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ABSTRACT 
Object-oriented application frameworks provide an established 
way of reusing the design and implementation of applications in a 
specific domain. Using a framework for creating applications is 
not a trivial task, however, and special tools are needed for sup-
porting the process. Tool support, in turn, requires explicit 
specification of the reuse interfaces of frameworks. Unfortunately 
these specifications typically become quite extensive and complex 
for non-trivial frameworks. In this paper we discuss the possibility 
to reverse engineer a reuse interface specification from a frame-
work’s and its example applications’ source code. We also intro-
duce a programming environment that supports both making and 
using such specifications. In our environment, the reuse interface 
modeling is supported by a concept analysis based reverse 
engineering technique described in this paper. 

Categories and Subject Descriptors 
D.2.6 [Software Engineering]: Programming Environments – 
integrated environments. D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement – reverse engineering. 
D.2.13 [Software Engineering]: Reusable Software – reusable 
libraries, reuse models. 

General Terms 
Design, Documentation, Experimentation, Languages. 

Keywords 
Documentation, formal concept analysis, framework, pattern, 
reuse, reverse engineering. 

1. INTRODUCTION 
Reuse is one of the key factors in increasing the quality and pro-
ductivity of software development [1, 23]. Accordingly, lots of re-
sources have been invested in designing and implementing 
various kinds of reusable assets. Of these assets object-oriented 
application frameworks have proven to be especially cost-effec-
tive because they enable reuse of both functionality and architec-
ture of systems [5, 10]. 

A framework captures the commonalities of its application 
domain by a set of carefully designed abstract classes. The 
relationships between these core classes and the algorithms imple-
mented within them define the common architecture and functio-
nality of the applications to be derived from the framework. 

For an application developer the most crucial part of a framework 
is its reuse interface. The reuse interface consists of variation 
points or hot spots [21] related to specializing the framework’s 
abstract classes (specialization interface) and calling or combin-
ing its concrete default components (call interface). 

Using a framework through its specialization interface is often re-
ferred to as white-box reuse because it usually requires detailed 
knowledge of the framework’s internal structure (e.g. how and 
when overridden methods are called by the framework) while 
black-box reuse only involves calling the framework’s services 
through the interfaces of the concrete components. Similarly, 
frameworks that emphasize subclassing and method overriding are 
called white-box frameworks and frameworks that are mostly used 
by instantiating, combining, and configuring default components 
are called black-box frameworks. 

Most framework research has concentrated on framework design 
and construction, whereas framework usability has been studied 
less even though it has lots of practical significance [26]. Frame-
works are hard to use because they tend to be large, complex, and 
abstract systems. It has been estimated that it takes nearly a year 
for a professional programmer to master a large framework in 
order to be able to use it efficiently [2, 8]. 

It is already widely accepted that tool support is effective in the 
specialization of some particular kinds of frameworks. For exam-
ple, visual builders have been used for constructing user 
interfaces for quite some time, and there are similar black-box 
framework tools for some other domains, too [6]. However, the 
framework usage problems are most severe with white-box frame-
works that are extensively applied in the industry because they are 
generally more flexible than black-box frameworks. Since it is not 
likely that all (or even most) white-box frameworks would ever 
evolve to become (pure) black-box frameworks it is essential to 
provide systematic methods and tool support for assisting white-
box framework usage, too. 

In our vision, both black-box and white-box frameworks are ac-
companied with a programming environment that guides and con-
trols application programmers in creating applications according 
to the conventions of the framework. In practice, the tool should 
offer (1) context-sensitive documentation that dynamically adjusts 
to the choices the developer makes, (2) parameterized code 
generation to automate the production of skeletal implementa-
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tions, and (3) validation of application code against the architec-
tural requirements of the framework. 

The most important prerequisite for that kind of tool support is the 
existence of a precise notation for expressing framework reuse in-
terfaces. In this paper we will briefly introduce such a notation. 
After that we will concentrate on applying reverse engineering 
techniques to automatically extract framework reuse interface 
specifications from the source code of the framework itself and 
from any available samples of its specializations. 

We proceed as follows. First, in Section 2 we look at some 
methods that have been proposed for solving the framework usage 
problem. Section 3 introduces our model for specifying frame-
work reuse interfaces. In Sections 4, 5, and 6 we present a new 
technique for reverse engineering framework reuse interface 
specifications from implementation. In Section 7 we describe a 
case study and summarize our experiences with a prototype imple-
mentation of our technique. Section 8 concludes the paper and 
gives some directions for further work. 

2. RELATED WORK 
Many authors emphasize the role of example applications in 
learning frameworks [10, 17, 26]. An example application demon-
strates how the framework’s classes can be instantiated, special-
ized, and used in an application. Examples are concrete and thus 
easier to learn than the abstract framework in itself and program-
mers are usually quite skilful in inferring framework usage proto-
cols from them. However, the examples by themselves are not 
enough to support the construction of more evolved and complex 
specializations. That is why framework reuse interfaces must be 
systematically documented. 

When an application developer wants to use a framework to solve 
a problem it should be easy for her to find a solution and to apply 
the solution to her problem. To achieve this kind of accessibility, 
framework documentation can be organized as a framework cook-
book [18]. Each entry in a cookbook is a recipe that describes a 
(common) problem and gives set-by-step guidance for solving it. 

Reuse documentation in the form of cookbooks is quite constrain-
ing, however. Cookbooks describe only a limited set of predefined 
ways of reusing a framework [3]. Instructions for adapting a 
framework cannot be adequately expressed as a static and linear 
step-by-step task list, because a choice made during the 
specialization process may change the rest of the list completely. 
Furthermore, framework cookbooks rely on narrative descriptions 
that may be imprecise or incomplete. 

