
Reverse Engineering Framework Reuse Interfaces
Jukka Viljamaa

Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland
+358 9 191 44506

jukka.viljamaa@cs.helsinki.fi

ABSTRACT
Object-oriented application frameworks provide an established
way of reusing the design and implementation of applications in a
specific domain. Using a framework for creating applications is
not a trivial task, however, and special tools are needed for sup-
porting the process. Tool support, in turn, requires explicit
specification of the reuse interfaces of frameworks. Unfortunately
these specifications typically become quite extensive and complex
for non-trivial frameworks. In this paper we discuss the possibility
to reverse engineer a reuse interface specification from a frame-
work’s and its example applications’ source code. We also intro-
duce a programming environment that supports both making and
using such specifications. In our environment, the reuse interface
modeling is supported by a concept analysis based reverse
engineering technique described in this paper.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments. D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement – reverse engineering.
D.2.13 [Software Engineering]: Reusable Software – reusable
libraries, reuse models.

General Terms
Design, Documentation, Experimentation, Languages.

Keywords
Documentation, formal concept analysis, framework, pattern,
reuse, reverse engineering.

1. INTRODUCTION
Reuse is one of the key factors in increasing the quality and pro-
ductivity of software development [1, 23]. Accordingly, lots of re-
sources have been invested in designing and implementing
various kinds of reusable assets. Of these assets object-oriented
application frameworks have proven to be especially cost-effec-
tive because they enable reuse of both functionality and architec-
ture of systems [5, 10].

A framework captures the commonalities of its application
domain by a set of carefully designed abstract classes. The
relationships between these core classes and the algorithms imple-
mented within them define the common architecture and functio-
nality of the applications to be derived from the framework.

For an application developer the most crucial part of a framework
is its reuse interface. The reuse interface consists of variation
points or hot spots [21] related to specializing the framework’s
abstract classes (specialization interface) and calling or combin-
ing its concrete default components (call interface).

Using a framework through its specialization interface is often re-
ferred to as white-box reuse because it usually requires detailed
knowledge of the framework’s internal structure (e.g. how and
when overridden methods are called by the framework) while
black-box reuse only involves calling the framework’s services
through the interfaces of the concrete components. Similarly,
frameworks that emphasize subclassing and method overriding are
called white-box frameworks and frameworks that are mostly used
by instantiating, combining, and configuring default components
are called black-box frameworks.

Most framework research has concentrated on framework design
and construction, whereas framework usability has been studied
less even though it has lots of practical significance [26]. Frame-
works are hard to use because they tend to be large, complex, and
abstract systems. It has been estimated that it takes nearly a year
for a professional programmer to master a large framework in
order to be able to use it efficiently [2, 8].

It is already widely accepted that tool support is effective in the
specialization of some particular kinds of frameworks. For exam-
ple, visual builders have been used for constructing user
interfaces for quite some time, and there are similar black-box
framework tools for some other domains, too [6]. However, the
framework usage problems are most severe with white-box frame-
works that are extensively applied in the industry because they are
generally more flexible than black-box frameworks. Since it is not
likely that all (or even most) white-box frameworks would ever
evolve to become (pure) black-box frameworks it is essential to
provide systematic methods and tool support for assisting white-
box framework usage, too.

In our vision, both black-box and white-box frameworks are ac-
companied with a programming environment that guides and con-
trols application programmers in creating applications according
to the conventions of the framework. In practice, the tool should
offer (1) context-sensitive documentation that dynamically adjusts
to the choices the developer makes, (2) parameterized code
generation to automate the production of skeletal implementa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland
Copyright 2003 ACM 1-58113-743-5/03/0009…$5.00.

217

tions, and (3) validation of application code against the architec-
tural requirements of the framework.

The most important prerequisite for that kind of tool support is the
existence of a precise notation for expressing framework reuse in-
terfaces. In this paper we will briefly introduce such a notation.
After that we will concentrate on applying reverse engineering
techniques to automatically extract framework reuse interface
specifications from the source code of the framework itself and
from any available samples of its specializations.

We proceed as follows. First, in Section 2 we look at some
methods that have been proposed for solving the framework usage
problem. Section 3 introduces our model for specifying frame-
work reuse interfaces. In Sections 4, 5, and 6 we present a new
technique for reverse engineering framework reuse interface
specifications from implementation. In Section 7 we describe a
case study and summarize our experiences with a prototype imple-
mentation of our technique. Section 8 concludes the paper and
gives some directions for further work.

2. RELATED WORK
Many authors emphasize the role of example applications in
learning frameworks [10, 17, 26]. An example application demon-
strates how the framework’s classes can be instantiated, special-
ized, and used in an application. Examples are concrete and thus
easier to learn than the abstract framework in itself and program-
mers are usually quite skilful in inferring framework usage proto-
cols from them. However, the examples by themselves are not
enough to support the construction of more evolved and complex
specializations. That is why framework reuse interfaces must be
systematically documented.

When an application developer wants to use a framework to solve
a problem it should be easy for her to find a solution and to apply
the solution to her problem. To achieve this kind of accessibility,
framework documentation can be organized as a framework cook-
book [18]. Each entry in a cookbook is a recipe that describes a
(common) problem and gives set-by-step guidance for solving it.

Reuse documentation in the form of cookbooks is quite constrain-
ing, however. Cookbooks describe only a limited set of predefined
ways of reusing a framework [3]. Instructions for adapting a
framework cannot be adequately expressed as a static and linear
step-by-step task list, because a choice made during the
specialization process may change the rest of the list completely.
Furthermore, framework cookbooks rely on narrative descriptions
that may be imprecise or incomplete.

Many attempts have been made to make the cookbook approach
to framework documentation more dynamic and more precise
(see, e.g., hooks [9] and SmartBooks [19]). The common denomi-
nator in all these approaches is to define a language for represent-
ing the reuse interface of a framework. Specifications written in
that language can then be dynamically interpreted to provide task-
based assistance for framework specialization.

A design pattern describes a recurring solution to a common de-
sign problem [13]. Often the purpose of the pattern is to introduce
variability into a system in order to make it more reusable or
extensible. Many of the well-known design patterns are drawn
from the experiences gained while designing application frame-

works. It is therefore no wonder that they are especially effective
in framework documentation [17].

