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ABSTRACT
Static analysis tools used for detecting information exposure 
bugs  can  help  software  engineers  detecting  bugs  without 
introducing  run-time  overhead.  Such  tools  can  make  the 
detection of information-flow bugs faster and cheaper without 
having  to  provide  user  input  in  order  to  trigger  the  bug 
detection.  In this  paper we  present a bug-detection tool  for 
detecting information exposure bugs in C/C++ programs. Our 
tool is context-sensitive and uses static code analysis for bug 
detection. We developed our bug finding tool as a Eclipse plug-
in in order to easily integrate it in software development work 
flows. The bug reports provide user friendly visualizations that 
can be easily traced back to the location where the bug was 
detected. We discuss one static analysis approach for detecting 
information exposure bugs and relate briefly the usability of 
our bug testing tool to empirical research. We conducted an 
empirical evaluation based on 90  test programs which were 
selected from the Juliet test suite for C/C++ code. We reached 
a true-positive coverage of 94.4% in 121 seconds for 90 test 
programs having a total of 12589 source code lines. 

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Programmer workbench; 
D.2.5  [Testing  and  Debugging]:  Symbolic  execution;  D.2.5 
[Testing  and  Debugging]:  Testing  tools;  D.2.6  [Programming 
Environments]: Integrated environments;

General Terms
Security, Verification, Experimentation

Keywords
Software  bugs,  software  testing,  information-flow,  static  taint 
analysis, integrated development environment

1. INTRODUCTION
Information exposure weaknesses are a type of Information Flow 
(IF)  weaknesses. IF weaknesses represent one type of software 
weakness,  which  can  exist  in  the  software  without  directly 
breaking  the  code  but  rather  offering  useful  information  to  an 
attacker  who  could  exploit  IF  leakages  [1].  These  types  of 
software bugs can lie dormant in an application for a long time 

period  without  being  detected  and  can  cause  huge  harm  [1]. 
According to Common Weakness Enumeration (CWE) CWE-200 
(the parent weakness class of the test programs used in this paper) 
[2] Information Exposure (IE) is the “intentional or unintentional 
disclosure  of  information  to  an  actor  that  is  not  explicitly 
authorized to have access to that information”. IE vulnerabilities 
are a subtype of IF vulnerabilities. As of 2007 IE leakages rank 
6th  in  the AOWASP top  ten list  [3] and as  of  2010 rank 7th 
according to VERACODE mobile app top ten list  [4]. We argue 
that software should be thoroughly tested before it is released in 
order to detect potential exploitable IF vulnerabilities.
The process of software testing accounts for more than 50% of the 
whole effort during software engineering projects according to [5] 
and  [6].  Detecting  software  bugs,  which  cause  information 
exposure vulnerabilities is crucial  because potential  exploitation 
possibilities should be removed from source code before release. 
Software weaknesses are hard to detect and can cause information 
leaks  which  attackers  can  exploit.  By  building  Control  Flow 
Graphs  (CFG)  which  describe  possible  execution  paths  and 
tracking taint data as it ”moves” along the path nodes guarantees 
high path coverage.
Many static analysis approaches are very promising but still have 
to  be applied to security scenarios.  At the same time a relative 
high  number  of  tool  vendors  (Microsoft,  IBM,  Coverity, 
klocWork,  Infosys,  Cognizant,  Hexaware)  start  to  address  the 
need for static analysis into mainstream tools. Some example tools 
are ESP  [8] a large scale property verification approach,  model 
checkers  as  SLAM  [9] and  BLAST  [10] which  use  predicate 
abstraction to examine program safety properties. FindBugs [11] a 
lightweight byte code checker based on predefined bug patterns. 
Triggering IF bugs is not a trivial job and can be addressed using 
dynamic analysis, static analysis or hybrid approaches. Dynamic 
analysis introduces computing overheads and it cannot guarantee 
that  all  possible  execution  paths  are  exercised.  Where as static 
execution provides all potentially execution paths but needs some 
heuristic for selecting only the relevant paths. Also it is relevant to 
select  only reachable  paths,  which  can  be  determined  with  the 
help of an SMT solver.  The mathematical expressions provided 
to the SMT solver often are blown up in size and can get very 
complex [12].
IF  vulnerabilities  can  be  addressed  by  dynamic  analysis  [14], 
[15],  [16] static analysis  [17],  [18],  [48],  [19],  [20] and hybrid 
approaches which combine static and dynamic mechanisms [21]. 
Tracking taint variables through the program execution is key to 
detect IE weaknesses, which are a type of IF vulnerabilities. IF 
controls focus on preventing leaks from confidential (or  high) to 
output  (or  low)  data.  The  desired  baseline  policy  is 
noninterference [22] that demands that there is no dependence of 
public outputs on confidential inputs. There are two types of IF 
variants,  which  can  be  taken  into  account  when  dealing  with 
variable interference. Information is passed from right-hand side 
to  left-hand in an assignment through an  explicit  flow.  Assume 
variables  confidential and  output have  high  and  low  security 
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levels, respectively. For example,  output := confidential  exhibits 
an explicit flow from confidential to output. Information is passed 
via  control-flow structure  in  an  implicit  flow. For  example,  if 
confidential then output := true else output := false has an implicit 
flow. The value of the output variable depends on the confidential 
variable.  We will  call  a conditional  or a loop  high if its  guard 
involves a high variable.  Information-flow control  is concerned 
with preventing explicit and implicit flows in order to guarantee 
non-interference.
One possibility to prevent explicit and implicit flows is by using 
purely static Denning-style enforcement [23]. Each assignment is 
checked  if  it  fulfills  the  following  conditions:  the  level  of  the 
assigned variable must be high when there is a variable on the 
right-hand side of the assignment (tracking explicit flows) or in 
case the assignment appears inside of a high conditional or loop 
(tracking implicit flows). This mechanism guarantees that no low 
computation occurs in the branches of high conditionals and loops 
[24].  Another possibility is through dynamic enforcement, which 
is based on dynamic security checks similar to the ones done by 
static analysis. Whenever there is a high variable on the right hand 
side in an assignment (tracking explicit flows) or the assignment 
appears inside a high conditional or while loop (tracking implicit  
flows)  then  the  assignment  is  only  allowed when the  assigned 
variable  is  high.  This  mechanism dynamically  keeps  a  simple 
invariant of no assignment to low variables in high context [24].
We have chosen the C programming language because it is widely 
used  for  developing  embedded  systems  ranking  currently  first 
position  in  the  TIOBE  [25],  Langpop  [26] rankings  of 
programming  languages  and  second  position  in  the  IEEE 
Spectrum top 10 of most used programming languages [27]. We 
argue that embedded software should be tested more thoroughly 
and bug detectors should be integrated as early as possible in the 
software  development  cycle.  We  think  that  integrating  bug-
finding functionalities in an IDE will help to detect the IF bugs 
early in the development process of software systems. The Eclipse 
IDE is the most used Java IDE in the industry [28]. By designing 
an   Information  Exposure  Checker  (IEC),  which  can  run  in 
different  running  modes,  we  think  that  we  can  increase  the 
productivity of the code debugging process. The IEC can detect 
bugs during run-time of the Eclipse IDE and it offers two main 
advantages.  First,  it  offers  the  possibility  of  detecting  IE bugs 
during development.  Second, we get a high level of integration 
between the IDE and the bug detection mechanisms. 
The goal  of  our  research is  to  develop  a  tool  for  detecting IF  
exposure bugs using static analysis. The tool should use context-
sensitive  analysis  and  should  rely  on  a  Satisfiable  Modulo 
Theories  (SMT)  [29],  [30] solver.  In  summary  we  make  the 
following contributions:

 We developed  an  IE  detection  tool  capable  to  detect 
information exposure  bugs fully automated using SMT-
lib 2.0 [55].

 Inter-procedural,  path-sensitive  analysis  and  context-
sensitive analysis was used to detect the IE bugs.

 We propose a new method to define sinks, sources and 
taint  confidential  symbolic  variables  by  defining 
function models.

 We defined an easy method to add new checkers into  
the Static  Analysis  Engine  (SAE)  [31] by adding  the 
required  function  models  for  the  sinks,  sources  and 
tainting confidential variables.

 The SAE statement processor was extended to support 
explicit  information  flow  propagation  of  symbolic 
variables.

 We designed our  checker as an eclipse plug-in which 
can be run in different modes as presented in Fig. 8b.

2. MOTIVATION
The detection of information exposure bugs is based on finding 
the locations in source code where sensitive information is about 
to  leave  a  trust-boundary.  An  attacker  could  exploit  this  IE 
vulnerability  if  this  information  is  leaked to  the outside  of  the 
system. This  may contain  sensitive information  about  a remote 
server or other secret resources. We want to build a tool capable 
to detect IE vulnerabilities.

0.           void CWE526_bad(){
1.             if (staticFive == 5){
2.               /*FLAW:environment variable exposed*/
3.        printLine(getenv("PATH"));
4.              }
5.           }

Figure 1a. CWE-526 test programs source, after [7].

0.           void printLine (const char *line){
1.             if(line != NULL){
2.                    printf("%s\n", line);
3.             }
4.           }

Figure 1b. CWE-526 test programs sink,  after [7].

Fig.  1a  and  Fig.  1b  present  a  information  exposure  scenario 
between the source, Fig. 1a, line 3 and the sink Fig 1b, line 2. 
These  code  snippets  are  contained  in  the  CWE-526  test  case 
available in [7]. On line 3 in Fig. 1a the system PATH variable is 
sent  to  the  printf() sink  located on  line  2  in  Fig.  1b.  The 
printLine()function presented in Fig. 1a is a wrapper  for the 
C printf() function and it is contained in another C file.  The 
trust-boundary is represented in this case by the  printf()sink 
function.  For the  getenv() we define a function model where 
we set the return value of it to be confidential. The return value of 
the  getenv() will  be  propagated   using  static  execution  and 
explicit  IF.  When  a  confidential  symbolic  variable  is  about  to 
leave the sink  printf() the interpreter will  be notified.  This 
represents the bug triggering condition used by our IE checker.

2.1 Challenges and Design Requirements
We formulated  our  research  challenges  as  two  questions:  It  is 
possible to successfully use static analysis and the SAE engine to 
develop  an  IF  checker  for  detecting  IE  bugs?  What  are  the 
performance increases  in  comparison  to  related  research  work?
The solutions to our challenges will be presented throughout the 
sections 3, 4 and 6. 
The IE checker  should  find  IE vulnerabilities  in  the test  cases 
Information  Exposure  Through  Environment  Variables  (CWE-
526), Information Exposure through Debug Log Files (CWE-534) 
and Information Exposure through Shell  Error Message (CWE-
535) obtained from the Juliet test suite [7]. The logic for detecting 
each type of vulnerability should be contained in one  checkers 
class, which should be attached to the interpreter.  The interpreter 
should trigger the checker at a possible bug location,  i.e., output 
through a trust boundary. IF checker  requirements:

 The  IEC  should  track  IF's  and  detect  potential  IE 
vulnerabilities.

 The IEC should be capable of checking test programs 
composed of more than one C/C++ file.

 Trust-boundaries should be defined using SAE [31].

 Confidential  variables should  be propagated  based on 
explicit IF.
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 The IEC should indicate the location in the test program 
file where the vulnerability was detected by using the 
mark-up label available in the Codan API [34].

The remainder  of  the paper  is  organized  as follows.  Section  3 
presents the architecture of our IE checker. Section 4 contains the 
implementation of our checker. Section 5 contains the IE checker 
tool  demo.   Section  6  contains  empirical  results.  Section  7 
contains related work and section 8 is devoted to conclusions and 
future work. 