Many attempts have been made to make the cookbook approach 
to framework documentation more dynamic and more precise 
(see, e.g., hooks [9] and SmartBooks [19]). The common denomi-
nator in all these approaches is to define a language for represent-
ing the reuse interface of a framework. Specifications written in 
that language can then be dynamically interpreted to provide task-
based assistance for framework specialization. 

A design pattern describes a recurring solution to a common de-
sign problem [13]. Often the purpose of the pattern is to introduce 
variability into a system in order to make it more reusable or 
extensible. Many of the well-known design patterns are drawn 
from the experiences gained while designing application frame-

works. It is therefore no wonder that they are especially effective 
in framework documentation [17]. 

The design pattern’s structure works as a template that outlines 
roles, responsibilities, and relationships for the program elements 
(e.g. classes, methods, or fields) that participate in the solution. 
Role-based models, such as design patterns, are known to be suit-
able for describing reusable software systems (see, e.g., [13] or 
[14]). 

We feel that framework specialization instructions can most con-
veniently and intuitively be described in terms of role-based mod-
els. Our goal has been to combine the intuitive task-driven frame-
work assistance provided by cookbooks, the concreteness of 
example applications, and the precise, declarative nature of role-
based pattern formalisms. In the following we introduce our own 
simplified role-based framework reuse interface specification 
language. However, we argue that similar constructs are found in 
almost all role-based languages and that the reverse engineering 
technique described in Sections 4, 5, and 6 can be applied regard-
less of the exact target language or model. 

3. SPECIFYING REUSE INTERFACES 
Assisting framework specialization with a tool requires an explicit 
and precise mechanism for expressing framework reuse interfaces. 
The reuse interface of a framework typically involves complex re-
quirements and restrictions among multiple program elements. 
Such relationships are difficult or even impossible to express 
using the current implementation languages1. Thus, we have two 
choices: we can either design a new implementation language (ex-
tension), or we can construct a tool that uses a separate specifica-
tion for enforcing those restrictions that are not directly supported 
by the constructs of the framework’s implementation language. 

Even though a new language might be considered a more elegant 
solution to this problem, there are also quite a few advantages to 
the solution that utilizes a separate specification. First of all, when 
the specification language is separate from the actual implementa-
tion language, it is possible to use an existing (popular) imple-
mentation language. It is also relatively easy to adjust the method 
to fit multiple programming languages. Furthermore, the tool 
itself can be integrated into an existing development environment 
so as to get full advantage of an established environment and the 
standard tools it provides. 

Using a separate specification makes it possible to model existing 
frameworks without modifying their implementations. It is also 
feasible to make multiple reuse interface specifications for differ-
ent user groups. For example, novice users might have a simpli-
fied and restricted view to a framework, whereas a reuse interface 
model for experts might reveal more details and advanced fea-
tures. Also, from a conceptual point of view, separate reuse inter-
face specifications provide a more abstract and high-level view to 
the framework than possible language extensions do. 

In the following we will use specialization patterns for specifying 
the reuse interface of a framework [16]. A specialization pattern is 
                                                                 
1 There are mechanisms that enable the prevention of some sim-

ple framework misuses. In Java, for example, it is possible to 
declare classes and methods final to distinguish the framework’s 
frozen spots from the hot spots. 
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a specification of a program structure, which can be instantiated in 
several contexts to get different kinds of concrete structures. It is 
given in terms of roles to be played by structural elements of a 
program. 

A role is always played by a particular kind of a program element. 
Consequently, we can speak of class roles, method roles, field 
roles and so on. For each kind of a role, there is a set of con-
straints that can be associated with the role. For instance, for a 
class role there can be an inheritance constraint specifying the 
required inheritance relationship of each class associated with that 
role. All roles have a cardinality that bounds the number of pro-
gram elements that can play the role. The cardinality is given with 
respect to the other roles the role refers to in its constraints. 

Figure 1 shows a simplified example of a specialization pattern 
(on the left) that models a set of program elements (the UML class 
diagram on the right). The pattern (partially) specifies the hot spot 
for setting up test fixtures in the JUnit testing framework [11]. It 
says that if the developer wishes to have a common test fixture for 
all test scripts defined in a test case, she must bind her TestCase 
subclass to the UserTestCase role and then provide a method, 
which overrides the setUp method declared in TestCase. In a 
concrete test case there can be zero or more (as indicated by the 
cardinality symbol ‘*’ after the role name) fixture attributes for 
each fixture class selected by the developer. For each of those 
fixture attributes there must be a code fragment within the setUp 
method that initializes it by assigning an appropriate object to it. 

Figure 1. A specialization pattern with its roles bound to 
program elements 

Here we omit the details of the specialization pattern language and 
its interpretation in tools. However, the dotted arrows in Figure 1 
pointing from the roles on the left to the associated program ele-
ments on the right illustrate how a pattern can be bound to a piece 
of source code to check whether or not that code adheres to the re-
strictions specified by the roles and their constraints2. A pattern 
can also be used to generate code and provide task-based assis-
tance for framework specialization as described in [15] and [16]. 

                                                                 
2 For simplicity, only class role bindings are shown in the figure. 

4. REVERSE ENGINEERING USING 
FORMAL CONCEPT ANALYSIS 

Reverse engineering is a discipline that tries to extract high-level 
descriptions of a system from its source code to supplement or re-
place missing or outdated documentation [4, 22, 31]. In the 
context of framework reuse interface modeling, reverse engineer-
ing techniques, especially design recovery, can be used to recover 
valuable information about the hot spots of a framework by using 
the source code of the framework itself and a set of available 
example applications as input for the analysis. 