The design pattern’s structure works as a template that outlines
roles, responsibilities, and relationships for the program elements
(e.g. classes, methods, or fields) that participate in the solution.
Role-based models, such as design patterns, are known to be suit-
able for describing reusable software systems (see, e.g., [13] or
[14]).

We feel that framework specialization instructions can most con-
veniently and intuitively be described in terms of role-based mod-
els. Our goal has been to combine the intuitive task-driven frame-
work assistance provided by cookbooks, the concreteness of
example applications, and the precise, declarative nature of role-
based pattern formalisms. In the following we introduce our own
simplified role-based framework reuse interface specification
language. However, we argue that similar constructs are found in
almost all role-based languages and that the reverse engineering
technique described in Sections 4, 5, and 6 can be applied regard-
less of the exact target language or model.

3. SPECIFYING REUSE INTERFACES
Assisting framework specialization with a tool requires an explicit
and precise mechanism for expressing framework reuse interfaces.
The reuse interface of a framework typically involves complex re-
quirements and restrictions among multiple program elements.
Such relationships are difficult or even impossible to express
using the current implementation languages1. Thus, we have two
choices: we can either design a new implementation language (ex-
tension), or we can construct a tool that uses a separate specifica-
tion for enforcing those restrictions that are not directly supported
by the constructs of the framework’s implementation language.

Even though a new language might be considered a more elegant
solution to this problem, there are also quite a few advantages to
the solution that utilizes a separate specification. First of all, when
the specification language is separate from the actual implementa-
tion language, it is possible to use an existing (popular) imple-
mentation language. It is also relatively easy to adjust the method
to fit multiple programming languages. Furthermore, the tool
itself can be integrated into an existing development environment
so as to get full advantage of an established environment and the
standard tools it provides.

Using a separate specification makes it possible to model existing
frameworks without modifying their implementations. It is also
feasible to make multiple reuse interface specifications for differ-
ent user groups. For example, novice users might have a simpli-
fied and restricted view to a framework, whereas a reuse interface
model for experts might reveal more details and advanced fea-
tures. Also, from a conceptual point of view, separate reuse inter-
face specifications provide a more abstract and high-level view to
the framework than possible language extensions do.

In the following we will use specialization patterns for specifying
the reuse interface of a framework [16]. A specialization pattern is

1 There are mechanisms that enable the prevention of some sim-

ple framework misuses. In Java, for example, it is possible to
declare classes and methods final to distinguish the framework’s
frozen spots from the hot spots.

218

a specification of a program structure, which can be instantiated in
several contexts to get different kinds of concrete structures. It is
given in terms of roles to be played by structural elements of a
program.

A role is always played by a particular kind of a program element.
Consequently, we can speak of class roles, method roles, field
roles and so on. For each kind of a role, there is a set of con-
straints that can be associated with the role. For instance, for a
class role there can be an inheritance constraint specifying the
required inheritance relationship of each class associated with that
role. All roles have a cardinality that bounds the number of pro-
gram elements that can play the role. The cardinality is given with
respect to the other roles the role refers to in its constraints.

Figure 1 shows a simplified example of a specialization pattern
(on the left) that models a set of program elements (the UML class
diagram on the right). The pattern (partially) specifies the hot spot
for setting up test fixtures in the JUnit testing framework [11]. It
says that if the developer wishes to have a common test fixture for
all test scripts defined in a test case, she must bind her TestCase
subclass to the UserTestCase role and then provide a method,
which overrides the setUp method declared in TestCase. In a
concrete test case there can be zero or more (as indicated by the
cardinality symbol ‘*’ after the role name) fixture attributes for
each fixture class selected by the developer. For each of those
fixture attributes there must be a code fragment within the setUp
method that initializes it by assigning an appropriate object to it.

Figure 1. A specialization pattern with its roles bound to
program elements

Here we omit the details of the specialization pattern language and
its interpretation in tools. However, the dotted arrows in Figure 1
pointing from the roles on the left to the associated program ele-
ments on the right illustrate how a pattern can be bound to a piece
of source code to check whether or not that code adheres to the re-
strictions specified by the roles and their constraints2. A pattern
can also be used to generate code and provide task-based assis-
tance for framework specialization as described in [15] and [16].

2 For simplicity, only class role bindings are shown in the figure.

4. REVERSE ENGINEERING USING
FORMAL CONCEPT ANALYSIS

Reverse engineering is a discipline that tries to extract high-level
descriptions of a system from its source code to supplement or re-
place missing or outdated documentation [4, 22, 31]. In the
context of framework reuse interface modeling, reverse engineer-
ing techniques, especially design recovery, can be used to recover
valuable information about the hot spots of a framework by using
the source code of the framework itself and a set of available
example applications as input for the analysis.

4.1 Library-Based Design Recovery
In design recovery the goal is to locate instances of abstract
design artifacts, such as design patterns, in the source code of a
system. A common way to identify abstract design artifacts is to
use a predefined library of design artifact descriptions expressed
in a suitable formal language (e.g. in PROLOG as is done in
Maisa [20]). Source code structures can then be matched against
the library to find instances of the abstract design artifacts.

In practice, the library-based approach to design recovery cannot
guarantee complete understanding of the target system, because
every non-trivial system always contains some code that is
idiosyncratic [22, 28]. Thus, the success of any library-based
method depends on how much of the code that is being examined
is stereotypical and can be analyzed by matching against a library
of design artifact descriptions. Furthermore, constructing such
libraries requires a lot of effort and if one decides to use an
existing library, one is faced with the problem of choosing an
appropriate library for the current situation.

Frameworks are often reported to contain instances of well-known
design patterns. Unfortunately, according to our experiences,
many of the found pattern instances are structurally framework-
specific variants. This means that if the abstract design pattern
descriptions stored in the library are relatively detailed they rarely
exactly match pattern instances in frameworks. To acquire more
matches the constraints in the pattern descriptions can be relaxed,
but then the acquired information will also be less precise and,
furthermore, the risk of getting false positives increases. The other
possibility is to customize the library to give framework-specific
descriptions of the variations to accurately match them to the
actual pattern instances in the framework implementation. But
that, of course, would require detailed knowledge of those
instances before the analysis. For these reasons the library-based
solution, at least in a general case, does not work for locating
framework hot spots.

