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ABSTRACT
To process massive quantities of data, developers leverage data-
intensive scalable computing (DISC) systems in the cloud, such
as Google’s MapReduce, Apache Hadoop, and Apache Spark. In
terms of debugging, DISC systems support post-mortem log analy-
sis but do not provide interactive debugging features in realtime.
This tool demonstration paper showcases a set of concrete use-
cases on how BIGDEBUG can help debug Big Data Applications by
providing interactive, realtime debug primitives. To emulate inter-
active step-wise debugging without reducing throughput, BIGDE-
BUG provides simulated breakpoints to enable a user to inspect
a program without actually pausing the entire computation. To
minimize unnecessary communication and data transfer, BIGDE-
BUG provides on-demand watchpoints that enable a user to re-
trieve intermediate data using a guard and transfer the selected
data on demand. To support systematic and efficient trial-and-
error debugging, BIGDEBUG also enables users to change pro-
gram logic in response to an error at runtime and replay the ex-
ecution from that step. BIGDEBUG is available for download at
http://web.cs.ucla.edu/~miryung/software.html.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging; Error handling and recovery;
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Debugging, big data analytics, interactive tools, data-intensive scal-
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1. INTRODUCTION
An abundance of data in many disciplines of science, engineer-

ing, national security, health care, and business is now urging the
need for developing Big Data Analytics. To process massive quan-
tities of data in the cloud, developers leverage data-intensive scal-
able computing (DISC) systems such as Google’s MapReduce [4],
Apache Hadoop [1], and Apache Spark [13]. In these DISC sys-
tems, scaling to large datasets is handled by partitioning data and

assigning tasks that execute a portion of the application logic on
each partition in parallel. Unfortunately, this critical gain in scal-
ability creates an enormous challenge for data scientists in under-
standing and resolving errors.

The application programming interfaces (API) provided by
DISC systems expose a batch model of execution: applications are
run in the cloud, and the results, including notification of runtime
failures, are sent back to users upon completion. Therefore, de-
bugging is done post-mortem and the primary source of debugging
information is an execution log. However, the log presents only the
physical view—the job status at individual nodes, the overall job
progress rate, the messages passed between nodes, etc, but does
not provide the logical view—which intermediate outputs are pro-
duced from which inputs, what inputs are causing incorrect results
or delays, etc. Alternatively, a developer may test their program by
downloading a small subset of big data from the cloud onto their lo-
cal disk, and then run the application in local mode. However, this
approach can easily miss errors, when the faulty data is not part of
the downloaded subset.

We showcase BIGDEBUG, a library providing expressive and in-
teractive debugging for big data analytics in Apache Spark [2]. This
tool demonstration paper is based on our prior work on the design
and implementation of interactive debugging primitives for Apache
Spark [7]. Designing BIGDEBUG requires re-thinking the notion
of breakpoints, watchpoints, and step-through debugging in a tra-
ditional debugger such as gdb. For example, simply pausing the
entire computation would waste a large amount of computational
resources and prevent correct tasks from completing, reducing the
overall throughput. Requiring the user to inspect the millions of
intermediate records at a watchpoint is also clearly infeasible.

BIGDEBUG provides simulated breakpoints that enable a user
to inspect a program without actually pausing the entire computa-
tion. It also supports on-demand watchpoints that enable a user
to retrieve intermediate data using a guard predicate and transfer
the selected data on demand. To understand the flow of individ-
ual records within a data parallel pipeline, BIGDEBUG provides
data provenance capability, which can help understand how errors
propagate through data processing steps. To support systematic
and efficient trial-and-error debugging, BIGDEBUG enables users
to change program logic in response to an error at runtime through a
realtime code fix feature and selectively replay the execution from
that step. Under the maximum instrumentation settings, BIGDE-
BUG takes 2.5X more time than baseline Apache Spark. More re-
sults on performance overhead are described elsewhere [7].

This paper is organized as follows. Section 2 describes the back-
ground on Apache Spark. Section 3 describes individual debug-
ging features of BIGDEBUG using two motivating scenarios along
with relevant screen snapshots. Section 4 describes the implemen-
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1 val log = "s3n://xcr:wJY@ws/logs/enroll.log"
2 val text_file = spark.textFile(log)
3 val avg = text_file
4 .map(line = > (line.split()[2] ,

line.split()[3].toInt) )
5 .groupByKey()
6 .map(v => (v._1 , average(v._2)) )
7 .collect()

Figure 1: College student data analysis program in Scala

tation details of BIGDEBUG. Section 5 describes related work and
Section 6 concludes. The current version of BIGDEBUG only sup-
ports Spark programs written in Scala and it is publicly available at
https://sites.google.com/site/sparkbigdebug/.