4.1 Library-Based Design Recovery 
In design recovery the goal is to locate instances of abstract 
design artifacts, such as design patterns, in the source code of a 
system. A common way to identify abstract design artifacts is to 
use a predefined library of design artifact descriptions expressed 
in a suitable formal language (e.g. in PROLOG as is done in 
Maisa [20]). Source code structures can then be matched against 
the library to find instances of the abstract design artifacts. 

In practice, the library-based approach to design recovery cannot 
guarantee complete understanding of the target system, because 
every non-trivial system always contains some code that is 
idiosyncratic [22, 28]. Thus, the success of any library-based 
method depends on how much of the code that is being examined 
is stereotypical and can be analyzed by matching against a library 
of design artifact descriptions. Furthermore, constructing such 
libraries requires a lot of effort and if one decides to use an 
existing library, one is faced with the problem of choosing an 
appropriate library for the current situation. 

Frameworks are often reported to contain instances of well-known 
design patterns. Unfortunately, according to our experiences, 
many of the found pattern instances are structurally framework-
specific variants. This means that if the abstract design pattern 
descriptions stored in the library are relatively detailed they rarely 
exactly match pattern instances in frameworks. To acquire more 
matches the constraints in the pattern descriptions can be relaxed, 
but then the acquired information will also be less precise and, 
furthermore, the risk of getting false positives increases. The other 
possibility is to customize the library to give framework-specific 
descriptions of the variations to accurately match them to the 
actual pattern instances in the framework implementation. But 
that, of course, would require detailed knowledge of those 
instances before the analysis. For these reasons the library-based 
solution, at least in a general case, does not work for locating 
framework hot spots. 

4.2 Formal Concept Analysis 
Instead of library-based design recovery techniques, we propose 
using formal concept analysis (FCA) [12] to extract role-based 
specialization instructions from the available source code. Formal 
concept analysis is a general mathematical method for identifying 
commonalities within systems. It has been successfully applied for 
semi-automatic modularization of software systems [24, 25] as 
well as for detecting instances of design patterns without a prede-
fined pattern library [28]. Other work using FCA for inferring 
high-level information about software systems include identifica-
tion of code configurations [27] and program features [7]. 

class TestCase { 
  method setUp {} 
} 
class UserTestCase* { 
  inherits TestCase; 
  method setUp { 
    overrides TestCase.setUp; 
    fragment fixtureCreation { 
      sets fixtureAttr; 
    } 
  } 
  field fixtureAttr* { 
    isTypeOf FixtureClass; 
  } 
} 
class FixtureClass* {} 

TestCase 
name: String 
run(TestResult)
setUp() 
... 

Money 
add(Money) 
… 

MoneyTest 
m: Money 
setUp() 
testAdd() 
... 

void setUp() { 
  m = new Money(1,"USD"); 
  … 
} 

Account 
deposit(Money)
... 

AccountTest 
a: Account 
setUp() 
testDeposit() 
... 

junit.framework

specialization pattern implementation 
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Context 
selection 

Static 
structure of 
framework 

Relevancy 
criteria 

Concept 
analysis 

Selection of 
a partition 

Translation 
Specialization 
pattern 

Static structure 
of example 
applications 

A context of objects and 
attributes relevant to the hot 
spot to be specified 

A concept lattice formed from 
the context together with all 
possible concept partitions 

A (manually or automatically) 
selected set of concepts that 
covers the set of relevant objects

For example UML 
class diagrams or 
source code 

A function that 
distinguishes relevant 
elements based on, e.g., 
their names or other 
properties 

An iterative step to 
produce new subroles 
to be declared under 
roles extracted in the 
previous iteration

In general, FCA provides a way to discover sensible groupings of 
objects3 that have common attributes in a certain context [24]. In-
formally, a concept is a collection of all the objects that share a set 
of attributes in a given context. The set of common attributes of 
the concept is called the concept’s intent and the set of objects be-
longing to the concept is called the concept’s extent. 

As an example of a context, think of various kinds of sports as ob-
jects and certain characteristics of those sports as attributes. That 
context could be expressed as a table showing which charac-
teristics each sport has (see Table 1). 

Table 1. A simple context of sports and their characteristics 

attributes (A) 
R athletics ballgame team sport Olympic 

sport 
bowling  √   
cricket  √ √  
javelin √   √ 
long jump √   √ 
tennis  √  √ ob

je
ct

s (
O

) 

volleyball  √ √ √ 

Formally a context is a triple C = (O, A, R), where O and A are fi-
nite sets of objects and attributes, respectively, and R is a binary 
relation between O and A. Let X ⊆  O and Y ⊆  A. Let us also 
define mappings σ(X) = {a ∈  A | ∀ o ∈  X: (o, a) ∈  R} (the 
common attributes of X) and τ(Y) = {o ∈  O | ∀ a ∈  Y: (o, a) ∈  R} 
(the common objects of Y). Using these definitions a concept in 
the context C can be defined as a pair of sets (X, Y) such that Y = 
σ(X) and X = τ(Y), where X is the concept’s extent and Y is the 
concept’s intent. For example, ({cricket, volleyball}, {ballgame, 
team sport}) is a concept in the context given in Table 1. 

5. FORMING CONTEXTS FROM CODE 
In order to extract a role-based specification for a hot spot of a 
framework we can select relevant program elements and their 
properties from both the framework itself and its available spe-
cializations and use them as concept analysis objects and 
attributes (see Figure 2). When a context has been formed, a 
simple algorithm can be used to produce concepts from the 
context. After that, a suitable subset of those concepts is chosen 
and the extent of each selected concept is translated to a role and 
the intent of the concept is translated to a set of constraints for 
that role. 