3. ARCHITECTURE
Our IE checker is based on the static analysis engine [31] which is 
used for C/C++ source code analysis and has in the back-end the 
MathSat  [32] SMT solver. The steps needed to extend the SAE 
are briefly explained. A new function model is created for each 
sink and source and added to the environment models package, 
which contains models for all potential sources and sinks present 
in  the  selected  test  cases.  Function  models  are  used  to  model 
sinks,  sources and other  types of trust-boundaries.  At the same 
time  function  model  are  used  to  notify the  interpreter  when  a 
previously  tagged  variable  is  about  to  pass  through  a  trust-
boundary. The interpreter will be notified by sending it a potential  
tagged  symbolic  variable.  Afterward  all  the  currently  attached 
checkers will be notified by sending the tagged symbolic variable 
to them. Inside the checker class it is checked if the variable is  
confidential,  sensitive,  etc.  If  the  check  if  positive  then  a  bug 
report will be issued.

3.1 Static Analysis Engine Architecture

Figure 2. SAE architecture.

The function models contain a tainted symbolic variable with a 
confidential  label  assigned to  it.  The symbolic variable will  be 
propagated  along  a path.  The interpreter  will  be  notified  when 
passing over a sink. The sink notifies the interpreter by sending a 
symbolic  variable,  which  could  be  confidential  or  not.  The 
interpreter calls each previously attached checker. The symbolic 
variable  is  checked  whether  or  not  it  is  confidential  by  the 
checker. If the variable is confidential then a bug report will be 
issued. If additional logic for checking other relevant conditions is 
needed  then  this  can  be  added  in  the  IE  checker  class.  The 
architecture of the used static analysis engine is presented in Fig. 
2. A more detailed explanation of the main classes contained in 

the SAE can be seen in the paper  [31]. The reused Codan API 
interfaces and classes  are presented  in  the  Codan API  package 
shown  in  Fig.  2.  The  interface  IChecker adds  to  the 
implementing class the possibility to work with project resources 
like: projects, files, etc.
The  AbstractCheckerWithProblemPreferences class 
extends the class AbstractChecker. It contains methods for 
defining the run-time settings for the checker class. Checkers can 
generate  several  types  of  outputs.  Each  checker  preference 
settings can be defined individually.  The abstract ASTVisitor 
class  is  a  Codan  base  class,  which  is  extended  by  all  visitor 
classes  that  need  to  traverse  the  nodes  of  an  AST.  The 
ASTVisitor  implements  the  visitor  design  pattern.  The 
visit()  methods  implement  a  top-down  traversal  and  the 
leave()  methods  implement  a  bottom-up  traversal  of  a  C 
statement  represented as an AST.

3.2 Information Exposure Checker 
Architecture

 
Figure 3. The IF checker architecture. 

The blue lines in Fig. 3 indicate all the dependencies between the 
SAE  presented  in  Fig.  2  and  our  IE  checker.  Implementation 
details  for  the  InformationExposureChecker class 
(IECC) will be presented since it contains the bug triggering. In 
the class  SymVarSSA we declared a symbolic boolean variable 
confidential and defined its getter and setter. We used it to set the 
return  value  of  the  function  call  getenv(“PATH”) to 
confidential. Thus, it is possible to specify other types of variables 
(sensitive, etc.) and expressions, which could be tainted. 
The class ModelGetEnvironment (MGE) contained in Fig. 3 
implements the IFunctionModel interface.  The  MGE  sink 
model of the getenv(“PATH”)contains the implementations of 
the  exec()  and  getSignature()methods.  The 
exec()method will be called by the Interpreter in order to 
get the return value of the getenv().  
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In  getSignature()  the  parameters of  the  getenv()  are 
defined and a return type is set. In the exec() method we taint 
the  confidential  value  to  be  the  return  value  of  the  exec() 
method. The IECC will be attached to the Interpreter in the 
class  SymBolicExecutionEngine  that  contains  the  main 
program loop, which iterates through all program paths.  During 
loop  iteration when the Interpreter reaches the printf() 
C function or other trust-boundaries then the exec() method 
contained  in  the  sink   function  model  ModelPrinf  will  be 
called.  Then the Interpreter calls the updateChecker() 
method which notifies the IE checker contained in IECC.

4. CHECKER IMPLEMENTATION 
Based on a runtime language interpreter we are handling symbolic 
variables  during  static  execution.  Our  statement  processor 
enforces  inference  rules  on  C/C++ statements  as  the  statement 
AST is  traversed.  For  each  node  contained  in  the  new path  a 
statement processor  instance will  be  instantiated.  The inference 
information  is  constructed  for  each  statement  on  the  fly  by 
enforcing inference rules based on explicit IF's. 
When the static analysis is discovering that a confidential variable 
is about to pass through a previously defined trust-boundary then 
an IE bug report is issued which is reported in the Problems view 
inside the second Eclipse CDT instance. By clicking on the bug 
report  available in  the  Problems view the user navigates to the 
bug  location  in  the  file  where  the  bug  was discovered.  A bug 
report is composed of the file and line number where the bug was 
detected.
In  order  to  propagate  the  confidential  return  value  from  the 
getenv() source to the  printf()sink we had to extend the 
StatementProcessor (SP) class.  A  Interpreter object 
is  instantiated  for  each  new  path. A  new  SP  object  will  be 
instantiated  by  the  Interpreter for  every  IASTNode 
(IbasicBlock)contained  in  the  current  path.  Thus, 
propagating  only  the  symbolic  variables  belonging  to  one 
execution path at a time. For each IASTNode the corresponding 
leave() methods are called depending on the type of the node. 
The leave()  methods  are  used  to  traverse  each  statement 
AST in a bottom-up fashion. The  leave() methods are also 
used for confidential  variables propagation. The SP extends the 
ASTVisitor class  which  is  an  implementation  of  the  visitor 
design  pattern  providing  top-down  (visit() methods)  and 
bottom-up (leave() methods) traversal of each node contained 
in  the  current  path.  Each  IASTNode is  a  C/C++  line  (no 
comment  lines  are  included)  originating  from  the  C/C++  test 
program file. When the  SP detects  that a symbolic  variable  or 
function  return  variable  is  confidential as  each  statement  is 
traversed on the current path it tries to propagate the confidential  
variable based on explicit IF.  For the CWE-526 test programs 
MGE is  the source because from here confidential  information 
flows into the program and  ModelPrintf is the sink because 
here the potential information is leaving the program. When the 
SP detects the getenv() function  inside the wrapper function 
printLine() then it adds a new confidential variable in the 
Interpreter. The confidential return value comes from MGE, 
which is the function model of the getenv() function call. The 
confidential  variable  is  propagated  to printline()  as 
parameter.  When the SP reaches the printline() statement 
a binding call is made.  The binding call returns the parameters 
names  of  the printline()  header  function. The  new 
parameter  names are  needed  because these are  used  inside  the 
printLine()  implementation. These  parameter  names  are 
potential confidential symbolic variables. 

