
Context-Sensitive Detection of Information Exposure Bugs
with Symbolic Execution

Paul Muntean, Claudia Eckert and Andreas Ibing
Technical University Munich
Chair for IT Security (I20)

Boltzmannstraße 3
85748 Garching, Germany

{paul.muntean, claudia.eckert}@in.tum.de, ibing@sec.in.tum.de

ABSTRACT
Static analysis tools used for detecting information exposure
bugs can help software engineers detecting bugs without
introducing run-time overhead. Such tools can make the
detection of information-flow bugs faster and cheaper without
having to provide user input in order to trigger the bug
detection. In this paper we present a bug-detection tool for
detecting information exposure bugs in C/C++ programs. Our
tool is context-sensitive and uses static code analysis for bug
detection. We developed our bug finding tool as a Eclipse plug-
in in order to easily integrate it in software development work
flows. The bug reports provide user friendly visualizations that
can be easily traced back to the location where the bug was
detected. We discuss one static analysis approach for detecting
information exposure bugs and relate briefly the usability of
our bug testing tool to empirical research. We conducted an
empirical evaluation based on 90 test programs which were
selected from the Juliet test suite for C/C++ code. We reached
a true-positive coverage of 94.4% in 121 seconds for 90 test
programs having a total of 12589 source code lines.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Programmer workbench;
D.2.5 [Testing and Debugging]: Symbolic execution; D.2.5
[Testing and Debugging]: Testing tools; D.2.6 [Programming
Environments]: Integrated environments;

General Terms
Security, Verification, Experimentation

Keywords
Software bugs, software testing, information-flow, static taint
analysis, integrated development environment

1. INTRODUCTION
Information exposure weaknesses are a type of Information Flow
(IF) weaknesses. IF weaknesses represent one type of software
weakness, which can exist in the software without directly
breaking the code but rather offering useful information to an
attacker who could exploit IF leakages [1]. These types of
software bugs can lie dormant in an application for a long time

period without being detected and can cause huge harm [1].
According to Common Weakness Enumeration (CWE) CWE-200
(the parent weakness class of the test programs used in this paper)
[2] Information Exposure (IE) is the “intentional or unintentional
disclosure of information to an actor that is not explicitly
authorized to have access to that information”. IE vulnerabilities
are a subtype of IF vulnerabilities. As of 2007 IE leakages rank
6th in the AOWASP top ten list [3] and as of 2010 rank 7th
according to VERACODE mobile app top ten list [4]. We argue
that software should be thoroughly tested before it is released in
order to detect potential exploitable IF vulnerabilities.
The process of software testing accounts for more than 50% of the
whole effort during software engineering projects according to [5]
and [6]. Detecting software bugs, which cause information
exposure vulnerabilities is crucial because potential exploitation
possibilities should be removed from source code before release.
Software weaknesses are hard to detect and can cause information
leaks which attackers can exploit. By building Control Flow
Graphs (CFG) which describe possible execution paths and
tracking taint data as it ”moves” along the path nodes guarantees
high path coverage.
Many static analysis approaches are very promising but still have
to be applied to security scenarios. At the same time a relative
high number of tool vendors (Microsoft, IBM, Coverity,
klocWork, Infosys, Cognizant, Hexaware) start to address the
need for static analysis into mainstream tools. Some example tools
are ESP [8] a large scale property verification approach, model
checkers as SLAM [9] and BLAST [10] which use predicate
abstraction to examine program safety properties. FindBugs [11] a
lightweight byte code checker based on predefined bug patterns.
Triggering IF bugs is not a trivial job and can be addressed using
dynamic analysis, static analysis or hybrid approaches. Dynamic
analysis introduces computing overheads and it cannot guarantee
that all possible execution paths are exercised. Where as static
execution provides all potentially execution paths but needs some
heuristic for selecting only the relevant paths. Also it is relevant to
select only reachable paths, which can be determined with the
help of an SMT solver. The mathematical expressions provided
to the SMT solver often are blown up in size and can get very
complex [12].
IF vulnerabilities can be addressed by dynamic analysis [14],
[15], [16] static analysis [17], [18], [48], [19], [20] and hybrid
approaches which combine static and dynamic mechanisms [21].
Tracking taint variables through the program execution is key to
detect IE weaknesses, which are a type of IF vulnerabilities. IF
controls focus on preventing leaks from confidential (or high) to
output (or low) data. The desired baseline policy is
noninterference [22] that demands that there is no dependence of
public outputs on confidential inputs. There are two types of IF
variants, which can be taken into account when dealing with
variable interference. Information is passed from right-hand side
to left-hand in an assignment through an explicit flow. Assume
variables confidential and output have high and low security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
InnoSWDev'14, November 16, 2014, Hong Kong, China.
Copyright 2014 ACM 978-1-4503-3226-2/14/11... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

InnoSWDev’14, November 16, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3226-2/14/11...$15.00
http://dx.doi.org/10.1145/2666581.2666591

84

levels, respectively. For example, output := confidential exhibits
an explicit flow from confidential to output. Information is passed
via control-flow structure in an implicit flow. For example, if
confidential then output := true else output := false has an implicit
flow. The value of the output variable depends on the confidential
variable. We will call a conditional or a loop high if its guard
involves a high variable. Information-flow control is concerned
with preventing explicit and implicit flows in order to guarantee
non-interference.
One possibility to prevent explicit and implicit flows is by using
purely static Denning-style enforcement [23]. Each assignment is
checked if it fulfills the following conditions: the level of the
assigned variable must be high when there is a variable on the
right-hand side of the assignment (tracking explicit flows) or in
case the assignment appears inside of a high conditional or loop
(tracking implicit flows). This mechanism guarantees that no low
computation occurs in the branches of high conditionals and loops
[24]. Another possibility is through dynamic enforcement, which
is based on dynamic security checks similar to the ones done by
static analysis. Whenever there is a high variable on the right hand
side in an assignment (tracking explicit flows) or the assignment
appears inside a high conditional or while loop (tracking implicit
flows) then the assignment is only allowed when the assigned
variable is high. This mechanism dynamically keeps a simple
invariant of no assignment to low variables in high context [24].
We have chosen the C programming language because it is widely
used for developing embedded systems ranking currently first
position in the TIOBE [25], Langpop [26] rankings of
programming languages and second position in the IEEE
Spectrum top 10 of most used programming languages [27]. We
argue that embedded software should be tested more thoroughly
and bug detectors should be integrated as early as possible in the
software development cycle. We think that integrating bug-
finding functionalities in an IDE will help to detect the IF bugs
early in the development process of software systems. The Eclipse
IDE is the most used Java IDE in the industry [28]. By designing
an Information Exposure Checker (IEC), which can run in
different running modes, we think that we can increase the
productivity of the code debugging process. The IEC can detect
bugs during run-time of the Eclipse IDE and it offers two main
advantages. First, it offers the possibility of detecting IE bugs
during development. Second, we get a high level of integration
between the IDE and the bug detection mechanisms.
The goal of our research is to develop a tool for detecting IF
exposure bugs using static analysis. The tool should use context-
sensitive analysis and should rely on a Satisfiable Modulo
Theories (SMT) [29], [30] solver. In summary we make the
following contributions:

 We developed an IE detection tool capable to detect
information exposure bugs fully automated using SMT-
lib 2.0 [55].

