
Ensuring Interoperable Service-oriented Systems through
Engineered Self-Healing∗

Giovanni Denaro
University of Milano-Bicocca
viale Sarca 336, Milano, Italy
denaro@disco.unimib.it

Mauro Pezzè
University of Milano-Bicocca

and University of Lugano
mauro.pezze@unisi.ch

Davide Tosi
University of Milano-Bicocca
viale Sarca 336, Milano, Italy

tosi@disco.unimib.it

ABSTRACT
Many modern software systems dynamically discover and in-
tegrate third party libraries, components and services that
comply with standard APIs. Compliance with standard
APIs facilitates dynamic binding, but does not always guar-
antee full behavioral compatibility. For instance, problems
that derive from behavior incompatibility are quite frequent
in service-oriented applications that dynamically bind ser-
vice implementations that match API specifications.

This paper proposes a technique to engineer applications
with a self-healing layer that dynamically reveals and fixes
interoperability problems. The core elements of the tech-
nique are catalogs and a runtime infrastructure. Catalogs
support developers in configuring the self-healing layers. The
runtime infrastructure enacts the configured self-healing strat-
egies. This paper discusses both the effectiveness of our
solution and the relevance of the problem in the context
of service-oriented applications, referring to a case study of
Web2.0 social applications that integrate the standard APIs
del.icio.us and OpenSocial. As an outcome of this experi-
ence we present an inconsistency catalog that supports the
configuration of self-healing layers for Web2.0 applications.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.12 [Software Engineering]: Interoperability

General Terms
Design

Keywords
Self-healing software, interoperable service-oriented applica-
tions, integration mismatches, integration faults

∗This work has been supported by the European Commu-
nity under the Information Society Technologies (IST) pro-
gramme of the 6th FP for RTD - project SHADOWS con-
tract IST-035157.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

1. INTRODUCTION
The spreading of component-based and service-oriented

technologies favors the emergence of libraries, components
and services that offer the same or similar behaviors, and
promote applications that dynamically discover and inte-
grate alternative implementations of third-party software.
The typical scenario exploits standard APIs that facilitate
late binding between applications and third-party libraries,
components and services. Compliance to standard APIs
supports integration, but does not guarantee full behaviour
compatibility. Standard APIs generalize the possible im-
plementations, and abstract from several implementation-
dependent details. Generalization and lack of details can
cause interoperability problems and can lead to runtime fail-
ures.

We investigate this problem in the domain of service-
oriented applications that rely on third-party services. We
focus on scenarios where multiple providers offer services
that implement standard APIs and provide compatible func-
tionality. For these applications, interoperability problems
are frequent, as we discuss in details in the next section.

In this paper, we propose a technique to engineer service-
oriented applications with a self-healing layer that dynami-
cally reveals and fixes mismatches between different imple-
mentations of services that comply with standard APIs. The
approach relies on inconsistency catalogs to capture com-
mon interoperability problems that escape API compatibil-
ity checks. Client developers exploit the catalogs to identify
potential mismatches between different implementations of
the same APIs, and configure the self-healing layer accord-
ingly. They configure self-healing layers by generating com-
patibility test suites and corresponding adaptors. Compati-
bility test suites and adaptors are paired: Compatibility test
cases reveal possible mismatches, and trigger adaptors that
solve them. We refer to the pairs of compatibility test cases
and adaptors as test-and-adapt plans. The self-healing layer
is a runtime infrastructure that executes the compatibility
test suites when new implementations are bound at run-
time, automatically detects the occurrence of mismatches,
and dynamically triggers the suitable adaptors.

Interoperability problems have been investigated in the
context of design for change, service composition, semantic
web engineering and service interchangeability.

Design for change approaches support the design of evolv-
ing APIs. Enabling interoperability with multiple imple-
mentations of a standard API shares some aspects with sup-
porting evolving APIs, but entails additional challenges that
call for novel approaches, as the one proposed in this paper.

253

For instance, services from different providers are compet-
ing rather than evolving API implementations, and in this
scenario we cannot count on references to previous versions,
as assumed by most approaches to evolving APIs ([5], [29]).

Assertion-based dynamic analysis and formal verification
of service composition focus on contract violations and can
check for compatibility of services when formally specified,
thus complementing our approach [1, 9, 2].

The work on semantic web and service interchangeabil-
ity is closely related to our research. Semantic web tech-
nology and ontologies can solve semantic ambiguities, but
provide little guidance to identify and diagnose application
mismatches [24, 14]. Approaches to interchangeable services
support interoperability of applications with services other
than the ones the application was originally written for, but
the work done so far considers mostly structural mapping
between non-standard service interfaces, and dismisses se-
mantic aspects of different implementations of standard in-
terfaces [22, 21, 12, 16]. We provide additional details about
these approaches in Section 7.

This paper contributes to the scientific and technical knowl-
edge in many ways. It provides empirical evidence of inter-
operability problems between applications and implementa-
tions of standard APIs by reporting experience in the emerg-
ing domain of social networking applications (Section 2). It
proposes an original self-healing approach for detecting and
solving interoperability problems at runtime, referring to the
experience acquired by testers during field testing and main-
tenance, and formalized by developers at design time (Sec-
tion 3). It reports experience results that indicate the effec-
tiveness of the proposed approach (Section 4). It suggests a
first generalization of the results by introducing an inconsis-
tency catalog to identify common mismatches and healing
strategies (Section 5), and discusses the impact of the ap-
proach on performance (Section 6). It discusses the novelty
of the approach by surveying related work (Section 7). Fi-
nally, it indicates research directions related to the results
presented in the paper (Section 8).

2. SERVICE INTEROPERABILITY
Problems of interoperability due to dynamically bound

implementations of standard APIs affect applications built
with several modern software engineering technologies and
paradigms, such as dynamic-linking libraries, component-
based middlewares and service-oriented architectures. To
make our discussion more concrete, this section exempli-
fies this type of interoperability problems with reference to
service-oriented applications that integrate competing im-
plementations of standard service APIs.