2. BACKGROUND: APACHE SPARK
Apache Spark [2] is a large scale data processing platform

that achieves orders-of-magnitude better performance than Hadoop
MapReduce [1] for iterative workloads. BIGDEBUG targets Spark
because of its wide adoption and support for interactive ad-hoc an-
alytics. The Spark programming model can be viewed as an exten-
sion to the Map Reduce model with direct support for traditional
relational algebra operators (e.g., group-by, join, filter). Spark pro-
grammers leverage Resilient Distributed Datasets (RDDs) to apply
a series of transformations to a collection of data records (or tuples)
stored in a distributed fashion e.g., in HDFS [11].

Calling a transformation on an RDD produces a new RDD that
represents the result of applying the given transformation to the in-
put RDD. Transformations are lazily evaluated. The actual eval-
uation of an RDD occurs, when an action such as count or
collect is called. The Spark platform consists of three main en-
tities: a driver program, a master node, and a set of workers. The
master node controls distributed job execution and provides a ren-
dezvous point between the driver and the workers. Internally, the
Spark master translates a series of RDD transformations into a Di-
rected Acyclic Graph (DAG) of stages, where each stage contains
some sub-series of transformations, until a shuffle step is required
(i.e., data must be re-partitioned). The Spark scheduler is respon-
sible for executing each stage in topological order, with tasks that
perform the work of a stage on input partitions. Each stage is fully
executed before downstream dependent stages are scheduled. The
final output stage evaluates the action that triggered the execution.
The action result values are collected from each task and returned
(via the master) to the driver program, which can initiate another
series of transformations ending with an action.

3. MOTIVATING SCENARIOS WITH DE-
BUG FEATURES

Suppose Alice is a Spark user and she wants to process all US
college student data. Because of the massive size of the data, she
cannot store and analyze the data in a single machine. Suppose
that she intends to compute the average age of all college students
in each year (freshman, sophomore, junior, and senior). She starts
by parsing the data into appropriate data types and then groups the
records for each category. Once she has all related records grouped
together, she computes the average and then collects the final re-
sults. A sample input record is in the following format:

1 Timothy Sophomore 21
The final program that Alice has written is shown in Figure 1. At

line 2, she loads the US college student data from an Amazon S3
storage in the cluster. Line 4 reads each data record in the input data
and generates a key value pair, where a key is the status category

for a student and the value is the age of that student. At lines 5
and 6, she groups all records with respect to the key and calculates
the average for each category. At line 7, she executes the job and
requests the result to be sent to the driver.

Simulated Breakpoint and Guarded Watchpoint
To maximize the throughput in a big data debugging session,
BIGDEBUG provides simulated breakpoints that enable a user to
inspect a program state in a remote executor node without actu-
ally pausing the entire computation. When such breakpoint is in
place, a program state is regenerated, on-demand, from the last ma-
terialization point, while the original process is still running in the
background. The last materialization point refers to the last stage
boundary before the simulated breakpoint. These materialization
points are determined beforehand by Spark’s scheduler.

To reduce developer burden in inspecting a large amount of in-
termediate records at a particular breakpoint within the workflow,
BIGDEBUG’s on-demand guarded watchpoints retrieve interme-
diate data matching a user-defined predicate and transfer the se-
lected data on demand. Furthermore, BIGDEBUG enables the user
to update the guard predicate at runtime, while the job is still run-
ning. This dynamic guard update feature is useful when the user
is not familiar with the data initially, and she wants to gradually
narrow down the scope of the intermediate records to be inspected.

For example, suppose that Alice wants to inspect the pro-
gram state at line 3. She can insert a simulated breakpoint
using BIGDEBUG’s API i.e., simulatedBreakpoint(r =>
!COLLEGEYEAR.contains(r.split()[2])) with the
guard predicate indicating that the second field is not one of the
pre-defined college years. The benefit of this breakpoint combined
with the guarded watchpoint is twofold. First, Alice can now
inspect intermediate program results distributed across multiple
nodes on the cloud, which is impossible in the original Spark.
Second, she can also inspect records matching the guard predicate
only, which tremendously reduces the inspection overhead.

While the Spark program instrumented with breakpoints is run-
ning on the cluster, Alice can use a web-based debugger interface
by connecting to a configured port (4040 by default). Using this
interface, she can view the DAG of the data flow program. On the
left hand side of Figure 2, a yellow node in the DAG represents
a breakpoint. Alice can use the code editor window on the right
hand side to see the Spark program in execution. Statements with
a breakpoint are tagged using a red arrow while the statement to be
executed next is highlighted in blue.