The extraction process can be iterated to declare subroles under 
each role acquired during the previous iteration cycle (e.g. to de-
clare method roles within class roles). The number of iterations 
depends on the level of detail present in the input. 

To ensure the effectiveness of the method, the input should 
include a representative selection of all possible framework speci-
alizations. In principle, the input can be given at any level of 
precision. It should be noted, however, that the amount of detail 
present in the input dictates the precision of the analysis and the 
accuracy of the extracted patterns. For example, to produce speci-
alization patterns that include default implementations for method 
                                                                 
3 “Objects” of concept analysis shall not be confused with “ob-

jects” of object-oriented programming. 

bodies, the input must contain information about the method im-
plementations found in example applications. 
 

Figure 2. Extracting a specialization pattern from 
implementation 

5.1 Selecting Program Elements as Objects 
The structure of the concept analysis context (i.e. objects and at-
tributes) that is to be formed from the input depends on the kind 
of roles that are to be produced. For example, when extracting 
class roles, the classes and interfaces present in the input will be 
selected as objects and their features (e.g. inheritance relation-
ships, declared methods, and data fields) will be selected as attrib-
utes. 

In general, for each role kind we assume a set of program ele-
ments from which the objects will be selected and a set of proper-
ty functions that dictate the attributes. Attributes are defined by 
applying each property function to each element and by collecting 
all distinct results as the set of attributes. 

To be more precise, let us define a program element e as a pair (k, 
n) ∈  E, where n ∈  N is a name that belongs to the set of unique 
element names (N), identifying the element among the set of all 
elements (E) and k ∈  K is element kind that belongs to the set of 
all possible element kinds (K). For instance, for a Java system 
EJava, the set of element kinds KJava = {class, method, field, …}. 
Similarly, the set of names NJava could include the path names of 
all elements in EJava. We usually refer to an element by its name 
and omit its kind if there is no danger of confusion. 

A property function f: E → P (E) is a mapping from a program 
element to a set of (other) program elements. Let Ek ⊂  E be a set 
of all program elements of kind k. The element kind (e.g. class if k 
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∈  KJava) determines a set of property functions Fk that are 
applicable to the elements of that kind, i.e. Fk = {f | f: Ek → P (E)}. 

Given an element ek ∈  Ek, each property function f ∈  Fk yields a 
property value V = f(ek). The property value V is often a set that 
contains only one element (e.g. in case f is a mapping from a 
method to its return type), but it can also contain multiple ele-
ments. For example, for Java classes the set of property functions 
could be defined as Fclass = {inherits, declares}, where inherits 
maps a class to the set of classes and interfaces it extends or im-
plements and declares maps a class to the set of methods and 
fields it declares. Finally, let us define a property pe of an element 
ek ∈  Ek as a pair (f, V = f(ek)), where f ∈  Fk and V ∈  P (E). 

The properties that the property functions determine when they 
are applied to each program element at a time will be represented 
as attributes in the context that will be built. For instance, con-
sider the following source code fragment as input for extracting 
class roles (of Figure 1): 

class TestCase { 
  void setUp() {} 
} 
class MoneyTest extends TestCase { 
  void setUp() { … } 
} 
class AccountTest extends TestCase { 
  void setUp() { … } 
} 

Suppose that the property functions to be considered when pro-
ducing class roles include inherits and overrides, and that they 
return the inherited base class of a class and the methods that are 
overridden in the class, respectively. In addition, let us assume 
that a special attribute name is introduced for those classes that do 
not have any other attributes determined by the general property 
functions (in this example TestCase does not inherit any classes or 
override any methods). With these rules for producing attributes 
with property functions we can form a context for determining the 
class roles based on the input given above (see Table 2). 

Table 2. A context for determining class roles 

attributes (A) 
R name 

TestCase 
inherits 

TestCase 
overrides 

setUp 
TestCase √   
MoneyTest  √ √ 

ob
je

ct
s 

(O
)  

AccountTest  √ √ 

5.2 Producing a Concept Lattice 
It is possible to mechanically determine the concepts of a given 
context [25] and to form a concept lattice that shows the subcon-
cept relationships4 between the concepts. The structure of the lat-
tice is governed by the basic theorem for concept lattices: 

))),(((),(sup IU
Ii

i
Ii

iii
Ii

YXYX
∈∈∈

= στ  

The theorem says that the least common superconcept (i.e. supre-
mum denoted by sup) of a set of concepts can be computed by in-
                                                                 
4 A concept is a subconcept of another concept if its extent is a 

subset of the other concept’s extent. 

tersecting their intents, and by finding the common objects of the 
resulting intersection. Based on the basic theorem, a simple bot-
tom-up algorithm for computing the concept lattice for a given 
context can be defined as follows [24]: 

(1) Start with the bottom element of the concept lattice (bot in 
Figure 3), i.e. the concept consisting of objects that have all 
the attributes. 

(2) Compute the atomic concepts, i.e. the smallest concepts with 
the extent containing each of the objects treated as a singleton 
set. In other words, consider each object o ∈  O in turn, and 
identify the attributes of o. Those attributes become the intent 
of a potential new atomic concept c. The extent of c is formed 
from o and all other objects that have the attributes enumer-
ated in the intent of c. Finally, accept c as an atomic concept if 
its extent is smaller than the extents of all those other concepts 
whose extents also contain o. 

(3) Form a work list W containing all pairs of atomic concepts (c’, 
c) such that c is not a subconcept of c’ and vice versa. While 
W is not empty, remove a pair (ca, cb) from W. Then compute 
the supremum of ca and cb and assign it to c”. If c” is a 
concept yet to be discovered then add all pairs of concepts (c”, 
c) such that c is not a subconcept of c” and vice versa to W. 
The process is repeated until W is empty. 