We report results of two studies in which we investigate
the interoperability between applications that integrate third-
party services through a standard API, and different imple-
mentations of the APIs. In the first study, we consider ap-
plications for bookmark handling that integrate social book-
marking services offered through the standard del.icio.us
API, to store and retrieve bookmarks online. We executed
four applications each integrated with four compatible im-
plementations of the del.icio.us API. In the second study, we
consider social networking applications, where network con-
tainers that manage social networks of users host social net-
work gadgets that provide user-oriented functionality across
a social network. For example, facebook.com is a popular
social network container, and BizX (from toostep.com) is a

#failures
with del.icio.us-based web

App #tests D M F L

DEL1.14 35 0 9 - 3
GAD 15 0 4 3 2
BtoD 7 0 0 1 0
SABROS.us 4 0 1 2 1

Legend:
D: delicious [del.icio.us] F: faves [faves.com]
M: magnolia [ma.gnolia.com] L: link-wieza [link.wieza.net]
GAD: GUI+del.icio.us DEL1.14: del.icio.us java API
BtoD: Bookmarks To Delicious
-: not-tested because of incompatible authentication mechanisms
between DEL1.14 and faves

(a)
#failures

with OpenSocial container
App(gadget) #tests O H M F I v0.1

BizX 16 0 4 - 1 3
BuboMe 9 3 2 - 4 3
BuddyPoke 12 1 2 - - -
Emote 7 0 0 - - 1
LastFM 6 0 0 - 0 0
RateMyFriends 6 0 0 2 2 2
Unype 11 0 1 1 0 1
Zorap 3 0 0 0 0 0

Legend:
O: orkut [www.orkut.com] M: myspace [www.myspace.com]
H: hi5 [www.hi5.com] F: facebook [www.facebook.com]
I: imeem (v0.1 released in mid-May) [www.imeem.com]
-: not-tested because installation of the gadget failed

(b)

Table 1: Integration failures with different API im-
plementations

social network gadget that lets users create virtual business
cards and distribute them across the network of friends. We
executed five social network containers that use the OpenSo-
cial API, the most popular standard for the interactions be-
tween gadgets and containers, each with eight social network
gadgets.

Table 1 reports the results of the studies. The tables re-
port the number of test cases that have been executed for
each application and each implementation of the standard
service APIs, and the number of experienced integration fail-
ures. The test cases revealed 26 integration failures for the
implementations of the del.icio.us API, and 33 integration
failures for the implementations of the OpenSocial API. No-
tice that all del.icio.us clients in the experiment were orig-
inally designed and tested using del.icio.us as target web
service, as confirmed by the results of our tests that did not
reveal failures for del.icio.us (column 〈D〉 of Table 1 (a)).
Additional details on the case studies can be found in [26].

In-depth analysis confirms that the definitions of the two
standard APIs focus on syntactic and type issues, but leave
several semantic details underspecified. This leads to incon-
sistent implementations of the APIs and consequent failures
when applications integrate different API implementations.

We discuss the issue referring to gadget BizX that was
originally developed for orkut, and executes correctly within
this container, but fails when integrated in other containers
(row 〈BizX〉 of Table 1 (b)). Table 2 shows the details of
the implementations of the OpenSocial API that are respon-

254

Container Implementation choices
BizX assumptions orkut hi5 facebook imeem v0.1 Failure

Thumbnails < 70x70 64x49 100x100 50x37 100x100 flawed vCard layout
getDisplayName retrieves two
strings

two strings one string (name) two strings two strings null pointer exception

In URL: Userid as
URL?uid=ID

URL?uid=ID URL?userid=ID URL?id=ID URL/people/ID TypeError: User has no
properties

Activities supported supported supported supported unsupported Activities never created
Activity body supported supported unsupported supported N/A (see above) flawed activity view

Table 2: Analysis of failures of the gadget BizX when integrated with different OpenSocial containers

sible for the failures of BizX in our study. Semantic details
that escape the definitions in the OpenSocial API results in
inconsistent implementation choices in the containers.

For example, row 〈Thumbnails . . .〉 of Table 2 indicates
that different containers return thumbnail images of differ-
ent sizes. The implementation choices of containers hi5 and
imeem are incompatible with BizX assumptions and cause
failures. Row 〈In URL . . .〉 of Table 2 indicates different for-
mat conventions for the userid within a URL, that lead to
failures when BizX is integrated in all containers other than
orkut. Row 〈Activity body . . .〉 of Table 2 indicates that in
some cases the API is only partially implemented by the con-
tainers, leading to failures when invoking the unsupported
operations.

3. THE TEST-AND-ADAPT PARADIGM
Most problems that derive from inconsistent implemen-

tations of standard APIs do not preclude the interoperabil-
ity of the applications with different implementations of the
same API. In all our experiments, the different implemen-
tations of the service APIs, albeit inconsistent, preserve the
main service functionality.

Many inconsistencies can be predicted by analyzing the
standard APIs on the basis of domain expertise and pre-
vious experience, identified by executing few simple test
cases on the target implementations, and solved by means
of simple adaptors. Following this observation, we propose a
mechanism that augments applications with test cases and
adaptors that provide self-healing capabilities to dynami-
cally solve interoperability problems across inconsistent im-
plementations of standard APIs.

Our mechanism, hereafter test-and-adapt, includes design
and runtime aspects. At runtime, applications dynamically
execute test cases to verify the consistency of the current im-
plementation of a standard API, trigger suitable adaptors if
needed, and use the selected adaptors to mediate the next
interactions through the API. At design time, applications
must be engineered with test-and-adapt plans. We define
a test-and-adapt plan as a relation between test cases that
check for inconsistency, and adaptors that fix the inconsis-
tency at runtime. Each test case is paired with an adaptor
that is activated depending on the test outcome.

Figure 1 illustrates the runtime mechanism for the case of
standard API web services. The mechanism includes a Re-
configurable proxy that dynamically binds adaptors to ser-
vice invocations, and a Test-and-adapt controller that man-
ages test-and-adapt plans. The figure illustrates the two
invocation flows for the cases of a newly-bound and in-use
service implementation, respectively. If the runtime mecha-
nism identifies that a new implementation has been bound

WS1 WS2

A
PP

5. dispatch to target service(op)

2. run(test cases) S
er

vi
ce

 A
P

I

Ax Ay ...

3. deploy(adaptors)

4. invoke(op)
adaptors chain

RECONFIGURABLE PROXY

TEST-AND-ADAPT
CONTROLLER

...

implement
test cases

Test1:
Test2:
Test3:
… ...

adaptors

A1

A2

A3A
PP

 T
O

 W
S

C
A

LL
S

call flow
test-and-adapt flow
test-and-adapt plan

...

1.
 N

ew
 W

S
?