4.2 Formal Concept Analysis
Instead of library-based design recovery techniques, we propose
using formal concept analysis (FCA) [12] to extract role-based
specialization instructions from the available source code. Formal
concept analysis is a general mathematical method for identifying
commonalities within systems. It has been successfully applied for
semi-automatic modularization of software systems [24, 25] as
well as for detecting instances of design patterns without a prede-
fined pattern library [28]. Other work using FCA for inferring
high-level information about software systems include identifica-
tion of code configurations [27] and program features [7].

class TestCase {
 method setUp {}
}
class UserTestCase* {
 inherits TestCase;
 method setUp {
 overrides TestCase.setUp;
 fragment fixtureCreation {
 sets fixtureAttr;
 }
 }
 field fixtureAttr* {
 isTypeOf FixtureClass;
 }
}
class FixtureClass* {}

TestCase
name: String
run(TestResult)
setUp()
...

Money
add(Money)
…

MoneyTest
m: Money
setUp()
testAdd()
...

void setUp() {
 m = new Money(1,"USD");
 …
}

Account
deposit(Money)
...

AccountTest
a: Account
setUp()
testDeposit()
...

junit.framework

specialization pattern implementation

219

Context
selection

Static
structure of
framework

Relevancy
criteria

Concept
analysis

Selection of
a partition

Translation
Specialization
pattern

Static structure
of example
applications

A context of objects and
attributes relevant to the hot
spot to be specified

A concept lattice formed from
the context together with all
possible concept partitions

A (manually or automatically)
selected set of concepts that
covers the set of relevant objects

For example UML
class diagrams or
source code

A function that
distinguishes relevant
elements based on, e.g.,
their names or other
properties

An iterative step to
produce new subroles
to be declared under
roles extracted in the
previous iteration

In general, FCA provides a way to discover sensible groupings of
objects3 that have common attributes in a certain context [24]. In-
formally, a concept is a collection of all the objects that share a set
of attributes in a given context. The set of common attributes of
the concept is called the concept’s intent and the set of objects be-
longing to the concept is called the concept’s extent.

As an example of a context, think of various kinds of sports as ob-
jects and certain characteristics of those sports as attributes. That
context could be expressed as a table showing which charac-
teristics each sport has (see Table 1).

Table 1. A simple context of sports and their characteristics

attributes (A)
R athletics ballgame team sport Olympic

sport
bowling √
cricket √ √
javelin √ √
long jump √ √
tennis √ √ ob

je
ct

s (
O

)

volleyball √ √ √

Formally a context is a triple C = (O, A, R), where O and A are fi-
nite sets of objects and attributes, respectively, and R is a binary
relation between O and A. Let X ⊆ O and Y ⊆ A. Let us also
define mappings σ(X) = {a ∈ A | ∀ o ∈ X: (o, a) ∈ R} (the
common attributes of X) and τ(Y) = {o ∈ O | ∀ a ∈ Y: (o, a) ∈ R}
(the common objects of Y). Using these definitions a concept in
the context C can be defined as a pair of sets (X, Y) such that Y =
σ(X) and X = τ(Y), where X is the concept’s extent and Y is the
concept’s intent. For example, ({cricket, volleyball}, {ballgame,
team sport}) is a concept in the context given in Table 1.

5. FORMING CONTEXTS FROM CODE
In order to extract a role-based specification for a hot spot of a
framework we can select relevant program elements and their
properties from both the framework itself and its available spe-
cializations and use them as concept analysis objects and
attributes (see Figure 2). When a context has been formed, a
simple algorithm can be used to produce concepts from the
context. After that, a suitable subset of those concepts is chosen
and the extent of each selected concept is translated to a role and
the intent of the concept is translated to a set of constraints for
that role.

The extraction process can be iterated to declare subroles under
each role acquired during the previous iteration cycle (e.g. to de-
clare method roles within class roles). The number of iterations
depends on the level of detail present in the input.

To ensure the effectiveness of the method, the input should
include a representative selection of all possible framework speci-
alizations. In principle, the input can be given at any level of
precision. It should be noted, however, that the amount of detail
present in the input dictates the precision of the analysis and the
accuracy of the extracted patterns. For example, to produce speci-
alization patterns that include default implementations for method

3 “Objects” of concept analysis shall not be confused with “ob-

jects” of object-oriented programming.

bodies, the input must contain information about the method im-
plementations found in example applications.

Figure 2. Extracting a specialization pattern from
implementation

5.1 Selecting Program Elements as Objects
The structure of the concept analysis context (i.e. objects and at-
tributes) that is to be formed from the input depends on the kind
of roles that are to be produced. For example, when extracting
class roles, the classes and interfaces present in the input will be
selected as objects and their features (e.g. inheritance relation-
ships, declared methods, and data fields) will be selected as attrib-
utes.

In general, for each role kind we assume a set of program ele-
ments from which the objects will be selected and a set of proper-
ty functions that dictate the attributes. Attributes are defined by
applying each property function to each element and by collecting
all distinct results as the set of attributes.

To be more precise, let us define a program element e as a pair (k,
n) ∈ E, where n ∈ N is a name that belongs to the set of unique
element names (N), identifying the element among the set of all
elements (E) and k ∈ K is element kind that belongs to the set of
all possible element kinds (K). For instance, for a Java system
EJava, the set of element kinds KJava = {class, method, field, …}.
Similarly, the set of names NJava could include the path names of
all elements in EJava. We usually refer to an element by its name
and omit its kind if there is no danger of confusion.

A property function f: E → P (E) is a mapping from a program
element to a set of (other) program elements. Let Ek ⊂ E be a set
of all program elements of kind k. The element kind (e.g. class if k

220

∈ KJava) determines a set of property functions Fk that are
applicable to the elements of that kind, i.e. Fk = {f | f: Ek → P (E)}.

Given an element ek ∈ Ek, each property function f ∈ Fk yields a
property value V = f(ek). The property value V is often a set that
contains only one element (e.g. in case f is a mapping from a
method to its return type), but it can also contain multiple ele-
ments. For example, for Java classes the set of property functions
could be defined as Fclass = {inherits, declares}, where inherits
maps a class to the set of classes and interfaces it extends or im-
plements and declares maps a class to the set of methods and
fields it declares. Finally, let us define a property pe of an element
ek ∈ Ek as a pair (f, V = f(ek)), where f ∈ Fk and V ∈ P (E).