The analysis of the context given in Table 2 yields the concept lat-
tice depicted in Figure 3. Besides the bottom and top concepts, 
the lattice contains two atomic concepts: c0 that represents the 
base class (called TestCase) and c1 that represents subclasses of 
TestCase overriding the setUp method. 

top ({TestCase, AccountTest, MoneyTest}, ∅ )
c1 ({MoneyTest, AccountTest}, {inherits 

TestCase, overrides setUp}) 

c0 ({TestCase}, {name TestCase}) 

bot (∅ , {name TestCase, inherits TestCase, 
overrides setUp}) 

Figure 3. A concept lattice of classes related to fixture setup 

5.3 Relevancy of Program Elements 
The example given in Table 2 and Figure 3 is unrealistic because 
the input for analysis was deliberately narrowed down to contain 
only those program elements that are relevant for setting up test 
fixtures in JUnit5. In reality, the input for the pattern extraction 
process can be as large as the whole implementation code of a 
framework and a set of example applications. It is clear that the 
input always contains lots of details that are not relevant to the 
current hot spot. 

Without any further modifications the basic outline of the method 
given above produces one huge pattern that will contain all infor-
mation in the input source code. In practice this is not a workable 
solution. To avoid being forced to apply concept analysis to 
excessively large contexts and to enable more precise interpreta-
tion of the results, a way to filter out irrelevant input before analy-
sis must be introduced. 

                                                                 
5 We have omitted also the fixture classes and the internals of the 

methods to keep the example simple. 

bot 

top

c1 c0 
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The solution is to select only those program elements and their 
properties that are relevant to the hot spot h at hand. No other ele-
ments and properties in the input will be considered. Here a 
relevant property is a property that corresponds to a property 
value V ∈  P (EJava) for which a relevancy function rh(V) = 1. In 
principle, rh can have any suitable definition. In the following, we 
will simply assume that it is a mapping rh: P (EJava) → {0, 1} 
defined by giving a set of program elements Eh = {e1, e2, ..., ek} ⊂  
EJava so that rh (V) = 1, if V ∩ Eh ≠ ∅ , and rh (V) = 0 otherwise. 
Using these definitions we can give the following general 
selection criteria: 

(1) Select as objects only those program elements that have at 
least one relevant property. 

(2) Select all relevant properties of all selected elements as attrib-
utes. 

(3) If a property value V is a set consisting of multiple elements, 
then introduce an attribute for each relevant member of V (i.e. 
for each such v ∈  V for which also v ∈  Eh). 

This means that once a relevancy set Eh is identified it is possible 
to mechanically produce a relevant context (with respect to the 
hot spot h) for the concept analysis. Note, however, that it is up to 
the user to provide the relevancy information. The user can 
experiment with relevancy sets until she gets results whose scope 
and precision match her needs or she can define multiple 
relevancy sets to split the input into groups that can be handled 
separately. 

For example, to get a context that describes the hot spot of setting 
up a test fixture for a test case in a JUnit application (recall Figure 
1), we must identify those classes (and their internal properties) 
that are (or seem) relevant to that hot spot. To do so, we would 
add the roots of the relevant inheritance hierarchies (e.g. TestCase 
and Money) and other key elements (e.g. the setUp method in 
TestCase) into the relevancy set. Once that hot spot would be 
satisfactorily specified, we could move on to define relevancy sets 
for the other JUnit hot spots. 

In practice, the required relevancy information implies a need for 
some initial knowledge of the structure and hot spots of the 
framework that is being analyzed6. So the main advantage of this 
approach is not so much in finding framework hot spots, but in 
being able to easily generate precise reuse specifications for those 
hot spots that are known or expected to exist in the 
implementation. 

6. TRANSLATING CONCEPTS TO ROLES 
In order to be able to translate the concepts resulting from an anal-
ysis of a context to the roles of a specialization pattern, we must 
define an unambiguous mapping from a set of concepts to a set of 
roles. The mapping will be based on the extents of the concepts. 
The objects belonging to the extent of a concept are precisely 
those program elements that are intended to be playing the role 
corresponding to the concept. 

                                                                 
6 Although, in theory, one could start with a relevancy set that 

consisted of all program elements and continue by breaking the 
initial relevancy set into suitable subsets based on the initial 
results. 

In the translation process we are looking for a set of roles where 
each program element (i.e. each concept analysis object) plays ex-
actly one role (i.e. belongs to exactly one extent)7. Unfortunately, 
in a general case an object may belong to a number of extents in a 
concept lattice (for instance, TestCase belongs to the extents of c0 
and top in Figure 3). However, we can form a concept partition 
(i.e. a set of concepts where each object takes part in exactly one 
concept) from any concept lattice [25]. The concepts in the parti-
tion can then be translated to a set of roles that forms a model for 
that piece of code which the extents of the concepts were 
originally derived from. In Figure 3, concepts c0 and c1 form a 
partition that corresponds to the first two class roles (TestCase 
and UserTestCase) of the specialization pattern given in Figure 1. 

6.1 Mapping Extent to Name and Cardinality 
Once a concept partition that describes the relevant portion of the 
input at the right level of abstraction has been selected, we can 
translate the concepts in the partition into a specialization pattern. 
The translation starts with the creation of the roles of the pattern. 
A new role will be created for each concept in the selected parti-
tion. 

The translation of a concept C into a role RC is quite straightfor-
ward. The role kind is determined by the element kind of the ob-
jects included in the extent XC of C. In other words, we create a 
class role if the concept describes classes, a method role for meth-
ods, and so on. The role’s name and its location in the declaration 
hierarchy follow directly from the corresponding properties of the 
originating program elements. The declaration location for RC will 
be under a role that stands for the declaring program elements of 
the elements in XC. If the elements in XC are top level elements 
(e.g. classes) RC will be a top level role. 