 Inter-procedural, path-sensitive analysis and context-
sensitive analysis was used to detect the IE bugs.

 We propose a new method to define sinks, sources and
taint confidential symbolic variables by defining
function models.

 We defined an easy method to add new checkers into
the Static Analysis Engine (SAE) [31] by adding the
required function models for the sinks, sources and
tainting confidential variables.

 The SAE statement processor was extended to support
explicit information flow propagation of symbolic
variables.

 We designed our checker as an eclipse plug-in which
can be run in different modes as presented in Fig. 8b.

2. MOTIVATION
The detection of information exposure bugs is based on finding
the locations in source code where sensitive information is about
to leave a trust-boundary. An attacker could exploit this IE
vulnerability if this information is leaked to the outside of the
system. This may contain sensitive information about a remote
server or other secret resources. We want to build a tool capable
to detect IE vulnerabilities.

0. void CWE526_bad(){
1. if (staticFive == 5){
2. /*FLAW:environment variable exposed*/
3. printLine(getenv("PATH"));
4. }
5. }

Figure 1a. CWE-526 test programs source, after [7].

0. void printLine (const char *line){
1. if(line != NULL){
2. printf("%s\n", line);
3. }
4. }

Figure 1b. CWE-526 test programs sink, after [7].

Fig. 1a and Fig. 1b present a information exposure scenario
between the source, Fig. 1a, line 3 and the sink Fig 1b, line 2.
These code snippets are contained in the CWE-526 test case
available in [7]. On line 3 in Fig. 1a the system PATH variable is
sent to the printf() sink located on line 2 in Fig. 1b. The
printLine()function presented in Fig. 1a is a wrapper for the
C printf() function and it is contained in another C file. The
trust-boundary is represented in this case by the printf()sink
function. For the getenv() we define a function model where
we set the return value of it to be confidential. The return value of
the getenv() will be propagated using static execution and
explicit IF. When a confidential symbolic variable is about to
leave the sink printf() the interpreter will be notified. This
represents the bug triggering condition used by our IE checker.

2.1 Challenges and Design Requirements
We formulated our research challenges as two questions: It is
possible to successfully use static analysis and the SAE engine to
develop an IF checker for detecting IE bugs? What are the
performance increases in comparison to related research work?
The solutions to our challenges will be presented throughout the
sections 3, 4 and 6.
The IE checker should find IE vulnerabilities in the test cases
Information Exposure Through Environment Variables (CWE-
526), Information Exposure through Debug Log Files (CWE-534)
and Information Exposure through Shell Error Message (CWE-
535) obtained from the Juliet test suite [7]. The logic for detecting
each type of vulnerability should be contained in one checkers
class, which should be attached to the interpreter. The interpreter
should trigger the checker at a possible bug location, i.e., output
through a trust boundary. IF checker requirements:

 The IEC should track IF's and detect potential IE
vulnerabilities.

 The IEC should be capable of checking test programs
composed of more than one C/C++ file.

 Trust-boundaries should be defined using SAE [31].

 Confidential variables should be propagated based on
explicit IF.

85

 The IEC should indicate the location in the test program
file where the vulnerability was detected by using the
mark-up label available in the Codan API [34].

The remainder of the paper is organized as follows. Section 3
presents the architecture of our IE checker. Section 4 contains the
implementation of our checker. Section 5 contains the IE checker
tool demo. Section 6 contains empirical results. Section 7
contains related work and section 8 is devoted to conclusions and
future work.

3. ARCHITECTURE
Our IE checker is based on the static analysis engine [31] which is
used for C/C++ source code analysis and has in the back-end the
MathSat [32] SMT solver. The steps needed to extend the SAE
are briefly explained. A new function model is created for each
sink and source and added to the environment models package,
which contains models for all potential sources and sinks present
in the selected test cases. Function models are used to model
sinks, sources and other types of trust-boundaries. At the same
time function model are used to notify the interpreter when a
previously tagged variable is about to pass through a trust-
boundary. The interpreter will be notified by sending it a potential
tagged symbolic variable. Afterward all the currently attached
checkers will be notified by sending the tagged symbolic variable
to them. Inside the checker class it is checked if the variable is
confidential, sensitive, etc. If the check if positive then a bug
report will be issued.

3.1 Static Analysis Engine Architecture

Figure 2. SAE architecture.

The function models contain a tainted symbolic variable with a
confidential label assigned to it. The symbolic variable will be
propagated along a path. The interpreter will be notified when
passing over a sink. The sink notifies the interpreter by sending a
symbolic variable, which could be confidential or not. The
interpreter calls each previously attached checker. The symbolic
variable is checked whether or not it is confidential by the
checker. If the variable is confidential then a bug report will be
issued. If additional logic for checking other relevant conditions is
needed then this can be added in the IE checker class. The
architecture of the used static analysis engine is presented in Fig.
2. A more detailed explanation of the main classes contained in

the SAE can be seen in the paper [31]. The reused Codan API
interfaces and classes are presented in the Codan API package
shown in Fig. 2. The interface IChecker adds to the
implementing class the possibility to work with project resources
like: projects, files, etc.
The AbstractCheckerWithProblemPreferences class
extends the class AbstractChecker. It contains methods for
defining the run-time settings for the checker class. Checkers can
generate several types of outputs. Each checker preference
settings can be defined individually. The abstract ASTVisitor
class is a Codan base class, which is extended by all visitor
classes that need to traverse the nodes of an AST. The
ASTVisitor implements the visitor design pattern. The
visit() methods implement a top-down traversal and the
leave() methods implement a bottom-up traversal of a C
statement represented as an AST.

3.2 Information Exposure Checker
Architecture

Figure 3. The IF checker architecture.