The properties that the property functions determine when they
are applied to each program element at a time will be represented
as attributes in the context that will be built. For instance, con-
sider the following source code fragment as input for extracting
class roles (of Figure 1):

class TestCase {
 void setUp() {}
}
class MoneyTest extends TestCase {
 void setUp() { … }
}
class AccountTest extends TestCase {
 void setUp() { … }
}

Suppose that the property functions to be considered when pro-
ducing class roles include inherits and overrides, and that they
return the inherited base class of a class and the methods that are
overridden in the class, respectively. In addition, let us assume
that a special attribute name is introduced for those classes that do
not have any other attributes determined by the general property
functions (in this example TestCase does not inherit any classes or
override any methods). With these rules for producing attributes
with property functions we can form a context for determining the
class roles based on the input given above (see Table 2).

Table 2. A context for determining class roles

attributes (A)
R name

TestCase
inherits

TestCase
overrides

setUp
TestCase √
MoneyTest √ √

ob
je

ct
s

(O
)

AccountTest √ √

5.2 Producing a Concept Lattice
It is possible to mechanically determine the concepts of a given
context [25] and to form a concept lattice that shows the subcon-
cept relationships4 between the concepts. The structure of the lat-
tice is governed by the basic theorem for concept lattices:

))),(((),(sup IU
Ii

i
Ii

iii
Ii

YXYX
∈∈∈

= στ

The theorem says that the least common superconcept (i.e. supre-
mum denoted by sup) of a set of concepts can be computed by in-

4 A concept is a subconcept of another concept if its extent is a

subset of the other concept’s extent.

tersecting their intents, and by finding the common objects of the
resulting intersection. Based on the basic theorem, a simple bot-
tom-up algorithm for computing the concept lattice for a given
context can be defined as follows [24]:

(1) Start with the bottom element of the concept lattice (bot in
Figure 3), i.e. the concept consisting of objects that have all
the attributes.

(2) Compute the atomic concepts, i.e. the smallest concepts with
the extent containing each of the objects treated as a singleton
set. In other words, consider each object o ∈ O in turn, and
identify the attributes of o. Those attributes become the intent
of a potential new atomic concept c. The extent of c is formed
from o and all other objects that have the attributes enumer-
ated in the intent of c. Finally, accept c as an atomic concept if
its extent is smaller than the extents of all those other concepts
whose extents also contain o.

(3) Form a work list W containing all pairs of atomic concepts (c’,
c) such that c is not a subconcept of c’ and vice versa. While
W is not empty, remove a pair (ca, cb) from W. Then compute
the supremum of ca and cb and assign it to c”. If c” is a
concept yet to be discovered then add all pairs of concepts (c”,
c) such that c is not a subconcept of c” and vice versa to W.
The process is repeated until W is empty.

The analysis of the context given in Table 2 yields the concept lat-
tice depicted in Figure 3. Besides the bottom and top concepts,
the lattice contains two atomic concepts: c0 that represents the
base class (called TestCase) and c1 that represents subclasses of
TestCase overriding the setUp method.

top ({TestCase, AccountTest, MoneyTest}, ∅)
c1 ({MoneyTest, AccountTest}, {inherits

TestCase, overrides setUp})

c0 ({TestCase}, {name TestCase})

bot (∅ , {name TestCase, inherits TestCase,
overrides setUp})

Figure 3. A concept lattice of classes related to fixture setup

5.3 Relevancy of Program Elements
The example given in Table 2 and Figure 3 is unrealistic because
the input for analysis was deliberately narrowed down to contain
only those program elements that are relevant for setting up test
fixtures in JUnit5. In reality, the input for the pattern extraction
process can be as large as the whole implementation code of a
framework and a set of example applications. It is clear that the
input always contains lots of details that are not relevant to the
current hot spot.

Without any further modifications the basic outline of the method
given above produces one huge pattern that will contain all infor-
mation in the input source code. In practice this is not a workable
solution. To avoid being forced to apply concept analysis to
excessively large contexts and to enable more precise interpreta-
tion of the results, a way to filter out irrelevant input before analy-
sis must be introduced.

5 We have omitted also the fixture classes and the internals of the

methods to keep the example simple.

bot

top

c1 c0

221

The solution is to select only those program elements and their
properties that are relevant to the hot spot h at hand. No other ele-
ments and properties in the input will be considered. Here a
relevant property is a property that corresponds to a property
value V ∈ P (EJava) for which a relevancy function rh(V) = 1. In
principle, rh can have any suitable definition. In the following, we
will simply assume that it is a mapping rh: P (EJava) → {0, 1}
defined by giving a set of program elements Eh = {e1, e2, ..., ek} ⊂
EJava so that rh (V) = 1, if V ∩ Eh ≠ ∅ , and rh (V) = 0 otherwise.
Using these definitions we can give the following general
selection criteria:

(1) Select as objects only those program elements that have at
least one relevant property.

(2) Select all relevant properties of all selected elements as attrib-
utes.

(3) If a property value V is a set consisting of multiple elements,
then introduce an attribute for each relevant member of V (i.e.
for each such v ∈ V for which also v ∈ Eh).

This means that once a relevancy set Eh is identified it is possible
to mechanically produce a relevant context (with respect to the
hot spot h) for the concept analysis. Note, however, that it is up to
the user to provide the relevancy information. The user can
experiment with relevancy sets until she gets results whose scope
and precision match her needs or she can define multiple
relevancy sets to split the input into groups that can be handled
separately.

For example, to get a context that describes the hot spot of setting
up a test fixture for a test case in a JUnit application (recall Figure
1), we must identify those classes (and their internal properties)
that are (or seem) relevant to that hot spot. To do so, we would
add the roots of the relevant inheritance hierarchies (e.g. TestCase
and Money) and other key elements (e.g. the setUp method in
TestCase) into the relevancy set. Once that hot spot would be
satisfactorily specified, we could move on to define relevancy sets
for the other JUnit hot spots.

In practice, the required relevancy information implies a need for
some initial knowledge of the structure and hot spots of the
framework that is being analyzed6. So the main advantage of this
approach is not so much in finding framework hot spots, but in
being able to easily generate precise reuse specifications for those
hot spots that are known or expected to exist in the
implementation.