The  printLine()function  header  has  line  as  parameter. 
After we detect line in the method header and we know that we 
are  on  a  potentially  reachable  path  we add  a  new confidential 
variable called line in the Interpreter. This means that on 
this path from the source printLine(getenv(“PATH”)) to 
the  sink  printf("%s\n", line) the  getenv(“PATH”) 
confidential  return value will  be assigned to  the variable  line 
which  becomes  also  confidential.  This  happens  when 
printLine() calls  the  execute() method.  The 
implementation contains printf(), as presented in Fig. 1b. The 
SP  proceeds  until  it  reaches  the  printf("%s\n", line) 
node. After reaching this statement the  Interpreter will  be 
notified from the function model ModelPrintf using line as 
parameter. The interpreter will be notified because the statement 
printf("%s\n", line) is a sink. The Interpreter will 
be  called  with  resolveOrigSymVar()  and  directly 
afterwards  the    getCurrentSSACopy() method  will  be 
called.  These  methods  search  in  the  Interpreter for  a 
symbolic  variable  called  line.  After  this  call  we  get  a 
SymPointerSSA variable  s that  we  send  over  to  the 
Interpreter by calling ps.notifyTrustBoundary(s). 
The Interpreter then calls our previously attached IF checker 
by  calling  his  updateChecker(SymVarSSA  s,  IFile 
file,  IASTFileLocation  loc) method.  The 
Interpreter sends to the IF checker the previously found  s 
variable, the file and the location in the file from where it was 
notified. The IEC checks in the updateChecker() method if s 
is confidential. If  s is confidential then a new a bug report will 
be  created.  For  the  test  programs  contained  in  CWE-534  and 
CWE-535  the  propagation  is  similar  to  what  we  previously 
presented only the sinks and sources are different. 

4.1 Tainting and Triggering
The implementation of the static analysis engine  [31] is based on 
function models used for behavior description of standard C/C++ 
library function calls. A function model class contains 5 methods 
and implements the interface IFctModel. 
First,  the  constructor,  second  the  method  getName() which 
returns  the  name  of  the  function,  third, 
getLibrarySignature() returns the whole function header 
as  it  is  defined  in  the  C  standard  library,  fourth, 
exec(SymFunctionCall call) which  is  used  for  static 
execution of function calls (variables can be here tainted ( Fig. 4, 
line 25) and trust boundaries used for notifying a checker) fifth, 
getSignature()  returns  a  SymFctSignature object 
containing the data types of the function parameters and the return 
type  of  the  function.  The  difference  between  the  printf(), 
sink function model and the  getenv() source function model 
is that in the exec() method of the printf() class we notify 
our IF checker that a trust-boundary is about to be passed and in  
the  exec() method of the getenv() model we set the return 
value to confidential. Similarly it is implemented for the sinks and 
sources contained in the CWE-534/535 test programs.

0. private Interpreter ps;   
1. public Mgetenv(Interpreter ps) {
2. this.ps = ps;
3. }  
4. public String getName() {
5. return "getenv";
6. } 
7. public SymFunctionReturn exec
8.   (SymFunctionCall call) {  
9.     ArrayList<IName> plist = call.getParams(); 
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10.     SymPointerOrig isp =   
ps.getLocalOrigSymPointer(plist.get(0));  

11.     IName nebn = new EnvVarName();  
12.     SymIntOrig sb_size = new SymIntOrig(new 

ImpVarName());  
13.     SymArrayOrig sb = new SymArrayOrig(nebn,   

sb_size);    
14.     SymPointerSSA isp_ssa = null;  
15.   try {         
16.     sb.setElemType(eSymType.SymPointer);
17.     ps.declareLocal(sb);   
18.     ps.declareLocal(sb_size); 
19.     SymArraySSA sb_ssa = (SymArraySSA)
20.     ps.getLocalOrigSymArray(nebn).
21.     getCurrentSSACopy(); 
22.     isp_ssa = (SymPointerSSA) 
23.     ps.ssaCopy(isp);
24.    isp_ssa.setTargetType(eSymType.SymPointer); 
25.    isp_ssa.setConfidential(true);
26.    isp_ssa.setTarget(sb);   
27.   } catch (Exception e){ 
28. e.printStackTrace();
29. }    
30.  return new SymFunctionReturn(isp_ssa);
31. public SymFctSignature getSignature() { 
32.   SymFctSignature fsign = new      

SymFctSignature();        
33.   fsign.addParam(new  SymPointerOrig  

(eSymType.SymArray, new Integer(1)));    
34.   fsign.setRType(new SymPointerOrig
35.     (eSymType.SymPointer, new Integer(1)));    
36.  return fsign; 
37. }

Figure 4. The getenv() function model.