The blue lines in Fig. 3 indicate all the dependencies between the
SAE presented in Fig. 2 and our IE checker. Implementation
details for the InformationExposureChecker class
(IECC) will be presented since it contains the bug triggering. In
the class SymVarSSA we declared a symbolic boolean variable
confidential and defined its getter and setter. We used it to set the
return value of the function call getenv(“PATH”) to
confidential. Thus, it is possible to specify other types of variables
(sensitive, etc.) and expressions, which could be tainted.
The class ModelGetEnvironment (MGE) contained in Fig. 3
implements the IFunctionModel interface. The MGE sink
model of the getenv(“PATH”)contains the implementations of
the exec() and getSignature()methods. The
exec()method will be called by the Interpreter in order to
get the return value of the getenv().

86

In getSignature() the parameters of the getenv() are
defined and a return type is set. In the exec() method we taint
the confidential value to be the return value of the exec()
method. The IECC will be attached to the Interpreter in the
class SymBolicExecutionEngine that contains the main
program loop, which iterates through all program paths. During
loop iteration when the Interpreter reaches the printf()
C function or other trust-boundaries then the exec() method
contained in the sink function model ModelPrinf will be
called. Then the Interpreter calls the updateChecker()
method which notifies the IE checker contained in IECC.

4. CHECKER IMPLEMENTATION
Based on a runtime language interpreter we are handling symbolic
variables during static execution. Our statement processor
enforces inference rules on C/C++ statements as the statement
AST is traversed. For each node contained in the new path a
statement processor instance will be instantiated. The inference
information is constructed for each statement on the fly by
enforcing inference rules based on explicit IF's.
When the static analysis is discovering that a confidential variable
is about to pass through a previously defined trust-boundary then
an IE bug report is issued which is reported in the Problems view
inside the second Eclipse CDT instance. By clicking on the bug
report available in the Problems view the user navigates to the
bug location in the file where the bug was discovered. A bug
report is composed of the file and line number where the bug was
detected.
In order to propagate the confidential return value from the
getenv() source to the printf()sink we had to extend the
StatementProcessor (SP) class. A Interpreter object
is instantiated for each new path. A new SP object will be
instantiated by the Interpreter for every IASTNode
(IbasicBlock)contained in the current path. Thus,
propagating only the symbolic variables belonging to one
execution path at a time. For each IASTNode the corresponding
leave() methods are called depending on the type of the node.
The leave() methods are used to traverse each statement
AST in a bottom-up fashion. The leave() methods are also
used for confidential variables propagation. The SP extends the
ASTVisitor class which is an implementation of the visitor
design pattern providing top-down (visit() methods) and
bottom-up (leave() methods) traversal of each node contained
in the current path. Each IASTNode is a C/C++ line (no
comment lines are included) originating from the C/C++ test
program file. When the SP detects that a symbolic variable or
function return variable is confidential as each statement is
traversed on the current path it tries to propagate the confidential
variable based on explicit IF. For the CWE-526 test programs
MGE is the source because from here confidential information
flows into the program and ModelPrintf is the sink because
here the potential information is leaving the program. When the
SP detects the getenv() function inside the wrapper function
printLine() then it adds a new confidential variable in the
Interpreter. The confidential return value comes from MGE,
which is the function model of the getenv() function call. The
confidential variable is propagated to printline() as
parameter. When the SP reaches the printline() statement
a binding call is made. The binding call returns the parameters
names of the printline() header function. The new
parameter names are needed because these are used inside the
printLine() implementation. These parameter names are
potential confidential symbolic variables.

The printLine()function header has line as parameter.
After we detect line in the method header and we know that we
are on a potentially reachable path we add a new confidential
variable called line in the Interpreter. This means that on
this path from the source printLine(getenv(“PATH”)) to
the sink printf("%s\n", line) the getenv(“PATH”)
confidential return value will be assigned to the variable line
which becomes also confidential. This happens when
printLine() calls the execute() method. The
implementation contains printf(), as presented in Fig. 1b. The
SP proceeds until it reaches the printf("%s\n", line)
node. After reaching this statement the Interpreter will be
notified from the function model ModelPrintf using line as
parameter. The interpreter will be notified because the statement
printf("%s\n", line) is a sink. The Interpreter will
be called with resolveOrigSymVar() and directly
afterwards the getCurrentSSACopy() method will be
called. These methods search in the Interpreter for a
symbolic variable called line. After this call we get a
SymPointerSSA variable s that we send over to the
Interpreter by calling ps.notifyTrustBoundary(s).
The Interpreter then calls our previously attached IF checker
by calling his updateChecker(SymVarSSA s, IFile
file, IASTFileLocation loc) method. The
Interpreter sends to the IF checker the previously found s
variable, the file and the location in the file from where it was
notified. The IEC checks in the updateChecker() method if s
is confidential. If s is confidential then a new a bug report will
be created. For the test programs contained in CWE-534 and
CWE-535 the propagation is similar to what we previously
presented only the sinks and sources are different.

4.1 Tainting and Triggering
The implementation of the static analysis engine [31] is based on
function models used for behavior description of standard C/C++
library function calls. A function model class contains 5 methods
and implements the interface IFctModel.
First, the constructor, second the method getName() which
returns the name of the function, third,
getLibrarySignature() returns the whole function header
as it is defined in the C standard library, fourth,
exec(SymFunctionCall call) which is used for static
execution of function calls (variables can be here tainted (Fig. 4,
line 25) and trust boundaries used for notifying a checker) fifth,
getSignature() returns a SymFctSignature object
containing the data types of the function parameters and the return
type of the function. The difference between the printf(),
sink function model and the getenv() source function model
is that in the exec() method of the printf() class we notify
our IF checker that a trust-boundary is about to be passed and in
the exec() method of the getenv() model we set the return
value to confidential. Similarly it is implemented for the sinks and
sources contained in the CWE-534/535 test programs.