[if
 n

o
go

to
 4

]

Figure 1: Test-and-adapt: runtime aspects

to the service API (for instance, because of a new provider
or because of the notification of a service update), it first ac-
tivates the Test-and-adapt controller that executes the test
cases associated with the API at design time, and then de-
ploys suitable adaptors according to the test results (steps
1, 2, and 3 in Figure 1). When a service implementation
is in-use, the application invokes the service through the
Reconfigurable proxy that is responsible for executing the
adaptors that may have been formerly selected for the cur-
rent implementation (steps 1, 4 and 5 in Figure 1).

Step 2 requires the execution of test cases, causing the ser-
vice to be invoked out of the application flow. To avoid loss
of integrity, we assume either no side effects on the services
or the availability of sandbox execution environments, as in-
creasingly offered by service provides, like in the case of our
experiments with social containers. We share this require-
ment with other approaches based on on-line testing [28],
like the in-vivo testing [6] and the metamorphic testing ap-
proaches [3].

Devising test-and-adapt plans is the design-time core of
the approach. As when designing modern software systems,
engineers shall identify unexpected executions and design
exceptions handlers, when dealing with dynamically bound
implementations of standard APIs, software engineers shall
identify potential inconsistencies that may arise from differ-
ent implementations of the same API, produce test cases to
reveal inconsistent implementations, and design correspond-
ing adaptors. Pairing adaptors with test cases makes the
approach suitable to cope with incompatibilities that may
arise when referring to implementations not known at design

255

time. Engineers can identify potential inconsistencies either
from their previous experience or through inconsistency cat-
alogs that capture experience of software designers and do-
main experts. The inconsistency catalogs can be specialized
on the application domains and the execution environments,
and may evolve over time to optimize the process.

Test-and-adapt plans cannot cope with all possible incon-
sistencies, but can take care of some classes of problems, in
particular problems that derive from identifiable weaknesses
of APIs. As all test based approaches and most self-healing
solutions, we aim to solve some, but not all problems. Solv-
ing all problems is not a realistic goal, but being able to
automatically solve some problems at runtime represents a
big improvement, since it reduces system malfunction and
downtime. Richer service specifications, if available, can dis-
ambiguate API inconsistencies in some cases; in the future,
we aim at integrating specification checking to complement
test-based diagnosis in our approach.

4. EXPLORATIVE STUDY
We experimented the test-and-adapt approach with two

sets of service-oriented applications that use the del.icio.us
social bookmarking and the OpenSocial APIs, respectively,
and we studied the interactions of the applications with
different implementations of the considered APIs. In Sec-
tion 2, we already discussed the empirical data that witness
the relevance of the problems of interchanging applications
and API implementations. In this Section we evaluate the
test-and-adapt paradigm: We investigate the possibility of
generating test-and-adapt plans, and study the efficacy of
test-and-adapt plans to identify and solve inconsistencies
between applications and service implementations. In the
next sections, we generalize data from experiences to derive
an initial inconsistency catalog, and we discuss performance
issues.

We illustrate the results of evaluating the test-and-adapt
approach incrementally, by first discussing the data collected
on applications that integrate del.icio.us services, and then
showing how these data generalize to applications that inte-
grate OpenSocial services.

Del.icio.us. Del.icio.us is a social bookmarking web service
for storing, sharing, and discovering web bookmarks. The
original implementation of the service (acquired by Yahoo
in 2005) has become very popular over the last years, and
at the time of writing it serves a community of millions of
users, and hosts more than 100 million bookmarked URLs.
As a consequence of this increasing trend of popularity, other
vendors started providing web services compliant with the
del.icio.us API, to facilitate both reuse of know-how and
integration of existing applications. Today, the del.icio.us
API1 is a defacto standard API with multivendor imple-
mentations.

Listing 1 shows, in java-like notation, an excerpt of the
del.icio.us API, as relevant to the writing of this section.
The API defines three classes of operations: posts opera-
tions allow for retrieving (specific, all, or recently modified),
adding, updating and deleting bookmarks; tags operations
allow for retrieving and renaming tag keywords that can
be associated with the bookmarks for classification purpose;
tags.bundles operations provide an auxiliary functionality to

1http://delicious.com/help/api

post s . get (S t r ing f i l terByTag , St r ing f i l t e rByDate ,
S t r ing f i l t e rByUr l)

pos t s . a l l (S t r ing f i l t e rByTag)
post s . r e cent (S t r ing f i l terByTag , i n t maxItems)
post s . dates (S t r ing f i l t e rByTag)
post s . add (St r ing ur l , S t r ing de s c r i p t i on , S t r ing

tags , S t r ing date)
post s . update ()
pos t s . d e l e t e (S t r ing u r l)
tags . get ()
tags . rename (St r ing old , S t r ing new)
tags . bundles . s e t (S t r ing bundle , S t r ing tags)
tags . bundles . a l l ()
tags . bundles . d e l e t e (St r ing bundle)

Listing 1: Excerpt of the del.icio.us API

Integration Fault Description
Inconsistent interpretation
of parameters or values

Each module interpretation is rea-
sonable, but they are incompatible

Violations of value domains
or capacity/size limits

Implicit assumptions on ranges of
values or sizes

Side-effects on parameters
or resources

Implicit effects of a module on
resources that are not explicitly
mentioned in its interface

Missing or misunderstood
functionality

Incorrect assumptions about ex-
pected results due to underspeci-
fication of functionality

Table 3: Taxonomy of integration faults

define, retrieve and delete semantically coherent sets of tags.
We applied the test-and-adapt approach to the applica-

tions of Table 1 (a), focusing on how they use the del.icio.us
API. The test-and-adapt approach looks for ambiguity and
incompleteness of the API specifications that can lead to
inconsistent implementations, and can thus cause failures
when integrating different implementations. We generated
a first set of inconsistencies by referring to a taxonomy of
classic integration faults as outlined in Table 3 (borrowed
from [19]). Since the considered applications use subsets of
the same standard API, we derived a general set of test-and-
adapt plans for the standard API, and we tailored the plans
to the different applications.

We used the taxonomy as a checklist, we scanned it se-
quentially, and we applied each entry to all items in the
del.icio.us API. We identified 15 sources of inconsistency
that may originate mismatched service implementations, and
we designed corresponding test-and-adapt plans. We then
deployed the test-and-adapt plans as modified JUnit test
cases, which can be launched by the applications at run-
time and whose failure activates the adaptors required by
the plans. Adaptors are implemented as proxy components
that mediate calls to the API. We modified all four client
applications in the experiment to run the test cases when
connecting to a new provider, and to delegate service calls
to the adaptors activated as a result of executing the test
cases.

