
Multilevel Coarse-to-Fine-Grained Prioritization
for GUI and Web Applications

Dmitry Nurmuradov
Computer Science and

Engineering
University of North Texas

Denton, TX, 76203
United States

dn0086@unt.edu

Renée Bryce
Computer Science and

Engineering
University of North Texas

Denton, TX, 76203
United States

renee.bryce@unt.edu

Hyunsook Do
Computer Science and

Engineering
University of North Texas

Denton, TX, 76203
United States

hyunsook.do@unt.edu

ABSTRACT
This work demonstrates that the use of one criterion for
test suite prioritization may lead to high variability of fault
detection rates due to random tie-breaking. The paper pro-
vides motivational examples of how a single fine-grained or
coarse criterion may lead to poor code coverage or fault find-
ing efficiency. We use a multilevel coarse-to-fine-grained
two-way prioritization method to address the issues and
evaluate the technique in an empirical study by compar-
ing fault finding effectiveness and its variability to single-
criterion methods. The results indicate that the proposed
method decreases tie-breaking instability of the fault detec-
tion rate and often increases the overall performance of test
suite prioritization methods.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Software Testing; Regression Testing; Test Suite Prioritiza-
tion; Multiple Criteria Test Suite Prioritization

1. INTRODUCTION
Failures caused by software bugs often have a wide range

of implications. Software bugs have led to recalls of auto-
mobiles, misrepresentations of votes, cancellations of stock
trades, and other problems [1]. About one million software
developers in the United States spend their day fixing pre-
viously discovered bugs [2]. The use of complex software
increases as the computing power of the modern technology
increases. More complex software requires more extensive
and time-consuming testing. Many techniques exist to help
developers reduce software maintenance efforts and improve
the testing process [3, 4, 5]. Test suite prioritization is one

such technique [6, 7, 8, 9]. The goal of test suite prioritiza-
tion is to reorder test cases in the way that the given criteria
is covered as much as possible and as early as possible. An-
other testing approach is the concept of user session-based
test suites that was introduced by Elbaum et al. [10] to com-
plement traditional white-box methods for web applications.
Bryce et al. [8] develop a uniform model for event-driven
software and conduct empirical studies that show that the
combinatorial two-way test suite prioritization applied to
user session-based test suites generally performs better than
other methods.

The two-way test suite prioritization, however, is a single-
criterion technique, and the use of single-criterion methods
may lead to a significant number of tie-breaking cases when
multiple tests have the same scores. As a result, the fault
detection rates or code coverage produced by single runs of
prioritization techniques may not be indicative of the av-
erage values that are produced by running the techniques
many times. Arcuri and Briand [11] describe a similar prob-
lem with randomized algorithms that are often used in the
software engineering area. Considering that randomized al-
gorithms are heavily influenced by randomness, a proper
statistical analysis is required to obtain reliable results. The
authors, however, observe that researchers frequently per-
form empirical studies with no or weak statistical evidence.

In this work, we demonstrate that test suite prioritiza-
tion methods often have a component of randomness, which
may influence the outcome of experiments. The issue is
not limited to test suite prioritization, as tie-breaking fre-
quently occurs in systematic approaches of test case gen-
eration, test suite reduction, test case selection, and other
software testing techniques. Furthermore, single-criterion
prioritization approaches may have poor performance even
when random tie-breaking is not an issue. We discuss these
issues in greater detail in Section 3.

Several researchers propose prioritization techniques that
use two or more criteria. Sampath et al. [12] describe these
techniques as hybrid prioritization methods. They identify
44 papers that employ hybrid techniques and classify the
techniques into three main categories: Merge, Rank, and
Choice.