0. private Interpreter ps;
1. public Mgetenv(Interpreter ps) {
2. this.ps = ps;
3. }
4. public String getName() {
5. return "getenv";
6. }
7. public SymFunctionReturn exec
8. (SymFunctionCall call) {
9. ArrayList<IName> plist = call.getParams();

87

10. SymPointerOrig isp =
ps.getLocalOrigSymPointer(plist.get(0));

11. IName nebn = new EnvVarName();
12. SymIntOrig sb_size = new SymIntOrig(new

ImpVarName());
13. SymArrayOrig sb = new SymArrayOrig(nebn,

sb_size);
14. SymPointerSSA isp_ssa = null;
15. try {
16. sb.setElemType(eSymType.SymPointer);
17. ps.declareLocal(sb);
18. ps.declareLocal(sb_size);
19. SymArraySSA sb_ssa = (SymArraySSA)
20. ps.getLocalOrigSymArray(nebn).
21. getCurrentSSACopy();
22. isp_ssa = (SymPointerSSA)
23. ps.ssaCopy(isp);
24. isp_ssa.setTargetType(eSymType.SymPointer);
25. isp_ssa.setConfidential(true);
26. isp_ssa.setTarget(sb);
27. } catch (Exception e){
28. e.printStackTrace();
29. }
30. return new SymFunctionReturn(isp_ssa);
31. public SymFctSignature getSignature() {
32. SymFctSignature fsign = new

SymFctSignature();
33. fsign.addParam(new SymPointerOrig

(eSymType.SymArray, new Integer(1)));
34. fsign.setRType(new SymPointerOrig
35. (eSymType.SymPointer, new Integer(1)));
36. return fsign;
37. }

Figure 4. The getenv() function model.

The SAE currently contains function models for the following C
functions: atoi(), fclose(), fgets(), fwgets(),
fgetws(), fopen(), gets(), memcpy(), mod(),
puts(), rand(), srand, strcpy(), strlen(),
time(), wcscpy(), wcslen(). For the IE test programs
the following function models were added: CWE-526 getenv()
(source), printf()(sink), CWE-534 and CWE-535
LogonUserA(), LogonUserW()(sources), fprintf,
fwprintf()(sinks).
The models are used either to taint a symbolic variable with the
tag confidential or to notify the IF checker that a confidential
tagged variable is about to pass a trust-boundary.

4.2 Potential Implementation Gain
[33] presents some speedups through usage of backtracking inside
the SAE and reports the performance increases in [31]. [33]
reports a speedup of 5x-10x for statically analyzing 5978 SLOC
representing a stack based buffer overflow, char type overrun
memcpy() (CWE-121) and an speedup of 2x for 16567 SLOC
representing a stack based buffer overflow, CWE-129 fgets()
(CWE-121) on a Core 2 Quad CPU Q9550, on 64-bit Linux
kernel 3.2.0.
We could use the new SAE version right of the box or implement
our own interface which executes potential buggy paths in a
backtracking manner. Compared from an architectural point of
view by switching to a backtracking execution speedups of around
20 could be achieved for the test cases CWE-526/534/535.
Other implementation gains could be achieved by using state
cloning, parallelization or path merging. Thus, further necessary
experiments are necessary in the future in order to prove our
assumptions.

5. TOOL DEMO

Figure 5. Information exposure checker work-flow.

The explicit IF theory for propagating confidential variables from
trust-boundarys (sources) or other program points to trust-
boundaries (sinks) was used in this paper. Our information-flow
checker is based on the SAE that proved to scale for other types of
bug checkers and larger test cases as well. The work flow used for
running our checker is presented in Fig. 5. First, the C/C++ test
programs have to be selected and test programs created in the
workspace. Second, the trust boundaries have to be defined and
confidential variables need to be tainted. Third, one or more test
programs available in the workspace can be selected and the sub-
menu button Run C/C++ Code Analysis needs to be selected.
The IE checker runs as an Eclipse plug-in project. The checker is
launched as a standard Eclipse application. After starting the
checker a second Eclipse CDT instance will be launched. The new
Eclipse instance is presented in Fig. 6. For the test cases CWE-
526/534/535 we had 90 Test Programs (TPr) contained each in an
separate Eclipse CDT project. The TPr's don't have to be
executable in order for us to perform static analysis. We run our
checker by right-click on the 16th project for example and
selecting Run C/C++ Code Analysis as highlighted in Fig. 6 with
the mouse pointer. The sub-menu presented in Fig. 6 appears by
clicking right on one or more selected Eclipse CDT projects.

 Figure 6. Triggering the IF checker from the Codan GUI.

88

The Codan API [34] provides a Graphical User Interface (GUI)
for running checkers. The result of the execution of the checker
can be observed in Fig. 7. The numbering from ① to ③ in Fig. 7
highlights the main GUI features available when starting the IE
checker. Number ① indicates for which project the IE checker
was started. Number ③ indicates the location where the bug has
been detected. In Fig. 7 number ③ indicates with an bug icon
that at line 13 a buggy statement was detected. Also the whole
statement where the bug was detected will be highlighted with an
underlining zigzag line. Another Codan API feature used for
displaying bug reports is represented by the possibility to
configure bug reports as Warnings, Errors or Infos, as presented
in Fig. 8b.

Figure 7. IF checker bug report and bug highlighting.

For the bug report presented in Fig. 7 with number ② we get the
Description (containing a string which the user can configure),
Resource (the file where the bug has appeared), Path (path of the
file in the project hierarchy were the bug has appeared), Location
(the line where the bug was reported) and Type (the type of the
reported bug).
The output of the IF checker is a bug report for each detected IE
bug. By double clicking on ② the user can navigate in the file at
the line number where the bug was detected. One such bug report
for the test program 16 contained in the test case CWE-526 is
highlighted in Fig. 7 with number ② and the file location (file
name and line number) of the bug with number .③

Figure 8a. Codan report types. Figure 8b. IF checker
running modes.

Fig. 8a presents bug reports in a tree based view where every bug
is classified based on one of the following three categories:

Warnings (yellow triangle icon), Errors (red circle icon) or Infos
(blue “i” symbol icon). The warning (Information Exposure Bug)
presented in Fig. 8a corresponds to the bug report presented in
Fig. 7. The “Errors” and “Infos” reports presented in Fig. 8a are
not related to our IE checker. Codan reports use three different
bug icons.
By clicking on the generated Information Exposure Bug report
presented in Fig. 8a the appropriate file containing the bug is
opened in the main view and the mouse cursor will point to the
line number containing the bug as presented in Fig. 7, number .③
The Codan API offers the possibility to configure each checker to
be launched in different modes as presented in Fig. 8b. This bug
triggering features can help an developer to control how and when
Eclipse will trigger the bug detection analysis. Thus, helping to
avoid bug insertion during software development.

6. EMPIRICAL EVALUATION
The goal of our empirical evaluation is to assess the efficiency of
our IF checker in terms of number of detected false-negatives,
false-positives, true-positives and execution time. At the same
time we want to highlight to what extent our research work is
significant. The evaluation was performed using the IE checker
presented in Section 4 and the Juliet test cases CWE-524/534/535.
Evaluation results are presented in Table 1.

