MayPar: A May-Happen-in-Parallel Analyzer for Concurrent
Obijects -

Elvira Albert
Complutense University of
~ Magdrid
elvira@sip.ucm.es

ABSTRACT

We present the concepts, usage and prototypical implemen-
tation of MayPar, a may-happen-in-parallel (MHP) static
analyzer for a distributed asynchronous language based on
concurrent objects. Our tool allows analyzing an application
and finding out the pairs of statements that can execute in
parallel. The information can be displayed by means of a
graphical representation of the MHP analysis graph or, in
a textual way, as a set of pairs which identify the program
points that may run in parallel. The information yield by
MayPar can be relevant (1) to spot bugs in the program re-
lated to fragments of code which should not run in parallel
and also (2) to improve the precision of other analyses which
infer more complex properties (e.g., termination and cost).

Categories and Subject Descriptors

F3.2 [Logics and Meaning of Programs]|: Program Anal-
ysis; F2.9 [Analysis of Algorithms and Problem Com-

plexity]: General; D.1.3 [Programming Techniques]|: [Con-

current Programming] Distributed programming, Parallel pro-
grammang

General Terms
Languages, Theory, Verification, Reliability

Keywords

Static Analysis, Resource Guarantees, Parallelism, Concur-
rent Objects

*This demo illustrates the implementation of a technique
presented at FMOODS/FORTE 2012 [3]. The work was
funded in part by the Information & Communication Tech-
nologies program of the European Commission, Future and
Emerging Technologies (FET), under the ICT-231620 HATS
project, by the Spanish Ministry of Science and Innovation
(MICINN) under the TIN-2008-05624 DOVES project, the
UCM-BSCH-GR35/10-A-910502 GPD Research Group and
by the Madrid Regional Government under the S2009TIC-
1465 PROMETIDOS-CM project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT’12/FSE-20, November 11-16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

Antonio Flores-Montoya
Complutense University of
Madrid
aeflores@fdi.ucm.es

Samir Genaim
Complutense University of
. Madrid
samir.genaim@fdi.ucm.es

1. INTRODUCTION

It is widely recognized that writing concurrent programs is
error-prone. The concurrency errors that programmers face
are frequently related to undesired task interleavings, which
may be the result of a wrong synchronization of tasks. For
instance, it frequently happens that, when a task suspends
its execution, another task starts to execute and possibly
modifies the global state. Without the programmer expect-
ing it, the global state has changed when the suspended
task resumes. This type of synchronization errors can lead
to unpredicted exceptional behaviours, to non-termination,
to erroneous computed results, etc.

This paper reports on a MAY-happen-in-PARrallel analyzer
for a distributed asynchronous language based on concurrent
objects. The goal of a may-happen-in-parallel analysis is to
identify pairs of statements that can execute in parallel (see,
e.g., [7]). If the analysis does not infer an MHP pair for two
points p1 and po, it is guaranteed that p1 and p2 will never
execute in parallel. This information provides a global per-
spective of the communication and synchronization among
objects and enables better comprehension of the tasks inter-
leavings that might occur along the program execution.

2. DESCRIPTION OF MayPar

MayPar can be downloaded from its website ' as a self-
contained binary executable (currently only available for
Linux systems). It can also be used from a web interface
that allows users to try out the system without installing it.

MayPar analyzes programs written in ABS [6], an actor-
based language which has been recently proposed to model
distributed concurrent systems. For many application ar-
eas, standard mechanisms like threads and locks are too
low-level are considered to be error-prone and not modu-
lar enough. The concurrent objects model is based on con-
sidering objects as the concurrency units, i.e., each object
conceptually has a dedicated processor and can run in par-
allel with other objects. Communication is based on asyn-
chronous method calls with standard objects as targets. An
essential difference with thread-based concurrency is that
switching between tasks of the same object happens only at
specific scheduling points during the execution (namely at
await points), which are explicit in the source code and can
be syntactically identified. This feature is essential for the
precision of our MHP analysis.

http://costa.ls.fi.upm.es/costabs/mhp

2.1 Main Concepts

Automatically finding MHP relations is challenging. Con-
sider for example the following piece of code:

1 int m() { 6 int p() {
2 x.p(); 7 ox.r();
3 f=x.q(); await f7?; 8

4 o }

5 } 10

where x is an object, f is a future variable used to synchro-
nize with the result of the asynchronous call x.q, such that
the instruction await allows releasing the processor if the
task x.q has not terminated. An MHP relation (pi,p2) is
direct if, when a task ¢; is running at program point pi,
there is another task t2 executing p2, and ¢; has triggered
(transitively) the execution of t2, or vice versa. For instance,
the instructions of method p (from program point 8 on) and
those of 7 may run in parallel and have a direct relation. The
second type of indirect MHP relations (p1, p2) happen when
a task 3 is running and there are two other tasks ¢; and t2
executing in parallel, respectively, at p1 and p2, which have
been both triggered (transitively) from ¢3 but which do not
have a transitive relation between them (they do not trigger
one another). This is the case of all instructions of p and g,
they may run in parallel since they are both called from m.
In order to obtain global MHP information (i.e., all points
in the program that can potentially run in parallel), the ana-
lyzer starts from a method (typically main) and computes an
MHP analysis graph by analyzing all code which is reach-
able from the selected method. The technical description
of how the graph is computed can be found in the paper
[3]. From the graph, the MHP pairs of interest can be com-
puted on demand by querying the system with the set of
points the user wants to obtain information for. If only one
point is given, the analysis gives all program points that can
run in parallel with it. When a set of points is provided,
our tool computes the MHP relations among them. This
contrasts with other approaches (e.g, [1]) which define an
analysis which necessarily computes all MHP relations.

2.2 Applications

MHP relations are useful to understand the concurrent
behaviour of the application. As we will see in the tool
demonstration, unexpected MHP relations can spot bugs in
the programs which are often related to a bad synchroniza-
tion of the involved tasks. Therefore, in this sense, MayPar
is a useful debugging tool which allows the user to better
understand the concurrent behaviour of his program.

A main motivation behind the development of MayPar
is to infer non-functional properties of the program, such as
termination and resource usage. For instance, given a simple
loop of this form: “while (I!=null) {f=async(l.data); await f?;
I=l.next;}”, in order to prove termination of the loop, we
need to prove that the execution of the loop cannot run in
parallel with any instruction that increases the length of the
list I. Also, in order to bound its resource consumption, we
need to bound the number of iterations of the loop. If the
length of the list is not increased, the upper bound length(l)
can be automatically found.

3. RELATED TOOLS

Multiple MHP analyses for different languages have been

proposed, namely [7, 1] for the X10 language and several
MHP analyses for Java in [9, 8, 5]. Our tool is an imple-

mentation of the MHP analysis for ABS programs proposed
in [3], where a detailed technical comparison with previous
analyses is provided. We herein focus on comparing MayPar
with existing implementations. The algorithm proposed by
[9] resulted in an implementation which is integrated as part
of the FLAVERS tool for data flow analysis of concurrent
programs. As regards [5], though they seem to have a work-
ing implementation on which they run some benchmarks, as
far as we know, it is not available nor integrated in another
tool. Similarly, [10] evaluate their analysis for OpenMP
C programs but do not have an available implementation.
Also, [4] presents a static schedule analysis of fine-grained
parallelism with explicit happens-before relationships. Its
approach is radically different as the scheduling has to be
explicitly defined by the programmer. Besides, despite hav-
ing an available implementation, it does not provide any user
interface. Therefore, to the best of our knowledge, MayPar
is the first standalone MHP analyzer which can be used for
debugging purposes and that provides a user-friendly inter-
face with several options to interact with the user. Besides,
it is integrated as part of the COSTABS analyzer [2], where
plays an essential role to prove the termination of concurrent
programs and infer its resource consumption.

4. REFERENCES

[1] S. Agarwal, R. Barik, V. Sarkar, and R. K.
Shyamasundar. May-happen-in-parallel analysis of x10
programs. In PPOPP’07, pages 183-193. ACM Press.

[2] E. Albert, P. Arenas, S. Genaim, M. Gémez-Zamalloa,
and G. Puebla. COSTABS: A Cost and Termination
Analyzer for ABS. In PEPM’12, pages 151-154. ACM
Press.

[3] E. Albert, A. Flores-Montoya, and S. Genaim.
Analysis of may-happen-in-parallel in concurrent
objects. In FMOODS/FORTE’12, volume 7273 of
LNCS, pages 35-51. Springer.

[4] C. M. Angerer and T. R. Gross. now happens-before
later: static schedule analysis of fine-grained
parallelism with explicit happens-before relationships.
In SPLASH ’10, pages 3—10. ACM.

[5] R. Barik. Efficient computation of
may-happen-in-parallel information for concurrent
java programs. In LCPC’05, volume 4339 of LNCS,
pages 152-169. Springer.

[6] E. B. Johnsen, R. Hihnle, J. Schiifer, R. Schlatte, and
M. Steffen. ABS: A Core Language for Abstract
Behavioral Specification. In Post Proc. of FMCO’10,
volume 6957 of LNCS, pages 142—-164. Springer.

[7] J. K. Lee and J. Palsberg. Featherweight X10: A Core
Calculus for Async-Finish Parallelism. In PPoPP’10,
pages 25-36. ACM Press.

[8] L. Li and C. Verbrugge. A practical mhp information
analysis for concurrent java programs. In LCPC’04,
LNCS, pages 194—208. Springer.