In Appendix A, we show the sources of inconsistencies,
mismatches and test-and-adapt plans that are discussed in
this section. The complete set of inconsistencies, mismatches
and test-and-adapt plans is available in [26].

Here we illustrate the process of devising the test-and-
adapt plans by referring to the first entry of the taxonomy
in Table 3: Inconsistent interpretation of parameters or val-

256

Ma.gnolia Faves Link-wieza

DEL1.14 A1, A2, A5, A8,
A13, A15

n.a. A2, A8

GAD A1, A2 A1, A2,
A14

A2

BtoD - A14 -
SABROS.us A2 A2, A14 A2

Adaptors are listed by giving the label presented in Appendix A.
n.a indicates blocking dependencies on other APIs or libraries.

- stands for no adaptor deployed.

Table 4: Adaptors deployed for del.icio.us

ues. We scanned the API, and we identified several param-
eters that are underspecified and thus can cause integration
failures when interpreted differently in different implemen-
tations. For instance, item S1 in Appendix A refers to pa-
rameters of type string that indicate lists of tags (used by
several operations, for instance /posts/add): These parame-
ters are underspecified because the type string does not indi-
cate the separators between tags, which can be implemented
in several inconsistent ways. Having identified this class of
potential mismatches (M1 in Appendix A), we designed a
test-and-adapt plan to reveal and solve them (T1 and A1
in Appendix A): The test cases execute the target service
with different separators to identify the separator used by
the current implementation, and the adaptors rewrite the
strings according to the identified separator, thus assuring
the consistency of the interactions. Test cases and adaptors
refer to a set of common separators, thus are not universal,
but they are likely to work in many common cases.

To validate our work, we re-executed the 12 combinations
of the clients and the service implementations alternative to
the original del.icio.us implementation indicated in Table 1.
In this experience, the adaptors automatically solved all the
mismatches that cause the failures listed in Table 1. Table 4
reports the adaptors that have been deployed at runtime by
the test-and-adapt infrastructure when executing the bench-
mark applications.

OpenSocial. To increase the confidence in the results ob-
tained from the experience with del.icio.us, we replicated the
experiment with another set of service-oriented applications
that use services through a standard API.

OpenSocial is an API for web-based social network appli-
cations, released by Google in 20072. A web-based social
network is a thematic web-portal (or container) that lets
users define mutual connections in the form of friendship
relationships, and that exploits these relationships to elicit
information that can be shared among users. A typical func-
tionality of a social network container is to enable users to
declare other users as friends, and notify updates of peo-
ple profiles to friends. Containers host gadgets, applications
that provide user-oriented functionality across a social net-
work. The OpenSocial API is currently supported by several
social network containers and gadgets. The OpenSocial API
is based on HTML and JavaScript, and defines the support
for gadgets to access data and core functions of a social net-
work on a container that implements the API.

We proceeded as in the previous experiment. We analyzed

2http://code.google.com/apis/opensocial/docs/0.7/reference

containers as in Table 1
gadget O H M F I v0.1 I v0.2

BizX - A2,
A14,
A29,
A30

n.a. A14 A2,
A5,
A14,
A30

A2,
A14,
A30

BuboMe A2,
A7,
A17,
A27

A7,
A17,
A26

n.a. A2,
A7,
A17,
A26

A2,
A5,
A7,
A17,
A26

A2,
A7,
A17,
A26

Buddy
Poke

A11 A2,
A11,
A19

n.a. n.a. n.a. n.a.

Emote - - n.a. n.a. A5 -
LastFM - - - - - -
RateMy
Friends

- - A14 A14 A5,
A14

A14

Unype - A29 A29 - A5 -
Zorap - - - - -

Column headers follow the conventions of Table 1 (b).
Adaptors are listed by giving the label presented in Appendix A.
n.a indicates blocking dependencies on other APIs or libraries.

- stands for no adaptor deployed.

Table 5: Adaptors deployed for OpenSocial

all items in the API, we identified a total of 30 sources of
inconsistency that may originate mismatching service imple-
mentations, and we designed corresponding test-and-adapt
plans. Appendix A samples the sources of inconsistencies,
mismatches and test-and-adapt plans. Table 5 reports the
adaptors that have been deployed at runtime by the test-
and-adapt infrastructure when executing the benchmark ap-
plications, and that solved all failures indicated in Table 1.

The data in the last two columns of Table 5 refer to two
subsequent versions of the container imeem: versions v0.1
and v0.2. We ran the test-and-adapt plans developed for
previous containers also for these two versions of imeem.
They successfully identified and fixed incompatibilities, thus
guaranteeing the interoperability of the new containers with
the gadgets considered in our study. The only exception
is the gadget BuddyPoke, whose incompatibility problems
depend on APIs that we did not consider in our study.

5. INCONSISTENCY CATALOG
The explorative studies reported in the previous sections

provide consistent data that confirm our hypotheses: API
compatibility does not guarantee complete service interoper-
ability; The identified problems can be revealed with simple
test cases, and can be fixed with simple adaptors; Test cases
and adaptors comprise test-and-adapt plans that serve dif-
ferent cases. The experience with the del.icio.us and the
OpenSocial APIs and the analysis of other services common
in Web2.0 social applications indicate classes of inconsisten-
cies that both recur in standard APIs and map to common
inconsistency patterns, in this domain.

In this section, we generalize the experimental data col-
lected so far into an initial inconsistency catalog tailored to
Web2.0 social applications. The Catalog, reported in Ap-
pendix B, is organized in sections that group classes of in-
consistencies that refer to the same aspects: parameters,
state data, functionality and semantics. The catalog entries
capture sources of possible inconsistencies between Web ap-

257

plications and implementations of the service APIs (item
Si of the catalog entries), describe the related possible mis-
interpretations (Mi in the catalog), indicate the test cases
that can reveal the inconsistency (T i), and suggest possible
adaptors (Ai).

The first section of the catalog (parameters) describes
classes of inconsistencies that derive from inconsistent in-
terpretations of service parameter types that do not specify
completely the nature of the values to be assigned to the
actual parameters. Parameters with these characteristics
show up frequently in APIs for Web2.0 social applications,
which manipulate many textual data, URLs, item lists, and
that easily dismiss strongly typed systems for the sake of
flexibility.

The second section of the catalog (state data) describes
classes of inconsistencies that derive from service-side data
underspecified in the APIs. Both inconsistent bounds on
the capacity of stored collections and missing support for
arbitrary sets of non-mandatory data fields occur in sev-
eral API for Web2.0 social applications, which entail im-
plicit server-side collections and data structures with non-
mandatory fields.