6.1 Methodology
The test cases CWE-526/534/535 were selected because they
contain information exposure bugs which we want to detect.
These test cases are publicly available in the last version of the
Juliet test suite [7] as of June 2014. CWE-526 contains 18 Test
Programs (TPr), CWE-534 contains 36 TP, and CWE-535
contains 36 TP. For all the test programs contained in CWE-
526/534/535 we created a separate Eclipse CDT project. The test
programs were then inserted in one Eclipse workspace. In Fig. 7
some of the analyzed test programs can be observed.
The IE checker was run automatically for each test program
available in the workspace by selecting once all the Eclipse CDT
projects available in the workspace and selecting the sub-menu
Run C/C++ Code Analysis. We measured the time from the
moment of clicking the sub-menu button until all the projects in
the workspace were completely analyzed. We also measured the
execution time for the test programs belonging to one test case.
We reported the intermediate execution time (for test programs
belonging to one test case), total execution time, number of true-
positives, false-negative and false-positives in Table 1.
For measuring the time between the moment when the analysis
was started and the moment when all the test programs in the
workspace were analyzed we used the following time stopping
criteria. For determining the total execution time we monitored
the event when there was no longer output messages in the
console. For determining the intermediate execution times for test
programs belonging to one of the test cases CWE-526/534/535 we
monitored when all the test programs had a bug icon attached to
them.
We new in advance which test programs should have an bug icon
attached to them after running the static analysis and which test
programs should not have a bug icon (for 5 out of 90 test
programs it was not possible to perform the static analysis, this is
reported in the next section) attached from previous runs. One
such bug icon is presented in Fig. 7 above number ① and
represents a yellow triangle with an exclamation mark inside.

6.2 Results and Constraints
Table 1, contains the results obtained by analyzing CWE-526,
CWE-534 and CWE-535 with our IE checker. Table 1. contains

89

the following abbreviations: Test Program (TPr), Source Lines of
Code (SLOC) without comments, FP (False-Positives), FN (False-
Negatives), True Positives (TP) no programs containing the C
goto statement included, Total True-Positives (TTP) per Test
Case (TC), all programs included and Total Execution Time in
Seconds (TES[s]) per TC. Used system: Ubuntu 12.04 LTS,
Kernel 3.8.0-35-generic, 64-bit, Intel® Core™ i7-4770 CPU @
3.40GHz × 8, 16 GB RAM.

Table 1. IF checker run-time results

Test case TPr SLOC FP FN TP TTP TES[s]

CWE-526 18 5371 0 0 17 18 30

CWE-534 36 14876 0 0 34 36 46

CWE-535 36 14362 0 0 34 36 45

Total 90 34609 0 0 85 90 121

Our tool found 85 TP out of 90 TP present in the used test cases.
We were able to detect all IE bugs. It was not possible to test all
test programs available in the test cases because the Codan API is
not supporting the building of the CFG for source code containing
C goto statements, e.g. goto stop;.
The test cases CWE-526/534/535 contain 1, 2 and respectively 2
test programs containing the C goto statement. In total 5 out of
90 test programs were not analyzable. Thus, we reached 94.44%
test coverage. We think that if this limitation will be removed
from Codan API releases then 100% test coverage is achievable.

6.3 Comparison with Other Tools
Unfortunately we were not able to find any open source tool
similar to our IE checker. We searched through related research
and also the list provided by NIST [58] containing static analysis
tools.
The list provided by NIST contains 53 tools from which 21 are
free tools. From these 21 free tools only 11 tools can analyze C or
C++ code. From the 11 tools only 3 tools can be used for
detecting information-flow vulnerabilities.
Cqual, FlawFinder and Splint were used to analyze our test
programs. None of the tools is based on SMT solvers and none
was capable to detect the IF vulnerabilities present in the original
test programs contained in CWE-526, CWE-534 and CWE-535.

6.4 Threats to Validity
Threats to external validity concern our ability to generalize the
results of our empirical evaluation. In our empirical evaluation we
have used three test cases, which were composed of C files having
in total 90 test programs. Still there are a wide range of factors
concerning testing platform and empirical evaluation
methodology that may impact the test results.
Our IE checker is out of the box usable for other test cases as
well. If the function models are not available in SAE then: first,
the required function models need to be defined and second, the
confidential variables need to be tainted. After this steps we can
run our IE checker fully automatically by one mouse click.
We are aware that the number of function models is currently
limited but the steps needed to define a function model follows
the same design pattern for all the function models. Each function
model contains 5 methods. In some cases almost all the source
code of other available function models could be reused. Thus,
offering a high level of code reuse.
Threats to internal validity concern our ability to draw
conclusions about independent and dependent experimental
conditions that make a difference or not if these are altered and
whether there is sufficient evidence to support our claim.

Regarding the definition of sinks and sources, which can cause IE
leaks our own assessment may be subject to errors, incompetence
or bias for test programs containing many KLOC. For small test
programs as those used in this paper the definition of sinks and
sources is not as error prone as for large test programs.
Threats to construct validity are concerned with how we used the
Juliet test cases. All the used test cases are publicly available in
the Juliet test suite. We created for each TP a separate Eclipse
CDT project. We didn't want to modify the test programs in any
form this is why we chosen this approach.
We think that neither of these “constraints” pose a real threat to
the internal, external or construct validity of our approach as we
provide also alternatives and argument why certain
implementation decisions where made and others not.

7. RELATED WORK
Every kind of static taint analysis is based on a type of
formalization [35]. Program dependence graphs [36], [37],
program slicing techniques [38], or types systems [39] are used as
in the CQual tool [40].
For scalability reasons, internal representations as Static Single
Assignment (SSA), Gated Single Assignment (GSA) or
Augmented Single Static Assignment (aSSA) are used [41].
During symbolic execution we use per path scope of symbolic
variables.
We check for potential IE bugs only for reachable paths by
querying the path validation. The path validation decides based on
queries submitted to the MathSat SMT solver if the current path is
satisfiable or not.
Deciding during static execution if a path is reachable reduces
computational overhead and the total number of potential paths on
which IE bugs could be located. Tainting confidential variables is
done statically in the function models which are used to model
each trust-boundary. Taint variable propagation is based on
explicit IF.
Thus, a large amount of research work has been already published
concerning symbolic variables tainting and propagating their
values using static, dynamic or hybrid taint-analysis.
We briefly review in this section the most commonly used
approaches focusing more on the works that are close to the one
we proposed in this paper.