The SAE currently contains function models for the following C 
functions:  atoi(),  fclose(),  fgets(),  fwgets(), 
fgetws(),  fopen(),  gets(), memcpy(), mod(), 
puts(), rand(), srand, strcpy(), strlen(), 
time(), wcscpy(), wcslen(). For the IE test  programs 
the following function models were added: CWE-526 getenv()
(source),  printf()(sink), CWE-534  and  CWE-535 
LogonUserA(),  LogonUserW()(sources),  fprintf, 
fwprintf()(sinks).
The models are used either to taint a symbolic variable with the 
tag  confidential or  to  notify the  IF  checker  that  a  confidential 
tagged variable is about to pass a trust-boundary. 

4.2 Potential Implementation Gain
[33] presents some speedups through usage of backtracking inside 
the  SAE  and  reports  the  performance  increases  in  [31].  [33] 
reports a speedup of 5x-10x for statically analyzing 5978 SLOC 
representing  a  stack  based  buffer  overflow,  char  type  overrun 
memcpy()  (CWE-121)  and  an speedup of  2x for  16567 SLOC 
representing  a  stack  based  buffer  overflow,  CWE-129  fgets() 
(CWE-121) on  a  Core  2  Quad  CPU  Q9550,  on  64-bit  Linux 
kernel 3.2.0. 
We could use the new SAE version right of the box or implement 
our  own  interface  which  executes  potential  buggy  paths  in  a 
backtracking  manner.  Compared  from an  architectural  point  of 
view by switching to a backtracking execution speedups of around 
20 could be achieved for the test cases CWE-526/534/535. 
Other  implementation  gains  could  be  achieved  by  using  state 
cloning, parallelization or path merging. Thus, further necessary 
experiments  are  necessary in  the  future  in  order  to  prove  our 
assumptions.

5. TOOL DEMO

Figure 5. Information exposure checker work-flow.

The explicit IF theory for propagating confidential variables from 
trust-boundarys  (sources)  or  other  program  points  to  trust-
boundaries (sinks) was used in this paper. Our information-flow 
checker is based on the SAE that proved to scale for other types of 
bug checkers and larger test cases as well. The work flow used for 
running our checker is presented in Fig. 5. First, the C/C++ test 
programs have to  be selected and test  programs created  in  the 
workspace. Second, the trust boundaries have to be defined and 
confidential variables need to be tainted. Third, one or more test 
programs available in the workspace can be selected and the sub-
menu button Run C/C++ Code Analysis needs to be selected.  
The IE checker runs as an Eclipse plug-in project. The checker is 
launched  as  a  standard  Eclipse  application.  After  starting  the 
checker a second Eclipse CDT instance will be launched. The new 
Eclipse instance is presented in Fig. 6. For the test cases CWE-
526/534/535 we had 90 Test Programs (TPr) contained each in an 
separate  Eclipse  CDT  project.  The  TPr's  don't  have  to  be 
executable in order for us to perform static analysis. We run our 
checker  by  right-click  on  the  16th  project  for  example  and 
selecting Run C/C++ Code Analysis as highlighted in Fig. 6 with 
the mouse pointer.  The sub-menu presented in Fig. 6 appears by 
clicking right on one or more selected Eclipse CDT projects.

  Figure 6. Triggering the IF checker from the Codan  GUI. 
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The Codan API  [34] provides a Graphical User Interface (GUI) 
for running checkers. The result of the execution of the checker 
can be observed in Fig. 7. The numbering from ① to ③ in Fig. 7 
highlights the main GUI features available when starting the IE 
checker. Number   ① indicates for which project the IE checker 
was started. Number  ③ indicates the location where the bug has 
been detected. In Fig. 7 number   ③  indicates with an bug icon 
that at line 13 a buggy statement was detected. Also the whole 
statement where the bug was detected will be highlighted with an 
underlining  zigzag  line.  Another  Codan  API  feature  used  for 
displaying  bug  reports  is  represented  by  the  possibility  to 
configure bug reports as  Warnings, Errors or Infos, as presented 
in Fig. 8b.

Figure 7. IF checker bug report and bug highlighting. 

For the bug report presented in Fig. 7 with number ② we get the 
Description (containing a string which the user can configure), 
Resource (the file where the bug has appeared), Path (path of the 
file in the project hierarchy were the bug has appeared), Location 
(the line where the bug was reported) and  Type (the type of the 
reported bug). 
The output of the IF checker is a bug report for each detected IE 
bug. By double clicking on ② the user can navigate in the file at 
the line number where the bug was detected. One such bug report  
for the test  program 16 contained  in the test  case CWE-526 is 
highlighted in Fig. 7 with number  ② and the file location (file 
name and line number) of the bug with number .③

Figure 8a. Codan report types.  Figure 8b. IF checker 
running modes. 

Fig. 8a presents bug reports in a tree based view where every bug 
is  classified  based  on  one  of  the  following  three  categories: 

Warnings (yellow triangle icon), Errors (red circle icon) or Infos 
(blue “i” symbol icon). The warning (Information Exposure Bug) 
presented in Fig. 8a corresponds to the bug report  presented in 
Fig. 7. The “Errors” and “Infos” reports presented in Fig. 8a are 
not related to our IE checker. Codan reports use three different 
bug icons. 
By clicking on  the generated  Information  Exposure  Bug report 
presented  in  Fig.  8a the  appropriate  file  containing  the  bug  is 
opened in the main view and the mouse cursor will point to the 
line number containing the bug as presented in Fig. 7, number .③
The Codan API offers the possibility to configure each checker to 
be launched in different modes as presented in Fig. 8b. This bug 
triggering features can help an developer to control how and when 
Eclipse will trigger the bug detection analysis.  Thus, helping to 
avoid bug insertion during software development. 

6. EMPIRICAL EVALUATION 
The goal of our empirical evaluation is to assess the efficiency of 
our  IF  checker  in  terms of number of  detected  false-negatives, 
false-positives,  true-positives  and  execution  time.  At  the  same 
time we want  to  highlight  to  what extent  our  research work is 
significant.  The evaluation was performed using the IE checker 
presented in Section 4 and the Juliet test cases CWE-524/534/535. 
Evaluation results are presented in Table 1.