The third section of the catalog (functionality) describes
classes of inconsistencies that derive from partial implemen-
tations of APIs. This is a fairly common choice of providers
who may not see the convenience of implementing rare or
unessential operations. Standard APIs pursue completeness,
and thus include also operations that implement side func-
tionality, sometimes perceived as non-essential and ignored
in some implementations. For instance, ma.gnolia and link-
wieza do not implements handling of bundles functionality
specified in the del.icio.us API. Standard APIs often include
operations that can be derived by specializing or combin-
ing other operations. Derived operations may be consid-
ered redundant and ignored in some implementations. For
instance, ma.gnolia does not implement the /tags/rename
functionality specified in the del.icio.us API, since it can be
obtained by combining /posts/all, /posts/delete, /posts/add.
Standard APIs sometimes include operations that work in
different modes, that is, serve classes of requests distinct by
means of parameter options. Some implementations do not
provide the operations for options that are not considered
particularly relevant. For instance, orkut and hi5 do not
implement all modes of the OpenSocial send message API
that defines public, private, email, and acknowledge modes.
Standard APIs include operations that serve only usability
issues, and are sometimes ignored in implementations. For
instance, operations to display the results in different or-
ders may not be always implemented. Standard APIs may
define asynchronous notifications through callbacks. Some
implementations ignore the callbacks but serve the related
operations.

The last section of the catalog (semantics) describes classes
of inconsistencies that derive from inconsistent handling of
service semantics. Sometimes, standard APIs do not com-
pletely specify error/success codes, and different implemen-
tations may code them referring to inconsistent conventions.
For instance, the OpenSocial API does not fully specify er-
ror codes returned by operations for fetching people, when
the containers do not implement all required fields. The
implementations that we considered return inconsistent er-
ror codes. Several standard APIs include operations that
remove items from collections, but only some implementa-

API Impl. #test cases Test run

Del.icio.us del.icio.us 10 43.88 sec.
ma.gnolia 10 64.68 sec.
link.wieza 10 23.71 sec.

OpenSocial orkut 16 3.10 sec.
hi5 16 3.58 sec.
mySpace 16 4.32 sec.
facebook 16 4.12 sec.
imeem 16 4.47 sec.

Table 6: Mean execution time of test suites from
test-and-adapt plans

tions return an error code when the item to be removed
does not belong to the collection. Similarly, operations for
inserting key-value pairs in maps entail the special case of
items whose key is already in the map, which admits either
overriding or non-overriding semantics.

6. PERFORMANCE CONSIDERATIONS
Checking for large amount of potential mismatches can

have relevant performance implications. Table 6 reports the
mean execution time of the test suites of the test-and-adapt
plans defined in our experiments against different implemen-
tations of the del.icio.us and OpenSocial APIs. The data
confirm that executing test cases when applications are dis-
tributed over a network (as in the case of applications that
use del.icio.us, mag.nolia, and link-wieza web service imple-
mentations) is significantly slower than when applications
are executed on the same machine (as in the case of OpenSo-
cial applications, where gadgets and containers execute at
server-side).

The test overhead has a perceivable impact especially when
the services are executed over the network. However, we ob-
serve that the test cases are executed only when binding new
service implementations. This does not happen frequently,
and entails high risks of runtime failures. We believe that
trading performance for dependability is acceptable, espe-
cially if performance is only seldom affected, and the de-
pendability threats may prevent the access to the desired
functionality.

We foresee scenarios in which test cases are executed be-
fore the actual interactions between the applications and
the service implementations, thus avoiding performance im-
pacts. If the binding between the services and the applica-
tions is statically configured at deployment-time, test-and-
adapt plans can be executed for each new deployment, with
no impact on the runtime performance. If an infrastruc-
ture is extended to enable applications to notify providers
or brokers of their test-and-adapt plans, these can be exe-
cuted off-line before the applications access the services.

7. RELATED WORK
In this section we discuss previous work on service inter-

changeability, compare our approach to semantic web tech-
nologies, and acknowledge influential research in autonomic
and self-managed systems.

Service interchangeability. Service interchangeability fo-
cuses on interoperability between applications and services
that fulfil equivalent goals, but are designed independently

258

by different vendors and are not always fully compatible.
Ponnekanti and Fox describe a technique that retrieves ser-
vice interface adaptors from a repository, and chains them if
the target interface of an adaptor matches the source inter-
face of another adaptor, thus deriving adaptors for unsup-
ported interface pairs [21]. Motahari Nezhad et al. study
how adaptors derived from WSDL specifications can map
between the interaction protocols of compatible services [16].
These adaptors are limited to interface incompatibilities that
can be solved by implementing mappings among method
names, parameters and protocols of different APIs. Pon-
nekanti and Fox propose a static analysis technique to select,
out of a pre-computed set of service mismatches, the mis-
matches that are relevant for different clients [22]. For these
mismatches, they provide adaptors (cross-stubs) that inter-
cept the mismatches during service invocations and throw a
runtime exception, supply pre-defined values, or ignore the
problem and continue. Kaminski et al. propose to deploy
chains of adaptors at service-side to guarantee backward
compatibility for clients of previous versions of evolving ser-
vices, moving the responsibility of maintaining compatibility
from client to service providers [12].

Our approach differs from previous work on service in-
terchangeability in several ways. We consider different im-
plementations of standard APIs. In this context, the API
uniquely defines messages and types for all complying service
implementations. Thus we do not need to adapt interfaces,
but we cope with integration mismatches that are impos-
sible to detect statically for services that comply with the
same standard specification. None of the above approaches
describes how to cope with this problem. We propose incon-
sistency catalogs that survey the weaknesses of a standard
API to discover potential integration mismatches, and use
dynamic testing to detect at runtime the occurrence of such
mismatches.

The cross-stubs proposed by Ponnekanti and Fox are con-
figured and deployed by developers on a per-case basis, and
can only skip or propagate failures, or mask them by sup-
plying predefined values. Our adaptors are automatically
configured and deployed at runtime based on policies that
depend on the results of the dynamic testing stage, and
can provide suitable recovery strategies specialized from li-
braries of common adaptors. Furthermore, while previous
approaches deal with syntactic and structural problems only,
our inconsistency catalog includes also some semantic incon-
sistencies and describes the related adaptation plans.