7.1 Static Taint-Analysis
One of the approaches to compute variable taintness is to use
Static Taint Analysis (STA) techniques, allowing taking into
account all possible execution paths. STA does not provide
runtime information and environment interaction has to be
simulated. Thus, the environment model introduces imperfections
because it can not capture each real world interaction.
The majority of static taint analysis tools are based on user input
dependencies [42]. Our tool handles each potential input source
independently by modeling it with function models that simulate
their execution during static execution. We are capable to model
inputs from users, files, sockets and input streams in this way. Our
tool is similar to the compile time analyzer PREfix [43] in the
sense that both tools sequentially are tracing distinct execution
paths and simulate the action of each operator and function call on
the path.
Static taint-analysis can be used to enforce privacy control on
mobile devices. Xiao et al. [20]propose a transparent privacy
control approach that uses static symbolic execution [5] based on
implicit IF's. Data is taint using scripts developed with the
TouchDevelop [44], which allows users to create applications
using an imperative, and statically typed language. Variable
tainting is based on the fact that the whole TouchDevelop API on

90

which the user scripts are based is in advance taint with
information concerning sources and sinks. This approach is
different from ours because it supposes a previously known API
where everything is taint and no other untainted sources or sinks
exist. We define our sinks and sources directly in the function
models and simulate real execution using them. Our approach can
handle the definition of sinks and sources for the same procedure.
Thus, introducing more flexibility during analysis.
Guarnieri et al. [17] taint variables using a central knowledge
base. The authors propose an Eclipse based tool capable to detect
IF vulnerabilities due to missing input validation with the help of
a decentralized knowledge base and on AST's generated by the
JDT compiler. The static analyzer detects security issues related to
input validation problems in web applications. The IF analysis
does not consider context sensitivity and it is not using an SMT
solver. The framework offers the possibility to taint classes,
packages or methods as trusted. The problem of IF vulnerability
detection translates to identifications of errors between entry
(sources) and exit points (sinks) that do not use a trusted object.
FindBugs [45], [46], [47] is based on Eclipse and it does not
detect IE bugs but it uses the concept of easy integration of new
checkers into the static analysis. It checks for bugs in Java byte
code based on currently 300 patterns of coding mistakes for Java
byte code. It employs intra-procedural analysis that takes into
account information from instance of tests. FindBugs has a plug-
in architecture in which detectors (code checkers) can be defined
reporting different bug patterns. Detectors can access information
about types, constant values, special flags and values stored on the
stack or local variables. Some of the defined detectors perform
intra-procedural summary information. FindBugs doesn't use
SMT [29] or a SAT [30] solver in order to perform the static
analysis but is rather based on the previously mentioned patterns,
which can be extended by the so-called detector concept. Which
is similar to our checker concept of easily attaching checkers to
the language interpreter.

7.2 Dynamic Taint-Analysis
Another approach to computer variable taintness is based on Dy-
namic Taint Analysis (DTA), meaning that concrete program exe-
cution is performed. The main advantage of DTA is the possibility
to use data flow information available during runtime but only
from one path of execution at a time. Thus sanity checks can be
handled accurately avoiding many false positives. However, since
each analysis is reduced to a single (current) execution path, its
coverage level may remain very weak and control dependencies
cannot be fully taken into account. At the same time it cannot
guarantee that all possible execution paths are exercised. Thus, it
is in general geared towards explicit IF's.
The notion of taint variable was introduced with the Perl scripting
language and its taint running mode where taint variables are
propagated using the language interpreter across variable
assignment and security errors are raised when an insecure system
call appears. There is a wide range of proposed tools until now
which are based on language information-flow security: Java-
based JFlow [48] with its software tool Jif [49] developed an
annotation language for Java code. Data values are labeled using
security policies. The attached labels restrict the movement of
data values thus enforcing a policy on the data flow. The
programming languages: Caml-based FlowCaml [50] and Ada-
based SPARK Examiner [51] and the scripting languages Perl,
PHP, Ruby and Python have a taint mode similar to the taint
mode available in Perl.
Dynamic taint analysis is not suitable for us because we want to
have high path coverage and exercise all possible execution paths.
Thus, we rely on a SMT solver, which helps to detect satisfiable
paths and afterward it provides candidate paths to our IE checker.

7.3 Hybrid Taint-Analysis
Hybrid taint-analysis is a combination of the previously two
mentioned approaches. Hybrid taint-analysis approaches benefit
from having during static analysis information available from
dynamic execution or vice-verse (during dynamic analysis
information from static execution). Thus, overcoming some
shortcomings of both.
The first approach explores executable paths in the same way as
static symbolic execution does and interleaves concrete execution
with symbolic execution. Concrete values from execution are used
by these techniques when difficult constrains are reached allowing
the algorithm to proceed. Concolic testing [52] is one of the most
prominent hybrid analysis. Concolic techniques can reason
precisely about complex data structures and simplify constrains
when they exceed the capabilities of the solver. KLEE [13] is a
Concolic testing tool for C programs which extends EXE [53] and
addresses path explosion by allowing interaction with the outside
environment without using entirely concrete procedure call
arguments.
The second approach is mostly based on IF monitors which
monitor the execution of the program and use information from
static analysis to decide for example when it is safe to stop
tracking of confidential variables. Moore et al. [21] propose a
hybrid IF monitor, which combines static analysis and dynamic
mechanisms in order to provide strong information security
guarantees. Their approach adds runtime overhead in comparison
to pure static analysis. The authors argue that their static analysis
can determine when it is sound for a monitor to stop tracking the
security level of certain variables. This extra information is
provided through the usage of static analysis, which can reason in
general more precise about certain IF's [24] proved by Russo and
Sabelfeld. Their implementation extends the information-flow
monitor of Russo and Sabelfeld [24].
The authors present conditions for incorporating memory
abstractions and analysis into a hybrid information-flow monitor.
The static analysis relies on a flow-sensitive security type system
[54] which helps to determine when a variable cannot cause a
security violation.
The environment taints each program variable with a security
level and tracks the currently stored security level. Thus, allowing
for a kind of automatic tainting and propagation of taint variables
whereas we initially taint variables statically in our function
models.
To the best of our knowledge our checker is the only IE bug
checker that uses symbolic execution to find potential candidate
paths on which IE bugs could reside and that propagates
confidential variables based on explicit IF's.