The cardinality of RC is based on the extent XC. By default the car-
dinality is exactly one. If there is at least one element correspond-
ing to the declaring role R of RC that does not have a child 
element in RC then the cardinality will be from zero to one. This is 
because the input confirms that it is not mandatory for the 
elements corresponding to R to have a child element correspond-
ing to RC. 

If there are multiple elements in XC and RC does not refer to any 
other role whose cardinality is from zero or one to infinity, then 
the cardinality is set to zero to infinity. This rule is based on the 
observation that, in general, having multiple elements in XC 
implies that RC is a role that describes potentially many imple-
mentation structures (e.g. various subclasses of a base class). On 
the other hand, if RC refers to another role RD (based on a concept 
D’s extent XD) that may have multiple elements associated with it, 
it is possible that the many elements in XC can be interpreted to be 
in a “one-for-each” relationship with the elements in XD. In such a 
case the correct cardinality is exactly one. 

As an example of a concept, consider c0 in Figure 3. It has one 
class (TestCase) in its extent. Therefore the result of translating c0 
is a top level class role (see Figure 1) with the same name as the 
name of the only class in c0’s extent. The size of the extent (one 
                                                                 
7 It is usual for a program element to play multiple roles. How-

ever, those roles usually belong to separate patterns (or hot 
spots). In the extraction process we are interested in one pattern 
at a time so this restriction is not a serious one. 
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element) determines also the cardinality of the role to be exactly 
one. The other interesting concept in Figure 3, c1, on the other 
hand, has two classes (MoneyTest and AccountTest) in its extent, 
so the cardinality for the corresponding role will be from zero to 
infinity. The name of the role can be derived from the names of 
the classes in c1’s extent, or as is the case here, the name of the 
common super class can be used as the basis for the role name. 

6.2 Mapping Intent to Constraints 
The constraints for each role RC are defined based on the intent YC 
of the corresponding concept C. More precisely, for each attribute 
a in YC a property lookup is performed in RC. If RC can contain a 
constraint ca corresponding to a then ca will be declared for RC. 
Both the type (e.g. an inheritance constraint) and value (e.g. 
(class, Base)) of ca are determined by the property (e.g. (inherits, 
(class, Base))) corresponding to a. If the value is a reference to an 
element that corresponds to another role RD (i.e. belongs to the 
extent of the associated concept D) then a reference to RD is used 
as the value for ca. 

The property lookup may fail for some attributes. These attributes 
can just be ignored. Typically they would include those attributes 
that will be realized as roles on the next level in the declaration 
hierarchy. For example, an attribute (overrides, (method, m)) 
denoting that a class overrides a method m might not appear as a 
constraint in the class role, but it could imply that a method role 
will be declared within the class role later on. The attributes for 
which the property lookup fails are not redundant: they classify 
objects into separate concepts just as the other attributes. 

Applying the abovementioned rules to c1 in Figure 3 yields the 
inheritance constraint in UserTestCase that refers to TestCase 
(recall Figure 1). The other attribute in c1’s intent (overrides 
setUp) does not cause any further constraints to be added to User-
TestCase because there is no overriding constraint available for 
class roles. 

7. REVERSE ENGINEERING THE REUSE 
INTERFACE OF JUNIT 

We have implemented a prototype tool (Pattern Extractor) that 
realizes the method and algorithms described in the previous sec-
tions [30]. The tool produces Fred specialization patterns from 
Java source code. Fred (Framework Editor for Java) is a pro-
gramming environment intended for aiding framework-based soft-
ware development [15, 16, 29]. It implements a specification lan-
guage that can be used to model the hot spots of a framework. The 
language defines the hot spots in terms of role-based speciali-
zation patterns as described in Section 3. 

Pattern Extractor produces specialization patterns based on the 
framework implementation associated with a representative set of 
example applications that are given to it as input. The user can 
then refine the automatically generated initial versions of the pat-
terns to get a complete specification, which Fred can interpret to 
provide goal-oriented assistance for application developers using 
the framework. 

Pattern Extractor implements the concept analysis based pattern 
extraction process described in Figure 2. The input and relevancy 
criteria provided by the user are used to produce a concept 
analysis context. The context is handed over to the concept analy-
sis subsystem that implements the general concept analysis algo-

rithms, such as building a concept lattice and calculating the 
concept partitions (recall Sections 4 and 5). Finally, the tool trans-
lates the selected concepts into roles and constraints as described 
in Section 6. 

7.1 JUnit Framework 
To test the effectiveness of the method introduced in this paper we 
have applied Pattern Extractor to automatically extract a Fred 
model for the JUnit framework [11]. JUnit is a framework for im-
plementing systematic unit testing of Java programs. It consists of 
about 50 classes of which less than 20 belong to the core frame-
work. The rest of the classes are UI components, extensions, and 
samples. JUnit was chosen as an example framework because it is 
commonly known, mature, simple, well designed, implemented in 
Java, and freely available. 

Figure 4 shows a partial class diagram of JUnit (the junit.frame-
work package) together with some application-level classes (the 
lower part of the diagram) that exemplify how the constructs of 
the framework can be extended and used. There are also the four 
most important hot spots of JUnit highlighted in the figure (see 
the legend in the lower right corner). The DefiningTests hot spot 
involves subclassing the TestCase class from the framework. The 
subclasses (e.g. MoneyTest and AccountTest) must implement the 
initialization of the name field in TestCase. This can be done most 
conveniently by defining a constructor that takes a name as an 
argument and then passes it over to the superclass via calling the 
constructor of the superclass. The test classes also define a 
number of test scripts (e.g. testAdd and testDeposit) that call 
methods of the classes to be tested (e.g. add in Money or deposit 
in Account). Each test script interacts with the objects to be tested 
and finally verifies the expected results with assertions. 