Figure 3: A user can edit the guard predicate using an editor.

Realtime Code Fix
After inspecting a program state at a breakpoint, if a user decides to
patch code appearing later in the pipeline, she can use the realtime
code fix feature to repair code on the fly. In this case, the original
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Figure 2: BIGDEBUG extends Spark’s user interface to provide runtime debugging features

job is canceled and a new job is created from the last materialization
point before the breakpoint. This approach avoids restarting the
entire job from scratch.

For example, in Figure 2, since a simulated breakpoint is in
place, BIGDEBUG records the last materialization point before the
breakpoint, in this case, after textFile. While the job is still ex-
ecuting, Alice can inspect the internal program state at the break-
point. She can click on the green node on the DAG, which redirects
her to a new web page, where intermediate records are displayed.
When she requests to view the internal program state, the captured
records from the guarded watchpoint are transferred to the driver
node and displayed as shown in Figure 3. Upon viewing the inter-
mediate records at a breakpoint, Alice discovers that some records
use number 2 instead of Sophomore to indicate the status year.

1 Timothy 2 21
From this outlier record, Alice immediately learns that her pro-

gram should handle records with a status year written in numbers.
To apply realtime code fix, Alice can click on the corresponding
transformation, in this case, map transformation marked in blue in
the DAG. She can then insert a new user-defined function to re-
place the old user-defined function using a code editor shown in
Figure 3. The code fix can now handle status year both in number
and string formats. When Alice presses a submit button, BIGDE-
BUG compiles and redistributes the new user-defined function to
each worker node and restarts the job from the latest materializa-
tion point. When the job finishes its execution, the final result after
the fix is shown to Alice. In addition to a realtime code fix feature,
Alice may use resume and step over as control commands.
These control commands are available in BIGDEBUG’s UI.

Crash Culprit Remediation
In normal Spark, a runtime exception terminates the whole job,
throwing away hours of computation while giving no information
of the root cause of the error. When a Spark program fails with a
runtime exception on the cluster, BIGDEBUG reports a crash cul-
prit record in the intermediate stage but also identifies a crash-
inducing input(s) in the original input data. While waiting for

a user intervention, BIGDEBUG runs pending tasks continuously
to utilize idle resources in order to achieve high throughput. If a
crash occurs, the original job keeps on running, while the user is
notified of the fine-grained details of the crash. Once the crash cul-
prit is reported to the user, the user can choose among three crash
remediation options. First, a user can choose to skip the crash
inducing record. The final output, in this case, will not reflect the
skipped records. Second, a user can modify crash culprit records
in realtime, so that the modified record can be injected back into
the pipeline. Third, a user can repair code. The whole process
of modifying crash culprits is optimized through lazy remediation.
While the user takes time to resolve crash culprits, BIGDEBUG con-
tinues processing the rest of the records, while also reporting any
additional crashing record. More details about crash remediation
methods are discussed elsewhere [7].

Suppose that, after several hours of computation, a runtime ex-
ception occurs during the data processing. BIGDEBUG alerts Alice
on the intermediate record responsible for the crash. These alerts
turn the corresponding transformation node of the DAG to be red
and highlight the corresponding code line in the main editor win-
dow to be red as well. When Alice clicks on the red node in the
DAG, she is redirected to the crash culprit page of Figure 4. This
page contains precise and useful information about the following
crash culprit record:

1221 Matthew 4 24yr
When Alice is informed of the crash culprit record, BIGDEBUG

continues executing the rest of the records and waits for the crash
resolution from Alice. Alice may skip or modify the crash inducing
intermediate record directly. Figure 4 shows the options provided
on the UI to perform these remediation operations on the crash-
inducing records. Alice skips the crashing record by pressing the
Skip button on the crash culprit UI. BIGDEBUG also allows the
batch repair of modifying all crash-inducing records at once using
a user-defined repair script.

Forward and Backward Tracing
BIGDEBUG supports fine-grained tracing of individual records
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Figure 4: A user can either modify or skip the crash inducing
records

by invoking a data provenance query on the fly. The data prove-
nance problem in the database community refers to identifying
the origin of final (or intermediate) output. Data provenance sup-
port for DISC systems is challenging, because operators such as
aggregation, join, and group-by create many-to-one or
many-to-many mappings for inputs and outputs and these mappings
are physically distributed across different worker nodes. BIGDE-
BUG uses data provenance capability implemented through an ex-
tension of Spark’s RDD abstraction [8].