Our experiments confirm the observation that clients of
standard APIs use subsets of the API functionality, thus a
static analysis technique like the one defined by Ponnekanti
and Fox is in principle applicable to select, among the po-
tential mismatches identified for an API specification, the
subset that is relevant for a client. This does not eliminate
the need for runtime testing, but would allow for filtering out
irrelevant test cases, thus limiting the runtime overhead. We
plan to integrate this static analysis as future work.

Semantic web technology. Semantic web technology and
ontologies provide reference frameworks of concepts that de-
scribe relevant semantics of web resources, and support au-
tomatic reasoning to solve semantic ambiguities ([24, 14].)
The main hinder to using these approaches in practical ap-
plications is the difficulty of defining generally agreed do-
main ontologies. To overcome this limitation, several tech-

nologies for semantic web services have emerged in the last
years as an attempt to enrich web service languages with on-
tological annotations, aimed to facilitate discovery and lower
interoperability barriers [15, 23, 11, 25, 18]. Here we discuss
the WSMO/WSMX stack of technologies that explicitly ad-
dress web services adaptation.

The web service modeling ontology (WSMO, [23]) en-
ables semantic descriptions of both web services and client
goals. These descriptions can be matched to facilitate ser-
vice discovery and interaction. The authors of WSMO rec-
ognize that heterogeneity naturally arises in open and dis-
tributed environments, and propose mediators to address
mismatches that can derive from heterogeneity of resources
that ought to be interoperable. Typically foreseen tasks of
mediators include translating reference ontologies, adapting
communication protocols, and reconfiguring service work-
flows. WSMO tools include the web service execution en-
vironment (WSMX, [11]), a software system that execute
WSMO-based web services and the related mediators.

Technologies such as WSMO and WSMX albeit promis-
ing are still in their infancy. We acknowledge them the
merit of pointing out the necessity of coping with interoper-
ability mismatches. However, they provide no guidance to
identify likely mismatches and automatically diagnose their
occurrence when applications are connected to new imple-
mentations of a web service. Current mediators are mostly
limited to well standardized adaptations, such as applying
predefined mappings between ontologies and protocols. It
remains still unclear if general purpose adaptations can be
designed with these technologies.

Our approach proposes guidelines to identify mismatches,
and devise diagnosis test cases accordingly. Our adaptors ex-
ploit the full power of a programming language, and can re-
alize general purpose adaptations including partial recovery
and failure masking. We are currently investigating syner-
gies between semantic web technologies and our ideas, aim-
ing to use ontological reasoning to complement testing-based
diagnoses, and mediators to serve as part of the adaptation
tasks.

Autonomic and self-managed systems. Autonomic com-
puting and self-managed systems propose feedback loops to
monitor software executions and keep application parame-
ters under control [13]. In the last few years, researchers
have investigated this notion in many application domains
with different goals and approaches, including self-config-
uring software architectures ([4, 17, 27]), self-adaptive use
and allocation of computing resources ([7, 20]), self-healing
mechanisms ([8]), and programming models inspired from
biology ([10]). Our work exploits the ideas of autonomic
computing and self-managed systems to guarantee the in-
teroperability of clients with remote web services with many
independent implementations.

8. CONCLUSIONS
This paper discusses the problem of service interoperabil-

ity that derives from incompatible implementations of stan-
dard APIs, and proposes a self-healing solution. It illus-
trates the growing relevance of the problem by providing
data from experience in the important domain of Web2.0 so-
cial networking applications, and proposes a technique that
incorporates experience into test cases and adaptors to au-
tomatically heal problems in deployed applications. It illus-

259

trates the applicability of the approach by showing experi-
ences with some relevant applications, and proposes a first
generalization by defining an inconsistency catalog for the
domain of Web2.0 social applications. The catalog captures
experience and supports self-improving.

We believe that the self-healing approach proposed in this
paper can be applied to a wide range of applicative domains
and technology frameworks. The approach does not have
strict technology constraints, and can be generalized beyond
the domain of service-based applications. Further controlled
experiments with implementations of standard APIs can re-
fine our empirical data about the effectiveness of the ap-
proach, identify new relevant applicative domains, and gen-
eralize interface requirements and common inconsistencies.
Moreover, we are currently investigating how to make adap-
tations fully compositional, independently of the order in
which the test-and-adapt plans are executed.

9. REFERENCES
[1] L. Baresi and S. Guinea. Towards dynamic monitoring

of WS-BPEL processes. In Proceedings of the 3rd
International Conference on Service Oriented
Computing (ICSOC), pages 269–282, 2005.

[2] D. Beyer, A. Chakrabarti, and T. A. Henzinger. An
interface formalism for web services. In Proceedings of
the 1st International Workshop on Foundations of
Interface Technologies (FIT), ENTCS. Elsevier, 2005.

[3] W. Chan, S. Cheung, and K. Leung. A metamorphic
testing approach for online testing of service-oriented
software applications. International Journal of Web
Services Research, 4(2):61–81, 2006.

[4] S. Cheng, A. Huang, D. Garlan, B. R. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. In
Proceedings of the 1st International Conference on
Autonomic Computing (ICAC), pages 276–277, 2004.

[5] K. Chow and D. Notkin. Semi-automatic update of
applications in response to library changes. In
Proceedings of the International Conference on
Software Maintenance (ICSM). IEEE Computer
Society, Nov. 1996.

[6] M. Chu, C. Murphy, and G. E. Kaiser. Distributed in
vivo testing of software applications. In Proceeding of
the International Conference on Software Testing,
Verification, Validation (ICST), pages 509–512, 2008.

[7] J. Cobleigh, L. Osterweil, A. Wise, and B. S. Lerner.
Containment units: a hierarchically composable
architecture for adaptive systems. In Proceedings of
the tenth Symposium on Foundations of Software
Engineering (FSE), pages 159–165. ACM Press, 2002.

[8] C. Dabrowski and K. Mills. Understanding self-healing
in service-discovery systems. In Proceedings of the 1st
Workshop on Self-healing Systems (WOSS), 2002.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Compatibility verification for web service
choreography. In Proceedings of the International
Conference on Web Services (ICWS), pages 738–741,
2004.

[10] S. George, D. Evans, and L. Davidson. A biologically
inspired programming model for self-healing systems.
In Proceedings of the 1st Workshop on Self-Healing
Systems (WOSS), pages 102–104, Nov. 2002.

[11] A. Haller, E. Cimpian, A. Mocan, E. Oren, and
C. Bussler. WSMX - a semantic service-oriented
architecture. In Proceedings of the International
Conference on Web Services (ICWS), pages 321–328,
2005.

