
ware systems. In addit ion,  we expect  to continue developing 
more sophist icated predictors tha t  can be used to determine  
the  applicabil i ty of a proposed selective regression test ing 
s t ra tegy for test ing a given software system. 

Based on our results, we can s ta te  that ,  in general, the  
cost-effectiveness of a selective regression tes t ing me thod  can 
never be taken for granted.  Much more empir ical  s tudy is 
needed to evaluate  the  various approaches tha t  have been 
proposed in order to de termine  the  circumstances under 
which they  will be cost-effective. 

References 

[1] P. Benedusi,  A. Cimitile,  and U. DeCarlini .  Post-  
mMntenance Testing Based on Pa th  Change Analysis. In 
Proc. Conf. Software Maintenance 1988, Phoenix,  Oct.  
1988, pp. 352-361. 

[2] M.I. Bolsky and D.G. Korn, The New KornSheU Com- 
mand and Programming Language, Prentice-Hall ,  1995. 

[3] Y.-F. Chen, D.S. Rosenblum and K.-P. Vo. TestTube:  
A System for Selective Regression Testing. In Proc. 16th 
Int'l. Conf. on Software Engineering Sorrento, Italy, May 
1994, pp. 211-220. 

[4] K.F.  Fischer. A Test Case Selection Method  for the Val- 
idat ion of Software Maintenance Modifications.  In Proc. 
COMPSAC '77, Nov. 1977, pp. 421-426. 

[5] M.J.  Harrold and M.L. Sofia. An Incrementa l  Approach 
to Uni t  Testing during Maintenance.  In Proc. Conf. Soft- 
ware Maintenance 1988, Phoenix,  Oct.  1988, pp. 362- 
367. 

[6] J. H a r t m a n n  and D.J.  Robson.  Techniques for Selective 
Revalidat ion.  IEEE Software, Jan.  1990, pp. 31-36. 

[7] D. G. Korn  and K.-P. Vo. SFIO: Safe/fast  s tr ing/f i le  
IO. In Proc. Summer 1991 Usenix Conf., pages 235- 
256. U S E N I X  Association,  June  1991. 

125 



[8] H.K.N. Leung and L. White. Insights into Regression 
Testing. In Proc. Conf. Software Maintenance 1989, Mi- 
ami, Oct. 1989, pp. 60-69. 

[9] H.K.N. Leung and L. White. Insights into Testing and 
Regression Testing Global Variables. Software Mainte- 
nance: Research and Practice, Vol. 2, 1990, pp. 209-222. 

[10] H.K.N. Leung and L. White. A Cost Model to Com- 
pare Regression Test Strategies. In Proc. Conf. Software 
Maintenance 1991, Sorrento, Italy, Oct. 1991, pp. 201- 
2O8. 

[11] T.J. Ostrand and E.J. Weyuker. Using Data Flow Anal- 
ysis for Regression Testing. In Proc. Sixth Annual Pa- 
cific Northwest Software Quality Conf., Portland, Or, 
Sep. 1988, pp. 233-247. 

[12] G. Rothermel and M.J. Harrold. A Framework for Eval- 
uating Regression Test Selection Techniques. Proc. 16th 
Int'l. Conf. on Software Engineering, Sorrento, Italy, 
May 1994, pp. 201-210. 

[13] A. Taha, S.M. Thebaut, and S-S. Liu. An Approach to 
Software Fault Localization and Revalidation Based on 
Incremental Data Flow Analysis. In Proc. COMPSA C89, 
1989, pp. 527-534. 

126 