Fine-grained tracing allows users to reason about the faults in
the program output or intermediate results, and explain why a cer-
tain problem has occurred. Using backward tracing, a crash culprit
record can be traced back to the original inputs responsible for the
crash record. Forward tracing allows user to find the output records
affected by a selected input.

For example, during crash remediation, Alice can invoke for-
ward and backward tracing feature at runtime to find the original
input records responsible for the crash. On the crash culprit UI,
Alice can invoke the backward tracing query by pressing the trace
to input button. BIGDEBUG performs backward tracing in a new
process to trace crash-inducing records in the original input data.
Alice can also perform step-by-step backward tracing, showing all
intermediate records tracing back to crash-inducing input records.

Fine-Grained Latency Monitoring
In big data processing, it is important to identify which records
are causing delay. To localize performance anomalies at the record
level, BIGDEBUG wraps each operator with a latency monitor. For
each record at each transformation, BIGDEBUG computes the time
taken to process each record, keeps track of a moving average, and
sends a report to the monitor, if the time is greater than k standard
deviations above the moving average, where default k is 2.

4. IMPLEMENTATION
The API for BIGDEBUG is shown in Figure 5 and targets Scala

programs. All the features in BIGDEBUG is supported through
the corresponding web-based user interface. BIGDEBUG extends
the current Spark UI and provides a live stream of debugging in-
formation in an interactive and user-friendly manner. A screen-
shot of this interface is shown in Figure 2. Instead of creating
a wrapper of existing Spark modules to track the input and out-
put of each stage, BIGDEBUG directly extends Spark to moni-
tor pipelined intra-stage transformations; its API extends the cur-
rent RDD interface of Spark. A user can use function calls like
watchpoint() and simulatedBreakpoint() on an RDD
object to insert watchpoints and breakpoints. BIGDEBUG allows
user to enable crash and latency monitoring on individual RDDs by
calling appropriate methods on that RDD object. Tracing works at
the granularity of each job and can be enabled or disabled through
a LineageContext. All debugger control commands are linked
with a driver that broadcasts the debugger control information to
each worker. The runtime code patching is received and compiled

1 //RDD.scala
2 abstract class RDD[T: ClassTag](
3 ....
4 def watchpoint(f: T => Boolean): RDD[T]
5 def simulatedBreakpoint
6 def simulatedBreakpoint(f:T => Boolean)
7 def enableLatencyAlert(set : Boolean)
8 def setCrashConfiguration(set :

CrashConfiguration)
9 def setFunction(f : T => U)

10 def goBackAll: LineageRDD
11 def goNextAll: LineageRDD
12 def goBack: LineageRDD
13 def goNext: LineageRDD
14 ...

Figure 5: BIGDEBUG’s API
at a driver and is then loaded into each worker, where an instru-
mented task is running.

5. RELATED WORK
Fisher et al. interviewed 16 data analysts at Microsoft and stud-

ied the painpoints of big data analytics tools [5]. Their study finds
that a cloud-based computing solution makes it far more difficult
to debug. Xu et al. parse console logs and combine source code
analysis to detect abnormal behavior [12]. Fu et al. map free-form
text messages in log files to logging statements in source code [6].
None of these post-mortem log analysis approaches help develop-
ers debug DISC applications in realtime.

Inspector Gadget [9] is a framework proposal for monitoring and
debugging data flow programs in Apache Pig [10]. The proposal
is based on informal interviews with 10 Yahoo employees who
write DISC applications. While Inspector Gadget proposes features
such as step-through debugging, crash culprit determination, trac-
ing, etc., it simply lists desired debug APIs, but leaves it to others
to implement the proposed APIs. Arthur is a post-hoc instrumen-
tation debugger that targets Spark and enables a user to selectively
replay a part of the original execution [3]. However, a user can only
perform post-mortem analysis and cannot inspect intermediate re-
sults at runtime. It also requires a user to write a custom query for
post-hoc instrumentation. To localize faults, Arthur requires more
than one run. In our prior work, we describe the design and eval-
uation of interactive debugging primitives [7] and data provenance
for Apache Spark [8]. This demonstration paper builds on these
prior works to showcase the UI and tool features of BIGDEBUG.

6. FUTURE WORK
BIGDEBUG offers interactive debugging primitives for an in-

memory data-intensive scalable computing (DISC) framework. In
terms of future work, instead of having a user specify a guard for an
on-demand watchpoint, extracting data invariants from intercepted
intermediate results may be useful for helping the user debug a
DISC program. Another area for future work is tool-assisted auto-
mated fault localization in BIGDEBUG. For example, with the help
of automated fault localization, we envision that a user can isolate
the trace of failure-inducing workflow, diagnose the root cause of
an error, and explain the cause-effect chain for unexpected results.
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