6.1 Methodology
The  test  cases  CWE-526/534/535  were  selected  because  they 
contain  information  exposure  bugs  which  we  want  to  detect. 
These test cases are publicly available in the last version of the 
Juliet test suite  [7] as of June 2014. CWE-526 contains 18 Test 
Programs  (TPr),  CWE-534  contains  36  TP,  and  CWE-535 
contains  36  TP.  For  all  the  test  programs contained  in  CWE-
526/534/535 we created a separate Eclipse CDT project. The test 
programs were then inserted in one Eclipse workspace. In Fig. 7 
some of the analyzed test programs can be observed.
The  IE  checker  was  run  automatically  for  each  test  program 
available in the workspace by selecting once all the Eclipse CDT 
projects  available  in  the workspace and selecting the sub-menu 
Run  C/C++  Code  Analysis.  We  measured  the  time  from  the 
moment of clicking the sub-menu button until all the projects in 
the workspace were completely analyzed. We also measured the 
execution time for the test programs belonging to one test case. 
We reported  the intermediate execution  time (for test  programs 
belonging to one test case), total execution time, number of true-
positives, false-negative and false-positives in Table 1. 
For measuring the time between the moment when the analysis 
was started  and  the  moment  when all  the  test  programs in  the 
workspace were analyzed we used  the following time stopping 
criteria.  For  determining the total  execution time we monitored 
the  event  when  there  was  no  longer  output  messages  in  the 
console. For determining the intermediate execution times for test 
programs belonging to one of the test cases CWE-526/534/535 we 
monitored when all the test programs had a bug icon attached to 
them. 
We new in advance which test programs should have an bug icon 
attached to them after running the static analysis and which test 
programs  should  not  have  a  bug  icon  (for  5  out  of  90  test 
programs it was not possible to perform the static analysis, this is 
reported in  the next section) attached from previous runs.  One 
such  bug  icon  is  presented  in  Fig.  7  above  number   ① and 
represents a yellow triangle with an exclamation mark inside.

6.2 Results and Constraints
Table  1,  contains  the  results  obtained  by analyzing  CWE-526, 
CWE-534 and CWE-535 with our IE checker. Table 1. contains 
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the following abbreviations: Test Program (TPr), Source Lines of 
Code (SLOC) without comments, FP (False-Positives), FN (False-
Negatives),  True  Positives  (TP)  no  programs containing  the  C 
goto  statement included,  Total True-Positives (TTP) per Test 
Case (TC), all  programs included and Total Execution Time in 
Seconds  (TES[s])  per  TC.  Used  system:  Ubuntu  12.04  LTS, 
Kernel 3.8.0-35-generic, 64-bit,  Intel® Core™ i7-4770 CPU @ 
3.40GHz × 8, 16 GB RAM.

Table 1. IF checker run-time results

Test case TPr SLOC FP FN TP TTP TES[s]

CWE-526 18 5371 0 0 17 18 30

CWE-534 36 14876 0 0 34 36 46

CWE-535 36 14362 0 0 34 36 45

Total 90 34609 0 0 85 90 121

Our tool found 85 TP out of 90 TP present in the used test cases.  
We were able to detect all IE bugs. It was not possible to test all 
test programs available in the test cases because the Codan API is 
not supporting the building of the CFG for source code containing 
C goto statements, e.g. goto stop;. 
The test cases CWE-526/534/535 contain 1, 2 and respectively 2 
test programs  containing the C goto statement. In total 5 out of 
90 test programs were not analyzable. Thus, we reached 94.44% 
test  coverage.  We think  that  if  this  limitation  will  be  removed 
from Codan API releases then 100% test coverage is achievable.

6.3 Comparison with Other Tools
Unfortunately  we  were  not  able  to  find  any  open  source  tool 
similar to our IE checker. We searched through related research 
and also the list provided by NIST [58] containing static analysis 
tools. 
The list  provided by NIST contains 53 tools from which 21 are  
free tools. From these 21 free tools only 11 tools can analyze C or 
C++  code.  From  the  11  tools  only  3  tools  can  be  used  for 
detecting information-flow vulnerabilities.
Cqual,  FlawFinder  and  Splint  were  used  to  analyze  our  test 
programs. None of the tools is based on SMT solvers and none 
was capable to detect the IF vulnerabilities present in the original 
test programs contained in CWE-526, CWE-534 and CWE-535.

6.4 Threats to Validity
Threats to external validity concern our ability to generalize the 
results of our empirical evaluation. In our empirical evaluation we 
have used three test cases, which were composed of C files having 
in total 90 test programs. Still there are a wide range of factors  
concerning  testing  platform  and  empirical  evaluation 
methodology that may impact the test results. 
Our IE checker is out  of the box usable for other  test cases as 
well. If the function models are not available in SAE then: first,  
the required function models need to be defined and second, the 
confidential variables need to be tainted. After this steps we can 
run our IE checker fully automatically by one mouse click. 
We are  aware that  the number of  function  models  is  currently 
limited but the steps needed to define a function model follows 
the same design pattern for all the function models. Each function 
model contains  5 methods. In some cases almost all the source 
code of other available function models could be reused. Thus,  
offering a high level of code reuse.
Threats  to  internal  validity  concern  our  ability  to  draw 
conclusions  about  independent  and  dependent  experimental 
conditions that make a difference or not if these are altered and 
whether  there  is  sufficient  evidence  to  support  our  claim. 

Regarding the definition of sinks and sources, which can cause IE 
leaks our own assessment may be subject to errors, incompetence 
or bias for test programs containing many KLOC. For small test 
programs as those used in this paper the definition of sinks and 
sources is not as error prone as for large test programs.
Threats to construct validity are concerned with how we  used the 
Juliet test cases. All the used test cases are publicly available in 
the Juliet  test  suite.  We created for each TP a separate Eclipse 
CDT project. We didn't want to modify the test programs in any 
form this is why we chosen this approach.
We think that neither of these “constraints” pose a real threat to 
the internal, external or construct validity of our approach as we 
provide  also  alternatives  and  argument  why  certain 
implementation decisions where made and others not.