Figure 4. The main hot spots of the JUnit framework 
The creation of the test material objects can be done in the test 
scripts themselves, but in order to be able to share these fixture 
definitions among scripts, the developer must use the SettingUp-
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Fixture hot spot to define the initialization (e.g. MoneyTest.setUp) 
for fixture attributes (e.g. MoneyTest.m) by overriding the corre-
sponding method declared in TestCase. Setting up a test fixture 
most often involves creating one or more instances of the classes 
to be tested (e.g. Money, Account). 

The TestSuite class offers a possibility to combine test cases into 
tree hierarchies through its tests attribute. From the application 
developer’s point of view this functionality is useful for selecting 
and grouping together those tests that should be run together. The 
SelectingTests hot spot allows the developer to do exactly that. 

JUnit provides different test runners, which can run a test suite 
and collect the results. A test runner either expects a static suite 
method as the entry point to get a test to run or it will extract the 
suite automatically. RunningTests, the fourth hot spot depicted in 
Figure 4, is meant for selecting the tests to be run and an 
appropriate test runner class (e.g. TestRunner) to execute them. 
This can be accomplished by defining a main method (e.g. 
AllTests.main) where the runner’s static run method is called with 
a test case class as an argument. All test scripts defined in the 
given test case will be looked up and executed through reflection. 

7.2 Applying Pattern Extractor to JUnit 
In a case study, eight specialization patterns were extracted to 
specify the reuse interface of JUnit (see Table 3). Four of them 
(DefiningTests, SettingUpFixture, SelectingTests, RunningTests) 
can be characterized as basic patterns, i.e. patterns that are in-
volved in any specialization of JUnit. They correspond directly to 
the hot spots represented in Figure 4. The other four patterns 
describe hot spots that are relevant to more advanced or 
infrequent ways of using the framework. 

The input given for the extraction process consisted of the source 
code packages of the core JUnit framework package (junit. frame-
work) and its extensions (junit.extensions, junit.runner, and junit. 
textui) together with a set of sample tests (junit.samples.money)8. 

Table 3 summarizes the results of the case study. It shows the 
characteristics of each produced specialization pattern including 
the name, the number of non-empty lines in the extracted textual 
pattern specification (a measure for the pattern size), and the 
relevancy set9 used in the extraction. 

The automatically extracted patterns were adjusted manually to 
achieve the overall quality and usability level of the hand-written 
specifications made for various frameworks within the Fred 
project (see, e.g., [29]). The last two columns in Table 3 give an 
estimate of the quality of the extraction process. The strict extrac-
tion percentage shows the portion of the specification that con-
sisted of those automatically produced lines that could be used 
directly without any adjustments. The loose extraction percentage, 
on the other hand, counts in also those specification lines that 
only needed trivial modifications (e.g. updating descriptions to 
better suit the context). It also omits the removed lines. The strict 
and loose extraction percentages define thus a range in which the 
effective net benefit of this approach probably lies. 
                                                                 
8 The AccountTest class was added to the money package to com-

plement the MoneyTest class provided with the distribution. 
9 An asterisk is used as a short hand notation for all program ele-

ments whose name begin with the given string. 

Table 3. Characteristics of the extracted JUnit patterns 

Pattern Li
ne

s 

Relevancy set St
ri

ct
 %

 
Lo

os
e%

 

DefiningTests 114 {TestCase, TestCase.TestCase, Money-
Test.test*, MoneyTest.MoneyTest, Money} 22 58

SettingUp-
Fixture 63 {TestCase, TestCase.setUp, 

TestCase.tearDown, Money} 57 93

SelectingTests 122
{TestCase, TestSuite, MoneyTest.test*, 
AccountTest, AccountTest.test*, AllTests, 
AllTests.suite} 

21 65

RunningTests 54 {BaseTestRunner, TestRunner, 
TestRunner.run, AllTests, AllTests.main} 37 85

Decorating-
Tests 103

{TestDecorator, TestDecorator.TestDecorat-
or, TestDecorator.run, AccountTest, Account-
Test.testDelayedTestCase*, TestCase} 

45 71

Running-
RepeatedTests 47 {RepeatedTest, AccountTest, 

AccountTest.testMultipleTimes*, TestCase} 49 82

RunningTests-
InThreads 61 {ActiveTestSuite, AccountTest, 

AccountTest.testInThreads*, TestCase} 30 74

Testing-
Exceptions 69

{Exception, ExceptionTestCase, AccountTest, 
AccountTest.testException*, 
AccountExceptionTestCase} 

32 67

Total 633  - -
Average 79  37 74

To give an idea of what the generated specialization patterns 
looked like and how they were adjusted, we provide a listing of a 
JUnit specialization pattern (see SettingUpFixture below)10. Note 
that the parts of the source text that were removed from the final 
pattern are written in italics, and the parts that were manually 
added or changed are written in bold. 
pattern SettingUpFixture; 
class TestCase { 

  description "Click <a href="…">here</a> …"; 
  method setUp { 

description "Click …"; 
} 

} 
class UserTestCase* { 

  inherits TestCase; 
 description "Click …"; 

  method setUp { 
   overrides TestCase.setUp; 
  description "Click …"; 

fragment fixtureCreation { 
    description "This code snippet …"; 
    source "<#fixtureAttr.name> = 

new <#fixtureAttr.type>(12, "CHF"); 
    <#…> = new <#…>(14, "CHF");" 