[12] P. Kaminski, H. Müller, and M. Litoiu. A design for
adaptive web service evolution. In Proceedings of the
International Workshop on Self-adaptation and
self-managing systems (SEAMS), pages 86–92, 2006.

[13] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer, 36(1):41–50,
2003.

[14] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and abstract syntax,
W3C recommendation 10 Feb. 2004.
http://www.w3.org/TR/rdf-concepts.

[15] D. Martin, M. Burstein, O. Lassila, M. Paolucci,
T. Payne, and S. McIlraith. Describing web services
using OWL-S and WSDL. In DAML-S Coalition
working document, 2003.

[16] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-automated
adaptation of service interactions. In Proceedings of
the International Conference on World Wide Web
(WWW), pages 993–1002, 2007.

[17] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimhigner, G. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, and A. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[18] M. Paolucci and M. Wagner. Grounding OWL-S in
WSDL-S. In Proceedings of the International
Conference on Web Services (ICWS), Sept. 2006.

[19] M. Pezzè and M. Young. Software testing and
analysis. John Wiley & Sons, 2008.

[20] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw.
Dynamic configuration of resource-aware services. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 604–613, 2004.

[21] S. Ponnekanti and A. Fox. Application-service
interoperation without standardized service interfaces.
In Proceedings of the Pervasive Computing and
Communications Conference (PerCom), 2003.

[22] S. Ponnekanti and A. Fox. Interoperability among
independently evolving web services. In Proceedings of
the International Middleware Conference, pages
331–351, 2004.

[23] D. Roman, U. Keller, H. Lausen, J. de Bruijn,
R. Lara, M. Stollberg, A.Polleres, C. Feier, C. Bussler,
and D. Fensel. Web service modeling ontology. Applied
Ontologies, 1(1):77–106, 2005.

[24] M. K. Smith, D. L. McGuinness, and C. Welty. OWL
Web Ontology Language guide, W3C recommendation
10 Feb. 2004. http://www.w3.org/TR/owl-guide.

[25] M. Solanki, A. Cau, and H. Zedan. Augmenting
semantic web service descriptions with compositional
specification. In Proceedings of the International
Conference on World Wide Web (WWW), pages
544–552. ACM Press, May 2004.

[26] D. Tosi, G. Denaro, and M. Pezzè. Experimental data
on service interchangeability. Technical Report
LTA:2008:01, University of Milano-Bicocca, Sep. 2008.

260

[27] G. Valetto and G. Kaiser. Using process technology to
control and coordinate software adaptation. In
Proceedings of the 25th International Conference on
Software Engineering (ICSE), pages 262–272. IEEE
Computer Society, May 2003.

[28] Q. Wang, L. Quan, and F. Ying. Online testing of
web-based applications. In Proceeding of the
International Computer Software and Applications
Conference (COMPSAC), pages 166–169, 2004.

[29] Z. Xing and E. Stroulia. Api-evolution support with
diff-catchup. IEEE Transactions on Software
Engineering, 33(12):818–836, 2007.

APPENDIX
A. API ANALYSIS RESULTS

This appendix reports the results of our analysis of the
del.icio.us and OpenSocial APIs relevant for the presenta-
tion in the paper. Refer to [26] for the complete results;
below we use the same numbering as in [26] for consistency
reasons. Each result item consists of the source of incon-
sistency (S) identified in the API, the mismatch (M) that
can be induced in different implementations, and the corre-
sponding test-and-adapt plans (T and A). Result items are
numbered for reference purposes. Test cases and adaptors
are indicated informally.

Del.icio.us.
S1: List of tags passed as type string
M1: Inconsistent separators between tags in the string
T1: Different separators to detect the separator used by the
service
A1: Rewrite the strings accordingly
S2: Tag names passed or returned as type string
M2: Inconsistent character sets (e.g., lower/upper-case)
T2: Different character sets to detect unsupported characters
A2: Escape/restore unsupported characters in tag names
S5: XML responses that admit omission of non-mandatory fields
M5: Inconsistent sets of field in XML responses
T5: Known XML responses to detect fields omitted by the ser-
vice
A5: Add omitted fields using default values
S8: Functionality that handles tag bundles may be considered
not essential
M8: Operations for handling bundles are not implemented
T8: Use of bundles to detect missing implementation
A8: Insert a prefix in tag names to identify bundled tags
S13: /tags/rename can be obtained by combining /posts/all,
/posts/delete and /posts/add
M13: /tags/rename is not implemented
T13: Invoke /tags/rename to detect missing implementation
A13: Implement /tags/rename with /posts/all, /posts/delete
and /posts/add
S14: /posts/add does not specify how it handles multiple re-
quests that refer to the same URL
M14: Inconsistent implementations of /posts/add that may (or
not) override the previous bookmark of an URL
T14: Invoke /posts/add of an URL many times to detect non-
overriding semantics
A14: Delete entries of referred URLs before invoking /posts/add
S15: Underspecified notification of attempts to delete URLs that
cannot be found at service side
M15: Implementations of /posts/delete that return different no-
tification messages when URLs cannot be found
T15: Invoke /posts/delete with URLs that do not exist at service
side to detect notification messages
A15: Log and mask notification messages