6. TRANSLATING CONCEPTS TO ROLES
In order to be able to translate the concepts resulting from an anal-
ysis of a context to the roles of a specialization pattern, we must
define an unambiguous mapping from a set of concepts to a set of
roles. The mapping will be based on the extents of the concepts.
The objects belonging to the extent of a concept are precisely
those program elements that are intended to be playing the role
corresponding to the concept.

6 Although, in theory, one could start with a relevancy set that

consisted of all program elements and continue by breaking the
initial relevancy set into suitable subsets based on the initial
results.

In the translation process we are looking for a set of roles where
each program element (i.e. each concept analysis object) plays ex-
actly one role (i.e. belongs to exactly one extent)7. Unfortunately,
in a general case an object may belong to a number of extents in a
concept lattice (for instance, TestCase belongs to the extents of c0
and top in Figure 3). However, we can form a concept partition
(i.e. a set of concepts where each object takes part in exactly one
concept) from any concept lattice [25]. The concepts in the parti-
tion can then be translated to a set of roles that forms a model for
that piece of code which the extents of the concepts were
originally derived from. In Figure 3, concepts c0 and c1 form a
partition that corresponds to the first two class roles (TestCase
and UserTestCase) of the specialization pattern given in Figure 1.

6.1 Mapping Extent to Name and Cardinality
Once a concept partition that describes the relevant portion of the
input at the right level of abstraction has been selected, we can
translate the concepts in the partition into a specialization pattern.
The translation starts with the creation of the roles of the pattern.
A new role will be created for each concept in the selected parti-
tion.

The translation of a concept C into a role RC is quite straightfor-
ward. The role kind is determined by the element kind of the ob-
jects included in the extent XC of C. In other words, we create a
class role if the concept describes classes, a method role for meth-
ods, and so on. The role’s name and its location in the declaration
hierarchy follow directly from the corresponding properties of the
originating program elements. The declaration location for RC will
be under a role that stands for the declaring program elements of
the elements in XC. If the elements in XC are top level elements
(e.g. classes) RC will be a top level role.

The cardinality of RC is based on the extent XC. By default the car-
dinality is exactly one. If there is at least one element correspond-
ing to the declaring role R of RC that does not have a child
element in RC then the cardinality will be from zero to one. This is
because the input confirms that it is not mandatory for the
elements corresponding to R to have a child element correspond-
ing to RC.

If there are multiple elements in XC and RC does not refer to any
other role whose cardinality is from zero or one to infinity, then
the cardinality is set to zero to infinity. This rule is based on the
observation that, in general, having multiple elements in XC
implies that RC is a role that describes potentially many imple-
mentation structures (e.g. various subclasses of a base class). On
the other hand, if RC refers to another role RD (based on a concept
D’s extent XD) that may have multiple elements associated with it,
it is possible that the many elements in XC can be interpreted to be
in a “one-for-each” relationship with the elements in XD. In such a
case the correct cardinality is exactly one.

As an example of a concept, consider c0 in Figure 3. It has one
class (TestCase) in its extent. Therefore the result of translating c0
is a top level class role (see Figure 1) with the same name as the
name of the only class in c0’s extent. The size of the extent (one

7 It is usual for a program element to play multiple roles. How-

ever, those roles usually belong to separate patterns (or hot
spots). In the extraction process we are interested in one pattern
at a time so this restriction is not a serious one.

222

element) determines also the cardinality of the role to be exactly
one. The other interesting concept in Figure 3, c1, on the other
hand, has two classes (MoneyTest and AccountTest) in its extent,
so the cardinality for the corresponding role will be from zero to
infinity. The name of the role can be derived from the names of
the classes in c1’s extent, or as is the case here, the name of the
common super class can be used as the basis for the role name.

6.2 Mapping Intent to Constraints
The constraints for each role RC are defined based on the intent YC
of the corresponding concept C. More precisely, for each attribute
a in YC a property lookup is performed in RC. If RC can contain a
constraint ca corresponding to a then ca will be declared for RC.
Both the type (e.g. an inheritance constraint) and value (e.g.
(class, Base)) of ca are determined by the property (e.g. (inherits,
(class, Base))) corresponding to a. If the value is a reference to an
element that corresponds to another role RD (i.e. belongs to the
extent of the associated concept D) then a reference to RD is used
as the value for ca.

The property lookup may fail for some attributes. These attributes
can just be ignored. Typically they would include those attributes
that will be realized as roles on the next level in the declaration
hierarchy. For example, an attribute (overrides, (method, m))
denoting that a class overrides a method m might not appear as a
constraint in the class role, but it could imply that a method role
will be declared within the class role later on. The attributes for
which the property lookup fails are not redundant: they classify
objects into separate concepts just as the other attributes.

Applying the abovementioned rules to c1 in Figure 3 yields the
inheritance constraint in UserTestCase that refers to TestCase
(recall Figure 1). The other attribute in c1’s intent (overrides
setUp) does not cause any further constraints to be added to User-
TestCase because there is no overriding constraint available for
class roles.

7. REVERSE ENGINEERING THE REUSE
INTERFACE OF JUNIT

We have implemented a prototype tool (Pattern Extractor) that
realizes the method and algorithms described in the previous sec-
tions [30]. The tool produces Fred specialization patterns from
Java source code. Fred (Framework Editor for Java) is a pro-
gramming environment intended for aiding framework-based soft-
ware development [15, 16, 29]. It implements a specification lan-
guage that can be used to model the hot spots of a framework. The
language defines the hot spots in terms of role-based speciali-
zation patterns as described in Section 3.

Pattern Extractor produces specialization patterns based on the
framework implementation associated with a representative set of
example applications that are given to it as input. The user can
then refine the automatically generated initial versions of the pat-
terns to get a complete specification, which Fred can interpret to
provide goal-oriented assistance for application developers using
the framework.

Pattern Extractor implements the concept analysis based pattern
extraction process described in Figure 2. The input and relevancy
criteria provided by the user are used to produce a concept
analysis context. The context is handed over to the concept analy-
sis subsystem that implements the general concept analysis algo-

rithms, such as building a concept lattice and calculating the
concept partitions (recall Sections 4 and 5). Finally, the tool trans-
lates the selected concepts into roles and constraints as described
in Section 6.