8. CONCLUSION AND FUTURE WORK
We successfully proved that our IE checker can be used for
detecting IE bugs and at the same time we have shown to what
extent our work is significant by comparing it with related
research work.
The Codan API was used for parsing source files, dealing with
project resources and interpreting C/C++ code. Bug location
marking was easily implemented using the markup capabilities
offered by the Codan API.
The AST traversing mechanisms offered the possibility to focus
on more on static analysis and not on re-implementing utility
functions for manipulating AST nodes. Building of CFG for test
programs containing C goto statements should be possible in
future Codan API releases. Thus, removing one of the current
implementation constrains.
We successfully used the SAE engine for propagating symbolic
variables tags based on explicit information flow. The SAE engine

91

was easily extendable and offered the possibility of plugging our
IE checker in the existing language interpreter.
The computational overhead introduced by SMT-lib [55]
statement construction and the calling of an external command
line tool could be avoided by using an SMT solver, which has an
API compatible with our development language [56] or [57].
The static definition of sinks, sources and confidential variables
can be automated in the following ways. First, if we previously
attach extra information to methods and attributes in an UML
class diagram and then generate code from this model, Code 2
Model (C2M). Second, by converting a test program into a UML
class diagram and annotate it with security annotations inside a
special designed tool for this purpose, C2M could help a security
expert to design secure software systems. Afterward source code
can be generated that contains code assertions added in the
previous step, Model 2 Code (M2C). These assertions could be
used to identify sinks, sources and confidential variables
automatically. Utility classes for our checkers can be generated
and also we could profit from multiplication of assertions in the
source code due to M2C conversion. Third, the definition of
sinks, sources and confidential variables can be automated by
providing annotated test cases or libraries containing this
information or by loading a configuration file containing the
specifications.
In future we plan to do research in the area of annotating whole
C/C++ libraries and reusing these annotated libraries during static
analysis for trust-boundarys definition and symbolic variable
tainting. We envisage that advance checks for sinks and sources
on a potential bug prone path could reduce the number of
candidate paths.
The process of manually determining which function models
(trust-boundaries) could produce IE leaks could be automated by
preprocessing the source code and determining which functions
could represent potential candidates for sinks and sources. This
could be based on a previously annotated C/C++ library with
annotation tags attached to function headers. Information
propagation could be used in order to detect other potential sink,
sources, etc. Thus, fully automating the process of trust-boundary
definition and initial variable tainting.
We think that static analysis is worthwhile to be used for detecting
IE bugs related to security concerns and future research in this
area is needed.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. This
research is funded by the German Ministry for Education and
Research (BMBF) under grant number 01IS13020.

10. REFERENCES
[1] S. Zdancewic and A.C. Myers, “Robust Declassification”, In

Proceedings of the IEEE Computer Security Foundations
Workshop, pp. 15–23, 2011.

[2] http://cwe.mitre.org/data/definitions/200.html, accessed on
June 2014.

[3] https://www.owasp.org/index.php/Top_10_2007, accessed
on June 2014.

[4] http://blog.veracode.com/2010/12/mobile-app-top-10-list/,
accessed on June 2014.

[5] James C. King, “Symbolic Execution and Program Testing”,
Commun. ACM, Vol. 19, pp. 385–394, 1976.

[6] D.S. Kushwana and A.K. Misra, “Software test effort
estimation”, ACM SIGSOFT Software Engineering Notes
archive Vol. 33 Issue 3, Article No. 6, May 2008.

[7] United States, National Institute of Standards and
Technology (NIST): Juliet Test Suite v1.2 for C/C++, online:
http://samate.nist.gov/SRD/testsuites/juliet/Juliet_Test_Suite
_v1.2_for_C_Cpp.zip, accessed on June 2014.

[8] M. Das, S. Lerner and M. Seigle, “ESP:path-sensitive
program verification in polynomial time”, PLDI '02, ACM
SIGPLAN Conference on Programming language design and
implementation, pp. 57 – 68, 2002.

[9] T. Ball and S.K. Rajamani, “Automatically Validating
Temporal Safety Properties of Interfaces”, Proc. 8th SPIN
Workshop on Model Checking of Software, LNCS 2057,
Springer-Verlag, pp.103–122, 2001.

[10] T. A. Henzinger, R. Jhala, R.Majumdar and G. Sutre,
“SoftwareVerification with Blast”, Proc. 10th In. Workshop
Model Checking of Software, LNCS 2648, Springer-Verlag,
pp. 235–239, 2003.

[11] FindBugs, http://findbugs.sourceforge.net, accessed on Jan.
2014.

[12] C. Cadar and K. Sen, “Symbolic Execution for Software
Testing: Three Decades Later ”, Communications of the
ACM (CACM) Volume 56, Issue 2, 2013.

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs”, In OSDI’08, Dec. 2008.

[14] J. S. Fenton, “Memoryless subsystems”, Computer Journal,
vol. 17, no. 2, pp. 143–147, May 1974.

[15] A. Sabelfeld and A. Russo, “From dynamic to static and
back: Riding the roller coaster of information-flow control
research”, in Proceedings of Andrei Ershov International
Conference on Perspectives of System Informatics, pp. 352–
365, 2009.

[16] T. Avgerinos, S.K. Cha, B. L. T. Hao and D. Brumley,
“AEG: Automatic Exploit Generation”, In Proceedings of the
Network and Distributed System Security Symposium
(NDSS 11), San Diego, CA, Feb. 2011.

[17] M. Guarnieri, P. El Khoury and G. Serme, “Security
vulnerabilities detection and protection using Eclipse”,
ECLIPSE-IT 2011, 6th Workshop of the Italian Eclipse
Community, Milano, Italy, September 22-23, 2011.

[18] D. Volpano, G. Smith, and C. Irvine, “A sound type system
for secure flow analysis”, Journal of Computer Security, vol.
4, no. 3, pp. 167–187, 1996.

[19] V. Simonet, “The Flow Caml System: documentation and
user’s manual”, Institut National de Recherche en
Informatique et en Automatique (INRIA), Technical Report
0282, Jul. 2003.

[20] X. Xiao, N. Tillmann, M. Fahndrich, J. de Halleux and M.
Moskal, “Transparent Privacy Control via Static Information
Flow Analysis”, Microsoft Research Tech Report MSR-TR-
2011-93, Aug. 7, 2011.

[21] S. Moore and S. Chong, “Static analysis for efficient hybrid
information-flow control”, CSF '11 Proceedings of the IEEE
24th Computer Security Foundations Symposium pp. 146-
160, 2011.

[22] E. S. Cohen, “Information transmission in sequential
programs”, In R. A. DeMillo, D. P. Dobkin, A.K. Jones and
R. J. Lipton, editors, Foundations of Secure Computation,
Academic Press, pp. 297-335. 1978.

92

[23] D. E. Denning and P. J. Denning, “Certification of programs
for secure information flow”, Comm. of the ACM,
20(7):504–513, July 1977.