7. RELATED WORK 
Every  kind  of  static  taint  analysis  is  based  on  a  type  of 
formalization  [35].  Program  dependence  graphs  [36],  [37], 
program slicing techniques [38], or types systems [39] are used as 
in the CQual tool [40]. 
For  scalability reasons,  internal  representations  as  Static Single 
Assignment  (SSA),  Gated  Single  Assignment  (GSA)  or 
Augmented Single Static Assignment (aSSA) are used [41].
During symbolic execution  we use per path  scope of  symbolic 
variables.
We  check  for  potential  IE  bugs  only  for  reachable  paths  by 
querying the path validation. The path validation decides based on 
queries submitted to the MathSat SMT solver if the current path is 
satisfiable or not. 
Deciding  during static execution  if  a path  is  reachable  reduces 
computational overhead and the total number of potential paths on 
which IE bugs could be located. Tainting confidential variables is 
done statically in the function models which are used to model 
each  trust-boundary.  Taint  variable  propagation  is  based  on 
explicit IF.
Thus, a large amount of research work has been already published 
concerning  symbolic  variables  tainting  and  propagating  their 
values using static, dynamic or hybrid taint-analysis. 
We  briefly  review  in  this  section  the  most  commonly  used 
approaches focusing more on the works that are close to the one 
we proposed in this paper.

7.1 Static Taint-Analysis
One of  the  approaches  to  compute  variable  taintness  is  to  use 
Static  Taint  Analysis  (STA)  techniques,  allowing  taking  into 
account  all  possible  execution  paths.  STA  does  not  provide 
runtime  information  and  environment  interaction  has  to  be 
simulated. Thus, the environment model introduces imperfections 
because it can not capture each real world interaction.
The majority of static taint analysis tools are based on user input 
dependencies  [42]. Our tool handles each potential input source 
independently by modeling it with function models that simulate 
their execution during static execution. We are capable to model 
inputs from users, files, sockets and input streams in this way. Our 
tool  is similar to the compile time analyzer PREfix  [43] in the 
sense that  both  tools  sequentially  are tracing distinct  execution 
paths and simulate the action of each operator and function call on 
the path.
Static  taint-analysis  can  be  used  to  enforce  privacy control  on 
mobile  devices.  Xiao  et  al.  [20]propose  a  transparent  privacy 
control approach that uses static symbolic execution [5] based on 
implicit  IF's.  Data  is  taint  using  scripts  developed  with  the 
TouchDevelop  [44],  which  allows  users  to  create  applications 
using  an  imperative,  and  statically  typed  language.  Variable 
tainting is based on the fact that the whole TouchDevelop API on 
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which  the  user  scripts  are  based  is  in  advance  taint  with 
information  concerning  sources  and  sinks.  This  approach  is 
different from ours because it supposes a previously known API 
where everything is taint and no other untainted sources or sinks 
exist.  We define our  sinks and sources directly in  the function 
models and simulate real execution using them. Our approach can 
handle the definition of sinks and sources for the same procedure.  
Thus, introducing more flexibility during analysis.
Guarnieri  et  al.  [17] taint  variables  using  a  central  knowledge 
base. The authors propose an Eclipse based tool capable to detect 
IF vulnerabilities due to missing input validation with the help of 
a decentralized knowledge base and on AST's generated by the 
JDT compiler. The static analyzer detects security issues related to 
input  validation  problems in  web applications.  The IF  analysis 
does not consider context sensitivity and it is not using an SMT 
solver.  The  framework  offers  the  possibility  to  taint  classes,  
packages or methods as trusted. The problem of IF vulnerability 
detection  translates  to  identifications  of  errors  between  entry 
(sources) and exit points (sinks) that do not use a trusted object.
FindBugs  [45],  [46],  [47] is  based  on  Eclipse  and  it  does  not 
detect IE bugs but it uses the concept of easy integration of new 
checkers into the static analysis. It checks for   bugs in Java byte  
code based on currently 300 patterns of coding mistakes for Java 
byte  code.  It  employs  intra-procedural  analysis  that  takes  into 
account information from instance of tests.  FindBugs has a plug-
in architecture in which detectors (code checkers) can be defined 
reporting different bug patterns. Detectors can access information 
about types, constant values, special flags and values stored on the 
stack or local variables. Some of the defined detectors perform 
intra-procedural  summary  information.  FindBugs  doesn't  use 
SMT  [29] or  a  SAT  [30] solver  in  order  to  perform the static 
analysis but is rather based on the previously mentioned patterns, 
which can be extended by the so-called  detector concept. Which 
is similar to our checker concept of easily attaching checkers to 
the language interpreter.

7.2 Dynamic Taint-Analysis
Another approach to computer variable taintness is based on Dy-
namic Taint Analysis (DTA), meaning that concrete program exe-
cution is performed. The main advantage of DTA is the possibility 
to  use data flow information  available during runtime but  only 
from one path of execution at a time. Thus sanity checks can be 
handled accurately avoiding many false positives. However, since 
each analysis is reduced to a single (current) execution path, its 
coverage level may remain very weak and control dependencies 
cannot  be fully taken into account.  At the same time it  cannot 
guarantee that all possible execution paths are exercised. Thus, it  
is in general geared towards explicit IF's.
The notion of taint variable was introduced with the Perl scripting 
language  and  its  taint  running  mode  where  taint  variables  are 
propagated  using  the  language  interpreter  across  variable 
assignment and security errors are raised when an insecure system 
call appears. There is a wide range of proposed  tools until now 
which  are  based  on  language  information-flow  security:  Java-
based  JFlow  [48] with  its  software  tool  Jif  [49] developed  an 
annotation language for Java code. Data values are labeled using 
security  policies.  The  attached  labels  restrict  the  movement  of 
data  values  thus  enforcing  a  policy  on  the  data  flow.  The 
programming languages:  Caml-based  FlowCaml  [50] and  Ada-
based SPARK Examiner  [51] and the scripting languages Perl, 
PHP,  Ruby and  Python  have a  taint  mode  similar  to  the taint  
mode available in Perl.
Dynamic taint analysis is not suitable for us because we want to 
have high path coverage and exercise all possible execution paths. 
Thus, we rely on a SMT solver, which helps to detect satisfiable 
paths and afterward it provides candidate paths to our IE checker.