7.1 JUnit Framework
To test the effectiveness of the method introduced in this paper we
have applied Pattern Extractor to automatically extract a Fred
model for the JUnit framework [11]. JUnit is a framework for im-
plementing systematic unit testing of Java programs. It consists of
about 50 classes of which less than 20 belong to the core frame-
work. The rest of the classes are UI components, extensions, and
samples. JUnit was chosen as an example framework because it is
commonly known, mature, simple, well designed, implemented in
Java, and freely available.

Figure 4 shows a partial class diagram of JUnit (the junit.frame-
work package) together with some application-level classes (the
lower part of the diagram) that exemplify how the constructs of
the framework can be extended and used. There are also the four
most important hot spots of JUnit highlighted in the figure (see
the legend in the lower right corner). The DefiningTests hot spot
involves subclassing the TestCase class from the framework. The
subclasses (e.g. MoneyTest and AccountTest) must implement the
initialization of the name field in TestCase. This can be done most
conveniently by defining a constructor that takes a name as an
argument and then passes it over to the superclass via calling the
constructor of the superclass. The test classes also define a
number of test scripts (e.g. testAdd and testDeposit) that call
methods of the classes to be tested (e.g. add in Money or deposit
in Account). Each test script interacts with the objects to be tested
and finally verifies the expected results with assertions.

Figure 4. The main hot spots of the JUnit framework
The creation of the test material objects can be done in the test
scripts themselves, but in order to be able to share these fixture
definitions among scripts, the developer must use the SettingUp-

Test
run(TestResult)

*

tests

junit.framework

TestSuite
name: String
TestSuite(String)
run(TestResult)
…

TestCase
name: String
TestCase(String)
run(TestResult)
setUp()

BaseTestRunner

TestRunner

run(Test)
run(Class)
…

AccountTest
a: Account
AccountTest(String)
setUp()
testDeposit()
…

AllTests

suite()
main(String[])
…

MoneyTest
m: Money
MoneyTest(String)
setUp()
testAdd()
…

Account

deposit(Money)
…

Money

add(Money)
…

«create»
«use»

«create»
«use»

«create»
«use»

«use»

«use»

= DefiningTests
= SettingUpFixture
= SelectingTests
= RunningTests

Hot spot legend:

223

Fixture hot spot to define the initialization (e.g. MoneyTest.setUp)
for fixture attributes (e.g. MoneyTest.m) by overriding the corre-
sponding method declared in TestCase. Setting up a test fixture
most often involves creating one or more instances of the classes
to be tested (e.g. Money, Account).

The TestSuite class offers a possibility to combine test cases into
tree hierarchies through its tests attribute. From the application
developer’s point of view this functionality is useful for selecting
and grouping together those tests that should be run together. The
SelectingTests hot spot allows the developer to do exactly that.

JUnit provides different test runners, which can run a test suite
and collect the results. A test runner either expects a static suite
method as the entry point to get a test to run or it will extract the
suite automatically. RunningTests, the fourth hot spot depicted in
Figure 4, is meant for selecting the tests to be run and an
appropriate test runner class (e.g. TestRunner) to execute them.
This can be accomplished by defining a main method (e.g.
AllTests.main) where the runner’s static run method is called with
a test case class as an argument. All test scripts defined in the
given test case will be looked up and executed through reflection.

7.2 Applying Pattern Extractor to JUnit
In a case study, eight specialization patterns were extracted to
specify the reuse interface of JUnit (see Table 3). Four of them
(DefiningTests, SettingUpFixture, SelectingTests, RunningTests)
can be characterized as basic patterns, i.e. patterns that are in-
volved in any specialization of JUnit. They correspond directly to
the hot spots represented in Figure 4. The other four patterns
describe hot spots that are relevant to more advanced or
infrequent ways of using the framework.

The input given for the extraction process consisted of the source
code packages of the core JUnit framework package (junit. frame-
work) and its extensions (junit.extensions, junit.runner, and junit.
textui) together with a set of sample tests (junit.samples.money)8.

Table 3 summarizes the results of the case study. It shows the
characteristics of each produced specialization pattern including
the name, the number of non-empty lines in the extracted textual
pattern specification (a measure for the pattern size), and the
relevancy set9 used in the extraction.

The automatically extracted patterns were adjusted manually to
achieve the overall quality and usability level of the hand-written
specifications made for various frameworks within the Fred
project (see, e.g., [29]). The last two columns in Table 3 give an
estimate of the quality of the extraction process. The strict extrac-
tion percentage shows the portion of the specification that con-
sisted of those automatically produced lines that could be used
directly without any adjustments. The loose extraction percentage,
on the other hand, counts in also those specification lines that
only needed trivial modifications (e.g. updating descriptions to
better suit the context). It also omits the removed lines. The strict
and loose extraction percentages define thus a range in which the
effective net benefit of this approach probably lies.

8 The AccountTest class was added to the money package to com-

plement the MoneyTest class provided with the distribution.
9 An asterisk is used as a short hand notation for all program ele-

ments whose name begin with the given string.

Table 3. Characteristics of the extracted JUnit patterns

Pattern Li
ne

s

Relevancy set St
ri

ct
 %

Lo

os
e%

DefiningTests 114 {TestCase, TestCase.TestCase, Money-
Test.test*, MoneyTest.MoneyTest, Money} 22 58

SettingUp-
Fixture 63 {TestCase, TestCase.setUp,

TestCase.tearDown, Money} 57 93

SelectingTests 122
{TestCase, TestSuite, MoneyTest.test*,
AccountTest, AccountTest.test*, AllTests,
AllTests.suite}

21 65

RunningTests 54 {BaseTestRunner, TestRunner,
TestRunner.run, AllTests, AllTests.main} 37 85

Decorating-
Tests 103

{TestDecorator, TestDecorator.TestDecorat-
or, TestDecorator.run, AccountTest, Account-
Test.testDelayedTestCase*, TestCase}

45 71

Running-
RepeatedTests 47 {RepeatedTest, AccountTest,

AccountTest.testMultipleTimes*, TestCase} 49 82

RunningTests-
InThreads 61 {ActiveTestSuite, AccountTest,

AccountTest.testInThreads*, TestCase} 30 74

Testing-
Exceptions 69

{Exception, ExceptionTestCase, AccountTest,
AccountTest.testException*,
AccountExceptionTestCase}