[24] A. Russo and A. Sabelfeld, “Dynamic vs. Static Flow-
Sensitive Security Analysis”, Proceeding CSF '10
Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, pp. 186-199, 2010.

[25] Tiobe index of programming languages,
http://www.tiobe.com/index.php/content/paperinfo/tpci/inde
x.html, accessed on Jan. 2014.

[26] Langpop index of most used programming languages,
http://langpop.com/ , accessed on Jan. 2014.

[27] IEEE Spectrum, Top 10 Programming Languages
http://spectrum.ieee.org/computing/software/top-10-
programming-languages , accessed on September 2014.

[28] http://zeroturnaround.com/rebellabs/using-eclipse-for-java-
development/ , accessed on Jan. 2014

[29] Harrison, J., “Handbook of Practical Logic and Automated
Reasoning”, Cambridge University Press, 2009.

[30] A. Armando, J. Mantovani, L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT
solvers”. Int. J. Softw. Tools Technol. Transf.11(1), pp. 69–
83, 2009.

[31] A. Ibing, “SMT-constrained symbolic execution for Eclipse
CDT/Codan”, In: Workshop on Formal Methods in the
Development of Software, 2013.

[32] A. Cimatti, A. Griggio, B. Schaafsma and R. Sebastiani,
“The MathSAT 5 SMT solver” In: TACAS 2013.

[33] A. Ibing, “Parallel SMT-Constrained Symbolic Execution for
Eclipse CDT/Codan”, 25th IFIP International Conference,
ICTSS 2013, Lecture Notes in Computer Science, Istanbul,
Turkey, pp. 196-206, Nov. 13-15, 2013.

[34] A. Laskavaia, “Codan- C/C++ static analysis framework for
CDT”, In: EclipseCon 2011.

[35] D. Ceara, L. Mounier and M. L. Potet, “Taint Dependency
Sequences: a characterization of insecure execution paths
based”, ICSTW '10, pp. 371-380, 2010.

[36] C. Hammer, J. Krinke, and G. Snelting, “Information Flow
Control for Java Based on Path Conditions in Dependence
Graphs,” in In IEEE International Symposium on Secure
Software Engineering, 2006.

[37] G. Snelting, T. Robschink, and J. Krinke, “Efficient path
conditions in dependence graphs for software safety
analysis”, ACM Trans. Softw. Eng. Methodol., vol. 15, no.
4, 2006.

[38] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar,
“Interprocedural analysis for privileged code placement and
tainted variable detection,” in ECOOP 2005 - Object-
Oriented Programming, pp. 362–386, July 2005.

[39] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type
qualifiers,” in PLDI ’02: Proceedings of the ACM SIGPLAN
Conference on Programming language design and
implementation, pp. 1–12, 2002.

[40] http://www.cs.umd.edu/ jfoster/cqual/., accessed Feb. 2014.

[41] B. Scholz, C. Zhang, and C. Cifuentes, “User-input
dependence analysis via graph reachability”, in Source Code
Analysis and Manipulation, IEEE International Workshop
on, Los Alamitos, CA, USA, pp. 25–34, 2008.

[42] R. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and V.
Shmatikov, “Inputs of Coma: Static Detection of Denial of-
Service Vulnerabilities,” in CSF ’09: Proceedings of the
22nd IEEE Computer Security Foundations Symposium.
Washington, DC, USA, pp. 186–199, 2009.

[43] W. R. Bush, J. D. Pincus and D. J. Sielaff Journal, “A static
analyzer for finding dynamic programming errors”, Software
—Practice & Experience archive Volume 30 Issue 7, pp.
775-802, June 2000.

[44] N. Tillmann, M. Moskal, and J. de Halleux, “TouchStudio -
Programming Cloud-Connected Mobile Devices via
Touchscreen”, Microsoft Technical Report MSR-TR-2011-
49, 2011.

[45] D. Hovemeyer and W. Pugh,“Finding Bugs is Easy”, ACM
OOPSLA '04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications , pp. 132-136, 2004.

[46] N. Ayewah and W. Pugh, “The Google FindBugs Fixit”, In
Proceedings of ISSTA, Trento, Italy, pp. 241-252, July 12-
16, 2010.

[47] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix,and
W.Pugh, ”Experiences Using Static Analysis to Find Bugs”,
Journal IEEE Software archive Vol. 25 Issue 5, pp. 22-29,
Sep. 2008.

[48] A. C. Myers, “JFlow: Practical Mostly-Static Information
Flow Control”, Proceedings of the 26th ACM Symposium on
Principles of Programming Languages (POPL ’99), San
Antonio, Texas, USA, Jan. 1999

[49] A.C. Myers, L. Zheng, S. Zdancewic, S. Chong and N.
Nystrom, Jif: Java information flow. Software release.
Located at http://www.cs.cornell.edu/jif, July 2001-2008.

[50] V. Simonet. The Flow Caml system. Software release.
Located at http://cristal.intia.fr/~simonet/soft/flowcaml, July
2003.

[51] R. Chapman and A. Hilton, “Enforcing security and safety
models with an information flow analysis tool”, ACM
SIGAda, Ada Letters, 24(4):39–46, 2004.

[52] X. Qu and B. Robinson, “A Case Study of Concolic Testing
Tools and their Limitations”, In: ESEM '11, IEEE Computer
Society Washington, DC, USA, pp. 117-126, 2011.

[53] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill and D. Engler,
“EXE: Automatically Generating Inputs of Death”, ACM
Transactions on Information and System Security (TISSEC)
Volume 12, No. 2, Dec. 2008.

[54] S. Hunt and D. Sands, “On flow-sensitive security types”, in
Conference Record of the 33th Annual ACM, (POPL '06),
pp. 79–90, 2006.

[55] C. Barrett, A. Stump, and C. Tinelli: The SMT-LIB Standard
Version 2.0. (Dec. 2010), online http: //goedel. cs.uiowa. edu
/smtlib/papers/ smt-lib-reference-v2.0-r10.12.21.pdf.,
accessed Jan. 2014.

[56] J. Christ, J. Hoenicke and A. Nutz, “SMTInterpol: an
interpolating SMT solver”, SPIN'12, pp. 248-254, 2012.

[57] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver”,
TACAS'08/ETAPS'08 Proceedings of the Theory and
practice of software, pp. 337-340.

[58] Source Code Security Analyzers,
http://samate.nist.gov/index.php/Source_Code_Security_Ana
lyzers.html, accessed on June 2014.

93