   } 
 } 

  field fixtureAttr* { 
   isTypeOf FixtureClass; 
  description "All fixture objects …"; 
 } 
} 
class role FixtureClass* { 

  description "A fixture class is a class …"; 
} 

                                                                 
10 The listing provides a slightly compacted version of the pattern 

(e.g. some of the descriptions have been shortened and the 
tearDown method role has been omitted); hence the difference 
between the number of lines in the listing and in Table 3. 
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7.3 Evaluation of the Results 
The results of our case study indicate that about half of the 
specialization pattern code for modeling the reuse interface of a 
framework can be automatically extracted from source code with 
our method. Of the other half that needs to be manually given or 
at least modified to suit the context, most consists of code frag-
ment roles. This results from the fact that analyzing patterns from 
method bodies (expressions and statements) is a hard task in gen-
eral. In addition, Fred does not currently support method bodies 
in its AST representation of the source code. That is why the 
extraction of the code fragment roles is based directly on the 
tokenized source text, which allows only very primitive analyses. 

Our results show that automatic extraction of specialization pat-
terns yields quite an accurate overall picture of the structures of 
the patterns, and that it is indeed only the details that need further 
modifications to make the patterns usable. In addition to the code 
fragment roles, majority of the additions and modifications were 
related to informal textual templates associated with roles (such as 
descriptions and default names) rather than to actual constraints. 

Based on our experiences with Fred and Pattern Extractor, we can 
conclude that it is possible to describe the intended rules govern-
ing the framework’s specializations with a precise role-based 
formalism. It is clear that a thorough specification of a frame-
work’s reuse interface raises the development costs. However, we 
argue that these costs are relatively low when compared to the 
development costs on the whole and, furthermore, the savings 
gained in training and mentoring will be substantial, especially if 
many users are going to use the same framework. 

It has already been mentioned that the effectiveness of our reverse 
engineering approach depends on the number and quality of the 
examples that are available as input. This approach is not meant to 
replace the usual process of getting the specification of reuse 
interfaces from the developers early in the design stage. It is clear 
that specifying the reuse interface of a framework as early as 
possible is beneficial for the framework development process and 
ultimately also for the framework users. The motivation for this 
work has been to assist framework users (and developers) in 
situations where the documentation provided with the framework 
is not detailed enough to directly enable tool support. 

Using the presented approach, it is possible to automatically gen-
erate a considerable portion of a reuse interface specification. This 
makes reuse interface modeling faster and allows even modeling 
of frameworks that are still under development. Automation can 
also increase the quality of the produced models, because it may 
reveal shortcomings, omissions, or inconsistencies in manually 
prepared reuse models made for the same framework. 

A major obstacle in design recovery is the scalability of the 
algorithms being used. The worst-case running time of the 
concept lattice construction algorithm used in this work is 
exponential [27]. In practice, however, the running time is 
polynomial and thus feasible even for rather large contexts 
because there typically are O(n) or O(n2) concepts in a lattice with 
n objects as opposed to the maximal O(2n) concepts. 

Tonella and Antoniol use concept analysis to recover (design) pat-
terns from source code [28]. They define all possible combina-
tions of classes as objects, which forces them to limit their 
analyses to combinations with fewer than five classes when using 

any non-trivial system as input. In our approach we define one 
program element (a class, a method, and so on) as an object. This 
means that that the size of the patterns that can be extracted and 
the size of the systems used as input are not as limited. 

8. CONCLUSION AND FUTURE WORK 
We have introduced a new approach for specifying framework re-
use interfaces in order to facilitate tool-supported framework spe-
cialization. The method presented in this paper automates many 
trivial details of the modeling process by accurately extracting 
most roles and constraints from the framework source code and 
existing example applications. 

Structuring a software system reflects design decisions that are in-
herently subjective [25]. Similarly, there is always a creative ele-
ment in preparing documentation or a specification for a reusable 
system. This means that substantial user interaction will be re-
quired in any approach that tries to assist, e.g., modeling a frame-
work reuse interface. In the Pattern Extractor tool introduced in 
this paper, the user is responsible for structuring the model into 
separate specialization patterns by specifying appropriate rele-
vancy criteria. The tool selects relevant program elements accord-
ing to the criteria and uses the selected elements as input for the 
concept analysis. The analysis, in turn, produces a concept lattice 
that is automatically translated into a specialization pattern. 

Even though it is unlikely that framework reuse interface specifi-
cation can be fully automated, there is still a lot of room for im-
provements in Pattern Extractor. Further research is needed to 
build a precise model of how the selection of input and relevancy 
criteria affect the produced specialization patterns. Based on a 
detailed model it would be easier to make justified decisions on 
which properties of the program elements should be used as 
concept analysis attributes and how the input should be divided 
into separate contexts to produce structured models. 

The reverse engineering method described in this paper must be 
applied to a variety of frameworks in order to truly validate its 
potential. As our experiences accumulate we expect to be able to 
formulate practical and generally applicable guidelines for defin-
ing the relevancy criteria to easily produce useful specialization 
patterns. At this point, however, it must be admitted that we 
cannot present a full assessment of our method with respect to the 
risk of getting irrelevant results depending on the input selection. 

In our view, finding the main concepts of a framework from its 
documentation is the key to understand the framework’s reuse 
interface. At the same time it is also an essential precondition of 
using Pattern Extractor successfully. If no documentation is avail-
able the same basic information must be gathered from the 
system’s source code. Systematic analysis of the framework’s 
class hierarchy as described in [29] and automatic pattern 
detection (see, e.g., [20]) are good ways to get started. Still, there 
clearly is a need for further research on automatic program 
analysis methods, especially for methods that concentrate on 
analysis of reusable assets, such as frameworks. 
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