32 67

Total 633 - -
Average 79 37 74

To give an idea of what the generated specialization patterns
looked like and how they were adjusted, we provide a listing of a
JUnit specialization pattern (see SettingUpFixture below)10. Note
that the parts of the source text that were removed from the final
pattern are written in italics, and the parts that were manually
added or changed are written in bold.
pattern SettingUpFixture;
class TestCase {

 description "Click here …";
 method setUp {

description "Click …";
}

}
class UserTestCase* {

 inherits TestCase;
 description "Click …";

 method setUp {
 overrides TestCase.setUp;
 description "Click …";

fragment fixtureCreation {
 description "This code snippet …";
 source "<#fixtureAttr.name> =

new <#fixtureAttr.type>(12, "CHF");
 <#…> = new <#…>(14, "CHF");"

 }
 }

 field fixtureAttr* {
 isTypeOf FixtureClass;
 description "All fixture objects …";
 }
}
class role FixtureClass* {

 description "A fixture class is a class …";
}

10 The listing provides a slightly compacted version of the pattern

(e.g. some of the descriptions have been shortened and the
tearDown method role has been omitted); hence the difference
between the number of lines in the listing and in Table 3.

224

7.3 Evaluation of the Results
The results of our case study indicate that about half of the
specialization pattern code for modeling the reuse interface of a
framework can be automatically extracted from source code with
our method. Of the other half that needs to be manually given or
at least modified to suit the context, most consists of code frag-
ment roles. This results from the fact that analyzing patterns from
method bodies (expressions and statements) is a hard task in gen-
eral. In addition, Fred does not currently support method bodies
in its AST representation of the source code. That is why the
extraction of the code fragment roles is based directly on the
tokenized source text, which allows only very primitive analyses.

Our results show that automatic extraction of specialization pat-
terns yields quite an accurate overall picture of the structures of
the patterns, and that it is indeed only the details that need further
modifications to make the patterns usable. In addition to the code
fragment roles, majority of the additions and modifications were
related to informal textual templates associated with roles (such as
descriptions and default names) rather than to actual constraints.

Based on our experiences with Fred and Pattern Extractor, we can
conclude that it is possible to describe the intended rules govern-
ing the framework’s specializations with a precise role-based
formalism. It is clear that a thorough specification of a frame-
work’s reuse interface raises the development costs. However, we
argue that these costs are relatively low when compared to the
development costs on the whole and, furthermore, the savings
gained in training and mentoring will be substantial, especially if
many users are going to use the same framework.

It has already been mentioned that the effectiveness of our reverse
engineering approach depends on the number and quality of the
examples that are available as input. This approach is not meant to
replace the usual process of getting the specification of reuse
interfaces from the developers early in the design stage. It is clear
that specifying the reuse interface of a framework as early as
possible is beneficial for the framework development process and
ultimately also for the framework users. The motivation for this
work has been to assist framework users (and developers) in
situations where the documentation provided with the framework
is not detailed enough to directly enable tool support.

Using the presented approach, it is possible to automatically gen-
erate a considerable portion of a reuse interface specification. This
makes reuse interface modeling faster and allows even modeling
of frameworks that are still under development. Automation can
also increase the quality of the produced models, because it may
reveal shortcomings, omissions, or inconsistencies in manually
prepared reuse models made for the same framework.

A major obstacle in design recovery is the scalability of the
algorithms being used. The worst-case running time of the
concept lattice construction algorithm used in this work is
exponential [27]. In practice, however, the running time is
polynomial and thus feasible even for rather large contexts
because there typically are O(n) or O(n2) concepts in a lattice with
n objects as opposed to the maximal O(2n) concepts.

Tonella and Antoniol use concept analysis to recover (design) pat-
terns from source code [28]. They define all possible combina-
tions of classes as objects, which forces them to limit their
analyses to combinations with fewer than five classes when using

any non-trivial system as input. In our approach we define one
program element (a class, a method, and so on) as an object. This
means that that the size of the patterns that can be extracted and
the size of the systems used as input are not as limited.

8. CONCLUSION AND FUTURE WORK
We have introduced a new approach for specifying framework re-
use interfaces in order to facilitate tool-supported framework spe-
cialization. The method presented in this paper automates many
trivial details of the modeling process by accurately extracting
most roles and constraints from the framework source code and
existing example applications.

Structuring a software system reflects design decisions that are in-
herently subjective [25]. Similarly, there is always a creative ele-
ment in preparing documentation or a specification for a reusable
system. This means that substantial user interaction will be re-
quired in any approach that tries to assist, e.g., modeling a frame-
work reuse interface. In the Pattern Extractor tool introduced in
this paper, the user is responsible for structuring the model into
separate specialization patterns by specifying appropriate rele-
vancy criteria. The tool selects relevant program elements accord-
ing to the criteria and uses the selected elements as input for the
concept analysis. The analysis, in turn, produces a concept lattice
that is automatically translated into a specialization pattern.

Even though it is unlikely that framework reuse interface specifi-
cation can be fully automated, there is still a lot of room for im-
provements in Pattern Extractor. Further research is needed to
build a precise model of how the selection of input and relevancy
criteria affect the produced specialization patterns. Based on a
detailed model it would be easier to make justified decisions on
which properties of the program elements should be used as
concept analysis attributes and how the input should be divided
into separate contexts to produce structured models.

The reverse engineering method described in this paper must be
applied to a variety of frameworks in order to truly validate its
potential. As our experiences accumulate we expect to be able to
formulate practical and generally applicable guidelines for defin-
ing the relevancy criteria to easily produce useful specialization
patterns. At this point, however, it must be admitted that we
cannot present a full assessment of our method with respect to the
risk of getting irrelevant results depending on the input selection.

In our view, finding the main concepts of a framework from its
documentation is the key to understand the framework’s reuse
interface. At the same time it is also an essential precondition of
using Pattern Extractor successfully. If no documentation is avail-
able the same basic information must be gathered from the
system’s source code. Systematic analysis of the framework’s
class hierarchy as described in [29] and automatic pattern
detection (see, e.g., [20]) are good ways to get started. Still, there
clearly is a need for further research on automatic program
analysis methods, especially for methods that concentrate on
analysis of reusable assets, such as frameworks.