7.3 Hybrid Taint-Analysis
Hybrid  taint-analysis  is  a  combination  of  the  previously  two 
mentioned  approaches.  Hybrid  taint-analysis  approaches  benefit 
from  having  during  static  analysis  information  available  from 
dynamic  execution  or  vice-verse  (during  dynamic  analysis 
information  from  static  execution).  Thus,  overcoming  some 
shortcomings of both.
The first approach explores executable paths in the same way as 
static symbolic execution does and interleaves concrete execution 
with symbolic execution. Concrete values from execution are used 
by these techniques when difficult constrains are reached allowing 
the algorithm to proceed. Concolic testing [52] is one of the most 
prominent  hybrid  analysis.  Concolic  techniques  can  reason 
precisely about  complex data structures  and simplify constrains 
when they exceed the capabilities of the solver. KLEE [13] is a 
Concolic testing tool for C programs which extends EXE [53] and 
addresses path explosion by allowing interaction with the outside 
environment  without  using  entirely  concrete  procedure  call 
arguments.
The  second  approach  is  mostly  based  on  IF  monitors  which 
monitor the execution of the program and use information from 
static  analysis  to  decide  for  example  when  it  is  safe  to  stop 
tracking  of  confidential  variables.  Moore  et  al.  [21] propose  a 
hybrid IF monitor,  which combines static analysis and dynamic 
mechanisms  in  order  to  provide  strong  information  security 
guarantees. Their approach adds runtime overhead in comparison 
to pure static analysis. The authors argue that their static analysis 
can determine when it is sound for a monitor to stop tracking the 
security  level  of  certain  variables.  This  extra  information  is 
provided through the usage of static analysis, which can reason in 
general more precise about certain IF's [24] proved by Russo and 
Sabelfeld.  Their  implementation  extends  the  information-flow 
monitor of Russo and Sabelfeld [24]. 
The  authors  present  conditions  for  incorporating  memory 
abstractions and analysis into a hybrid information-flow monitor. 
The static analysis relies on a flow-sensitive security type system 
[54] which helps  to  determine when a variable  cannot  cause a 
security violation. 
The  environment  taints  each  program variable  with  a  security 
level and tracks the currently stored  security level. Thus, allowing 
for a kind of automatic tainting and propagation of taint variables 
whereas  we  initially  taint  variables  statically  in  our  function 
models.
To the  best  of  our  knowledge our  checker  is  the  only  IE  bug 
checker that uses symbolic execution to find potential candidate 
paths  on  which  IE  bugs  could  reside  and  that  propagates 
confidential variables based on explicit IF's.

8. CONCLUSION AND FUTURE WORK
We  successfully  proved  that  our  IE  checker  can  be  used  for 
detecting IE bugs and at the same time we have shown to what 
extent  our  work  is  significant  by  comparing  it  with  related 
research work. 
The Codan API was used for parsing source files, dealing with 
project  resources  and  interpreting  C/C++  code.  Bug  location 
marking  was easily implemented using the markup capabilities 
offered by the Codan API. 
The AST traversing mechanisms offered the possibility to focus 
on  more  on  static  analysis  and  not  on  re-implementing  utility 
functions for manipulating AST nodes. Building of CFG for test 
programs containing  C  goto statements  should  be possible  in 
future  Codan  API  releases.  Thus,  removing  one  of  the  current 
implementation constrains.
We successfully used the SAE engine for propagating symbolic 
variables tags based on explicit information flow. The SAE engine 
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was easily extendable and offered the possibility of plugging our 
IE checker in the existing language interpreter. 
The  computational  overhead  introduced  by  SMT-lib  [55] 
statement construction  and the calling of an external  command 
line tool could be avoided by using an SMT solver, which has an 
API compatible with our development language [56] or [57].
The static definition of sinks, sources and confidential variables 
can be automated in the following ways. First,  if we previously 
attach  extra  information  to  methods  and  attributes  in  an  UML 
class diagram and then generate code from this  model, Code 2  
Model (C2M). Second, by converting a test program into a UML 
class diagram and annotate it with security annotations inside a 
special designed tool for this purpose, C2M could help a security 
expert to design secure software systems. Afterward source code 
can  be  generated  that  contains  code  assertions  added  in  the 
previous step, Model 2 Code (M2C).  These assertions could be 
used  to  identify  sinks,  sources  and  confidential  variables 
automatically.  Utility classes for our  checkers can be generated 
and also we could profit from  multiplication of assertions in the 
source  code  due  to  M2C  conversion.  Third,  the  definition  of 
sinks,  sources  and  confidential  variables  can  be  automated  by 
providing  annotated  test  cases  or  libraries  containing  this 
information  or  by  loading  a  configuration  file  containing   the 
specifications.
In future we plan to do research in the area of annotating whole 
C/C++ libraries and reusing these annotated libraries during static 
analysis  for  trust-boundarys  definition  and  symbolic  variable 
tainting. We envisage that advance checks for sinks and sources 
on  a  potential  bug  prone  path  could  reduce  the  number  of 
candidate paths.
The  process  of  manually  determining  which  function  models 
(trust-boundaries) could produce IE leaks could be automated by 
preprocessing the source code and determining which functions 
could represent potential  candidates for sinks and sources. This 
could  be  based  on  a  previously  annotated  C/C++  library  with 
annotation  tags  attached  to  function  headers.  Information 
propagation could be used in order to detect other potential sink, 
sources, etc. Thus, fully automating the process of trust-boundary 
definition and initial variable tainting.
We think that static analysis is worthwhile to be used for detecting 
IE bugs related to security concerns and future research in this 
area is needed.
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