[9] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An
efficient algorithm for computing MHP information
for concurrent java programs. SIGSOFT Softw. Eng.
Notes, 24(6):338-354, 1999. 319252.

[10] Y. Zhang, E. Duesterwald, and G. Gao. Concurrency
analysis for shared memory programs with textually
unaligned barriers. In LCPC 2007, volume 5234 of
LNCS, pages 95-109. Springer.

1 class User(String email) {
2 List<String> msgs;

3 User receive(String m) {
4 msgs = Cons(m, msgs) ;
s}
6
7
8
9

}

class AddrBook(List<User> users) {
User getUser (String email) {

11 }
12}

14 class Notifier (AddrBook ab) {
15 List<String> addrs = Nil;
16 Unit notify (String m) {

17 while (addrs != Nil) {

18 Fut<User> u;

19 u = ab!getUser (head(addrs));
20 await u?;

21 User us = u.get;

22 us!receive (m);

23 addrs = tail(addrs);

24 }

25 }

26

27 Unit addAddr(String u) {

28 addrs = Cons(u, addrs);

29 }

30

31 Unit addAddrs(List<String> |) {
52 while (| !'= Nil) {

33 addAddr(head(1));

34 I=tail (1);

35

36 }

37 }

38

39 main{

40 User ul = new User("a@b.com");

42 AddrBook ab new AddrBook ([ul,...]);

43 Notifier ms = new Notifier(ab);

44 Fut<Unit> x = ms!addAddrs(["a@b.com" ,...]);
45 await x?

46 ms. notify ("Hello ...");

a7}

Figure 1: The Notifier example

APPENDIX
A. USAGE OF MayPar

The following example demonstrates the behavior and main
use of the tool: aiding the programmer in debugging and un-
derstanding the concurrent behaviour of programs;

A.1 The Notifier Example

We use the program depicted in Fig. 1 which implements
several classes to model users in a distributed environment,
and the processes of notifying them with messages.

Class User (L1-6) models a user which has a field email (de-
clared as a class parameter) for storing its associated email
address, and a field msgs for storing the received messages.
Method receive is used to send a message to the user. Class
AddrBook (L8-12) models an address book which has a field
users that contains a list of registered users, and a method
getUser for retrieving the object that corresponds to a given

email address. The code of this method is omitted, we just
assume that it is completely sequential and does not call any
other method.

Class Notifier (L14-37) models the process of notifying
users with messages. Field ab contains an AddrBook object
which is used to retrieve users by email addresses. Field
addrs contains a list of registered email addresses. Method
addAddrs adds a given list of email addresses to field addrs,
by asynchronously calling addAddr on each of them. Method
notify is used to notify all the registered users with a message
m. It iterates over the list addrs, and at each iteration:

1. it requests, by calling getUser at 1.19, the User object
that corresponds to the first email address in list addrs,
and, at L21, waits until it gets the result back. Note
that the call to getUser is asynchronous, and that the
await instruction blocks the execution of notify , allowing
other pending methods to execute in the meanwhile.
The instruction get is used to retrieve the result of the
asynchronous call;

2. it sends the message m to the corresponding user by
asynchronously calling the corresponding receive method
at L22; and

3. it removes the first email address from addrs at L.23.

Method main implements the following usage scenario: (a)
it creates several User objects at L.40-41, each with a unique
email address; (b) it creates an AddrBook object at L42, and
passes it a list of users [ul,..]; (c) it creates a Notifier
object at L43 which receives the address book ab as class
parameter; (d) it adds some email addresses to be notified
by asynchronously calling addAddrs at L44, and waits at L45
until it has terminated; and (e) finally it calls method notify
at L46 in order to notify all registered users with a given
message.

A.2 MHP Analysis of the Notifier example

The input to the tool is an ABS program, a selection of
the method from which the analysis starts, and optionally a
set of program points of interest. These program points can
be referenced through program line numbers.

In a first step, MayPar generates an MHP graph that
captures all MHP relations between the different program
points of the program. Then, using this graph, it outputs a
set of MHP pairs of the form (¢, j) which indicates that the
instruction at program point ¢ might execute in parallel with
the one at program point j, and vice versa. This set can be
obtained for all program points, for some program points of
interest, or even on demand, e.g., querying if two program
points might run in parallel. Although the MHP graph is
shown in the output as a .dot file, the user is not required
to understand its details and can simply ignore it. However,
as we see in the next section, it might help in identifying the
source of unexpected MHP pairs.

Let us demonstrate the output of MayPar on the pro-
gram of Fig. 1. The corresponding MHP graph is depicted
in Fig. 2. Each program point ¢ that corresponds to a con-
text switch, i.e., a program point in which the execution
might switch from one method to another, is represented by
a node (i). These nodes always include the method’s entry
and exit program points. In principle, other program points
can be included, however, these are the only ones required
for soundness. Each method m contributes two nodes: [m]
represents an instance of m that is active, i.e., running and

& ®

® ©

addAddr
| e
: addAddr

——————————— oo |

| laddAddrs

?
® &

Figure 2: MHP graph for the program of Fig. 1

can be at any program point, and [m] represents an instance
of m that is finished, i.e., it is at the exit program point.