OpenSocial.
S2: The API only mandates handling of either TITLE or TI-
TLE ID fields of activities, while all other fields (e.g., BODY
and URL) can be potentially ignored by containers
M2: Some non-mandatory fields are ignored
T2: Use fields of activities to detect ignored fields
A2: Use a valid field (e.g., TITLE) to handle data of ignored
fields, and restore the correct contents of the fields when retriev-
ing the activities
S5: Allowing gadgets to fetch activities may be considered not
essential (for containers that provide UI to access the activities)
M5: Op. newFetchActivityRequest is not implemented
T5: Invoke the op. to detect missing implementation
A5: Record gadget’s activities within the gadget space
S7: Embedding media items into activities may be obtained by
using HTML href in the activity body
M7: Operation newActivityMediaItem is not implemented
T7: Invoke the op. to detect missing implementation
A7: Implement newActivityMediaItem through a suitable HTML
href in the activity body
S11: Parameter Type of newMessageselects among four working
modes (PUBLIC MESSAGE, PRIVATE MESSAGE, EMAIL,
NOTIFICATION)
M11: Some modes is not supported
T11: Try each mode to detect missing support
A11: Tunnel unsupported message types through a compatible
supported one; if tunneling may violate privacy, block requests
for the unsupported message types;
S14: The person’s profile URL, PROFILE URL, embeds param-
eters (e.g., the user ID)
M14: Inconsistent schemas to embed params within URL
T14: Retrieve and parse a known profile URL to detect the pa-
rameter embedding schema
A14: Convert between URL formats accordingly
S17: In a people record, the API mandates handling of field ID,
while all other fields (e.g., ABOUT ME) can be ignored by the
containers
M17: Some fields are ignored
T17: Fetch fields of a known person to detect ignored fields
A17: Filter requests for ignored fields and return a default place-
holder value
S19: In fetching people operations, the additional parameter
FILTER allows for restricting the fetched people to the subset
of them that have installed the current gadget (FILTER equals
to HAS APP)
M19: Filtering is not supported
T19: Use the parameter FILTER to detect missing support
A19: Return an empty set of people when FILTER is equal to
HAS APP
S26: Underspecified error handling in fetch people operations
when some person fields in the request are not implemented by
the container
M26: Implementations that point the error in different ways,
e.g., returning a null reference or a BAD REQ
T26: Fetch a person with known data to detect fields with errors
A26: Intercept and homogenize the errors
S29: User display name returned as string
M29: Inconsistent implementations that do not return a blank
separated name-surname pair
T29: Invoke getDisplayName to detect the problem
A29: Rewrite the string to satisfy client requirement
S30: Size of the user thumbnail is not specified
M30: Inconsistent implementations that use non-fitting thumb-
nails
T30: Invoke newFetchPersonRequest for a known user with a
non-fitting thumbnail to detect the problem
A30: Locally resize the thumbnail to satisfy the client require-
ment

261

B. INCONSISTENCY CATALOG
This appendix presents the inconsistency catalog as re-

sult of our explorative studies. The catalog indicates possi-
ble sources of inconsistency in Web2.0 applications (S), mis-
matches that may derive from such sources of inconsistency
(M), and suggests test-and-adapt plans (T and A) accord-
ingly. Some entries list more than one possible adaptation
strategy. The choice depends on specific application condi-
tions.

Parameter-related sources of inconsistency are character-
ized according to whether they apply to input (In) or output
(Out) parameters. For each source of inconsistency, we also
indicate examples with reference to our del.icio.us (D.M〈i〉)
and OpenSocial (OS.M〈i〉) studies [26].

Inconsistent interpretation of parameter types.
S: [In/Out] Character strings that represent lists of items (D.M1)
M: Inconsistent separators between items in the string
T: Test possible separators to detect the one used by the server
A: Rewrite the string according to the used separator
S: [In] Character strings that represent textual data (D.M2,
OS.M1)
M: Inconsistent character sets
T: Test possible char sets to detect unsupported characters
A: Escape/restore unsupported characters
S: [In/Out] Character strings that represent structured data
(D.M3)
M: Inconsistent interpretation of the strings in the domain of the
structured data
T: Test different values to detect the applied mapping between
strings and the domain of structured data
A: Rewrite the strings to guarantee a valid mapping
S: [Out] URLs that embed data values (OS.M14)
M: Inconsistent schemas to embed data values within URLs
T: Retrieve a known URL to detect the applied schema
A: Convert between URL formats after the detected schema
S: [In/Out] Parameters that allow values of multiple types
(OS.M15)
M: Inconsistent implementations that refer to either of the types
T: Use the parameter to detect the type referred in the imple-
mentation
A: Convert between types as required
S: [In/Out] Integer numbers that indicate positions in a list
(OS.M16)
M: Inconsistent implementations that number the first position
as either 0 or 1
T: Test positions for a known list to detect the applied reference
value
A: Increment/decrement the number to match the reference value

Inconsistent support of service state data.
S: Inconsistent capacity bounds for collections stored at server-
side (D.M6, D.M7)
M: Insufficient capacity bounds
T: Test known collections of decreasing size to detect guaranteed
bounds
A: Implement priority policies to remove exceeding items from
collections to avoid exceeding capacity bounds

S: Non-mandatory fields in data structures that are stored at
server-side (OS.M2, OS.M17)
M: Some non-mandatory fields are ignored by the service
T: Test non-mandatory fields to detect ignored fields
A: Use a valid field to handle data of ignored fields
A: Filter the requests for unsupported fields and return default
placeholder values

Inconsistent support of service functionality.
S: Set of operations, identifiable from the API naming schema,
that implement a side functionality (D.M8, OS.M4-5, OS.M12)
M: Operations that belong to the set are not implemented
T: Invoke the operations to detect missing implementation
A: Specialize the available operations to (partially) achieve the
missing behavior
A: Provide local support to (partially) achieve the missing be-
havior
A: Filter missing operations
S: Operations that can be obtained as specialization of other
(sets of) operations (D.M9-13, OS.M7, OS.M23)
M: Operation is not implemented
T: Invoke the operation to detect missing implementation
A: Implement the operation by exploiting the specialization
S: Operations that work in different modes, selected by param-
eters, to address semantically different sets of data (OS.M3,
OS.M11, OS.M18)
M: Some working modes is not supported
T: Invoke the operation for each working mode to detect missing
support
A: Specialize the available modes to achieve the missing behavior
A: Filter missing modes
S: Operations that implement usability issues, i.e., to select al-
ternative presentations of the results (OS.M19-20)
M: Some usability issue is not supported
T: Invoke the operation for usability issue to detect missing sup-
port
A: Locally tune the presentation of results
A: Return either an unchanged or a default result
S: Operations that notify results asynchronously (OS.M6,
OS.M13)
M: Callback functions are never invoked
T: Invoke the operation and check the callback to detect missing
support
A: Activate local polling for completion, extract the results, and
invoke the client callback
A: Either deliver a default or no notification

Inconsistent handling of service semantics.
S: Underspecified error/success codes of operations, for error/-
success cases handled at client-side (OS.M8-10, OS.M26-28)
M: Implementations that return different error/success codes or
no code for the same error/success case
T: Invoke the operation for a known error/success case to detect
the error/success code
A: Intercept and homogenize the error/success code
S: Operations that delete items from collections (D.M15)
M: Implementations that may or may not notify an error code
for items that do not belong to the collection
T: Invoke the operation for an item that does not belong to the
collection to detect the possible error code
A: Log and filter the error code
S: Operations that insert/update key-value pairs (D.M14,
OS.M24)
M: Overriding/non-overriding semantics in case of subsequent
invocations for pairs with the same key
T: Invoke the operation twice to detect the applied semantics
A: Use delete-insert policy to force overriding semantics

262