9. REFERENCES
[1] Basili V., Briand L., Melo W., How Reuse Influences

Productivity in Object-Oriented Systems. Communications
of the ACM 39, 10, 1996, 104-116.

225

[2] Booch G., Object Solutions: Managing the Object-Oriented
Project. Addison-Wesley, 1996.

[3] Codenie W., De Hondt K., Steyaert P., Vercammen A.,
From Custom Applications to Domain-Specific
Frameworks. Communications of the ACM 40, 10, 1997,
71-77.

[4] Chikofsky E., Cross II J., Reverse Engineering and Design
Recovery: A Taxonomy. IEEE Software 7, 1, 1996, 13-17.

[5] Deutsch L., Design Reuse and Frameworks in the Smalltalk-
80 System. In: Biggerstaff T., Perlis A. (eds.), Software
Reusability Vol. II, ACM Press, 1989, 57-71.

[6] Durham A., Johnson R., A Framework for Run-time
Systems and Its Visual Programming Language. In: Proc.
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’96), San Jose,
California, USA, October 1996, ACM SIGPLAN Notices
31, 10, 1996, 406-420.

[7] Eisenbarth T., Koschke R., Simon D., Incremental Location
of Combined Features for Large-Scale Programs. In: Proc.
International Conference on Software Maintenance (ICSM
2002), Montreal, Canada, October 2002, IEEE Computer
Society Press, 273-283.

[8] Fayad M., Schmidt D., Object-Oriented Application
Frameworks. Communications of the ACM 40, 10, 1997,
32-38.

[9] Froehlich G., Hoover H., Liu L., Sorenson P., Hooking into
Object-Oriented Application Frameworks. In: Proc. 19th
International Conference on Software Engineering
(ICSE’97), Boston, Massachusetts, USA, May 1997, IEEE
Computer Society Press, 491-501.

[10] Fayad M., Schmidt D., Johnson R., (eds.), Building
Application Frameworks — Object-Oriented Foundations
of Framework Design. Wiley, 1999.

[11] Gamma E., Beck K., JUnit: A Cook’s Tour. Java Report 4,
5, 1999, 27-38.

[12] Ganter, B., Wille, R., Formal Concept Analysis —
Mathematical Foundations. Springer, 1999.

[13] Gamma E., Helm R., Johnson R., Vlissides J., Design
Patterns — Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[14] van Gurp J., Bosch J., Design, Implementation, and
Evolution of Object Oriented Frameworks: Concepts and
Guidelines. Software — Practice & Experience 31, 3, 2001,
277-300.

[15] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa
A., Viljamaa J., Generating Application Development
Environments for Java Frameworks. In: Proc. 3rd
International Conference on Generative and Component-
Based Software Engineering (GCSE’01), Erfurt, Germany,
September 2001, Springer LNCS 2186, 163-176.

[16] Hakala M., Hautamäki J., Koskimies K., Paakki J., Viljamaa
A., Viljamaa J., Annotating Reusable Software
Architectures with Specialization Patterns. In: Proc.
Working IEEE/IFIP Conference on Software Architecture
(WICSA 2001), Amsterdam, Netherlands, August 2001,
IEEE Computer Society Press, 171-180.

[17] Johnson R., Documenting Frameworks Using Patterns. In:
Proc. Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA’92),
Vancouver, British Columbia, Canada, October 1992, ACM
SIGPLAN Notices 27, 10, 1992, 63-76.

[18] Krasner G., Pope S., A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80.
Journal of Object-Oriented Programming 1, 3, 1988, 26-49.

[19] Ortigosa A., Campo M., Salomon R., Towards Agent-
Oriented Assistance for Framework Instantiation. In: Proc.
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2000),
Minneapolis, Minnesota, USA, October 2000, ACM
SIGPLAN Notices 35, 10, 2000, 253-263.

[20] Paakki J., Karhinen A., Gustafsson J., Nenonen L.,
Verkamo I., Software Metrics by Architectural Pattern
Mining. In: Proc. International Conference on Software:
Theory and Practice (16th IFIP World Computer Congress),
Beijing, China, August 2000, 325-332.

[21] Pree W., Design Patterns for Object-Oriented Software
Development. Addison-Wesley, 1995.

[22] Quilici A., Reverse Engineering of Legacy Systems: A Path
Toward Success. In: Proc. 17th International Conference on
Software Engineering (ICSE’95), Seattle, Washington,
USA, April 1995, IEEE Computer Society Press, 333-336.

[23] Rine D., Nada N., Three Empirical Studies of a Software
Reuse Reference Model. Software — Practice & Experience
30, 6, 2000, 685-722.

[24] Siff M., Reps T., Identifying Modules via Concept Analysis.
In: Proc. International Conference on Software
Maintenance (ICSM’97), Bari, Italy, October 1997, IEEE
Computer Society Press, 170-178.

[25] Siff M., Reps T., Identifying Modules via Concept Analysis.
TR-1337, Computer Sciences Department, University of
Wisconsin, Madison, WI, 1998.

[26] Shull F., Lanubile F., Basili V., Investigating Reading
Techniques for Object-Oriented Framework Learning. IEEE
Transactions on Software Engineering 26, 11, 2000, 1101-
1118.

[27] Snelting G., Reengineering of Configurations Based on
Mathematical Concept Analysis. ACM Transactions on
Software Engineering and Methodology 5, 2, 1996, 146-
189.

[28] Tonella P., Antoniol G., Object Oriented Design Pattern
Inference. In: Proc. International Conference on Software
Maintenance (ICSM’99), Oxford, England, August-
September 1999, IEEE Computer Society Press, 230-239.

[29] Viljamaa A., Pattern-Based Framework Annotation and
Adaptation — A Systematic Approach. Licentiate thesis,
Report C-2001-52, Department of Computer Science,
University of Helsinki, 2001.

[30] Viljamaa J., Automatic Extraction of Framework
Specialization Patterns. Licentiate thesis, Report C-2002-47,
Department of Computer Science, University of Helsinki,
2002.

[31] Waters R., Chikofsky E. (eds.), Special Section on Reverse
Engineering. Communications of the ACM 37, 5, 1994, 22-
93.

226