The MHP graph is composed of 5 subgraphs, one for
each method and that are represented as dashed rectangles.
In each subgraph: (a) the active method node (the white
rectangle) is connected to all program point nodes of that
method, meaning that when the method is active it can be
executing at any of those program points; and (b) the fin-
ished method node (the gray rectangle) is connected to the
exit program point node, meaning that when the method is
finished it must be at the exit program point. For example,
in the subgraph of method main, there are edges from
to nodes 69, @, and @); and from to @.

The subgraphs are interconnected by weighted edges. Each
such edge starts at a program point node in one subgraph,
and ends in an active or finished method node in another
subgraph (it can be the same if the method is recursive).
These edges are inferred by applying a method-level MHP
analysis which analyzes each method separately. This anal-
ysis infers, for each program point, which methods might
be running in parallel with that program point, how many
instances of each, and in which mode (active or finished).
This information is inferred by considering only the code of
the corresponding method. For example, the method-level
analysis infers: (a) for method main, at L45, there might be
one active instance of method addAddrs. This will add an
edge from @ to [addAddrs]. The edge is labelled with 1 to
indicate that it is only one instance of addAddrs; and (b) for
method notify, at .20, there might be an active instance of
getUser, many finished instances of getUser, and many active
instances of receive. This will add an edge from €9 to
with label 1, to with label oo, and to with
label co. Edges with oo should be interpreted as infinitely
many edges with weight 1.

The MHP graph guarantees that if there is an execution
in which the instructions at program points ¢ and j might
execute in parallel, at least one of the following holds:

e direct relation: there is a path from @) to @) (or vice
versa); or

e indirect relation: there is a node &) that has two dif-
ferent paths to both (& to (.

These properties allow generating all MHP pairs from the
graph, or providing them on demand. The set of MHP pairs
is given in a simple text format, or as an XML structure
to facilitate parsing when integrated within other tools. We
can see that there is a path from @5 to €) which induces
the direct MHP pair (45,27). Also, there are different paths
from @) to both €9 and €9 which induces the indirect MHP
pair (20,27). We will see that the web-interface provides an

1
- = addAdd“r‘
w “136+——{addAddr

® &

Figure 3: MHP graph after correcting addAddrs

interactive way of showing these pairs: when clicking on a
specific program point in the program, all program points
that might run in parallel become highlighted.

A.3 Using MHP for debugging and understand-
ing concurrent programs

While testing the program of Fig. 1, the programmer no-
ticed that it does not have the expected behavior. In par-
ticular, it does not notify some users, and some others are
notified several times. As we have seen above, MayPar re-
ports the MHP pair (20,27). This means that while waiting
for getUser to terminate at .20, an instance of addAddr might
be executing and thus modifying field addrs. This valuable
information provides a hint that allow constructing the fol-
lowing unexpected scenario. Suppose that when entering
the loop, field addrs equals to ["a@b.com","b@c.com"]. Then,
while waiting for the answer from getUser at 120, there is
an instance of addAddr that executes in parallel and adds
"c@d.com" to addrs. Thus, when reaching 1.23, addrs will be
equal to ["c@d.com","a@b.com","b@c.com"], and removing the
first element of this list means that "ced.com" will not be
notified, and that in the next iteration "a@b.com" will be
notified again.

To understand the source of this error, the programmer
inspects how the MHP information was obtained using the
MHP graph of Fig. 2. First, the direct MHP relations are
inspected for L20, by querying MayPar with this selected
point. However, they do not lead to any error since €) is
not reachable from @0, and vice versa. Then, inspecting the
indirect MHP relation, the programmer observes that .45
is the source of this error since @3 reaches both €0 and €9 on
two different paths. Tracking the MHP information back,
the error can be easily identified: at L33, the call to addAddr
is invoked asynchronously but it does wait for it to termi-
nate, thus, it is scheduled and might execute later while
notify is waiting at LL.20. Adding an await instruction for the
call immediately after L33 solves the problem. Indeed, ap-
plying MHP analysis on the new version provides the MHP
graph in Fig. 3, where () corresponds to the new program
point. Now we can see that the indirect MHP that involve
€0 and €9 has been eliminated.

It is important to note that the construction of the MHP
graph of Fig. 3 can be done incrementally from that of Fig. 2.
We only reanalyze method addAddrs and generate a new sub-
graph for this method, the rest remain the same. This is be-
cause, as we have explained above, the construction of the
MHP graph is done by analyzing each method separately.
Thus, the change in addAddrs will not affect the subgraphs
of other methods.