In this work, we propose the use of a hybrid Rank method
that is applied to user session-based test suites to study the
impact of random tie-breaking compared to systematic tie-
breaking. The technique addresses the limitations of single-
criterion methods by applying a combinatorial pairwise ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

A-TEST’16, November 18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4401-2/16/11...$15.00
http://dx.doi.org/10.1145/2994291.2994292

1

proach using multiple criteria, starting from coarse criteria
and increasing granularity at each subsequent level. The
main contributions of this paper are as follows:

• We investigate the influence of tie-breaking on a fault
detection rate for single-criterion prioritization meth-
ods.
• We propose a new prioritization technique that utilizes

multiple criteria, from coarse to fine-grained, which
addresses limitations of single-criterion techniques.
• We conduct an empirical study using the existing user

session-based test suites and show that the proposed
method decreases variability of results and often pro-
vides a better fault detection rate.

2. RELATED WORK
To date, many test case prioritization techniques have

been proposed, but here, we limit our discussion to the tech-
niques that are most closely related to our work.

Fazlalizadeh et al. [13] utilize historical fault detection ef-
fectiveness, test case execution history, and historical rank-
ing to prioritize test cases. Their proposed approach is a
Merge technique as they sum differently weighted scores of
multiple criteria. The results show that their method out-
performs random ordering. On the contrary, our study com-
pares the multilevel prioritization method to several combi-
natorial techniques, including two-way inter-window priori-
tization, in addition to random ordering.

Carlson et al. [14] conduct an industrial study using Mi-
crosoft Dynamics as an object application. The authors em-
ploy an agglomerative hierarchical clustering approach using
criteria such as code coverage, code complexity, fault his-
tory information, and a combination of code complexity and
fault history. The last criterion shows a study that utilizes
a hybrid prioritization technique. The authors omit details
regarding how they combined the two criteria. While the
results show that the proposed clustering method improves
the fault detection rate, the hybrid criteria performed in
line with methods that use a single criterion. In our study,
we use different types of test suites and criteria and show
how the random tie-breaking process affects the results of
single-criterion methods.

He and Bai [15] utilize a state-distance-based criterion for
test suite prioritization in conjunction with additional event
coverage.This is a Rank technique that uses additional event
coverage as the primary criterion and GUI state similarity
as the second. While the authors mention the tie-breaking
issue, they do not investigate its influence on the fault de-
tection rate. The authors do not state the frequency of ties
or how they address tie-breaking in cases where the sec-
ondary criterion produces the equal scores. In our work, we
use different criteria for hybrid multilevel prioritization, in-
vestigate how random tie-breaking affects the results, and
provide statistical evidence that our approach is better than
single-criterion prioritization methods.

Sampath et al. [12] generalize hybrid methods into three
categories: Merge, Rank, and Choice. They formally de-
fine each of the categories for hybrid criteria and classify
previous work into those categories. The authors identify
44 papers that employ hybrid prioritization methods. Many
of the examined approaches do not analyze the impact of
tie-breaking in detail. The authors also propose several hy-
brid criteria using their formal definitions and evaluate them

in the empirical study. In the study, the authors randomly
tie-break the test cases when a given criterion is no longer
applicable. The study shows that hybrid criteria methods
often outperform single-criterion prioritization techniques.
Their Rank method is comparable to the two-way combi-
natorial prioritization. For the hybrid Rank approach, the
authors utilize four single criteria in the given order: two-
way combinatorial using parameter/values, the number of
parameter/values, the number of windows, and the number
of unique windows. Their Rank approach uses a fine-grained
criterion at first and more coarse criteria for subsequent lev-
els. Their approach does not provide a detailed examination
of tie-breaking. In our study, we use a different set of crite-
ria, which follows coarse-to-fine-grained order, repeat exper-
iments 1,000 times, and investigate the influence of random
tie-breaking on the fault detection rate.

3. MOTIVATION

3.1 Tie-Breaking Problem
As mentioned in Section 1, Arcuri and Briand [11] investi-

gated 54 publications from top conferences and journals that
use randomized algorithms. Only 27 publications contained
results from 10 or more runs of the randomized algorithms.
The authors state that even some influential papers report
results of only one run of a randomized algorithm. As a
consequence, generalizability of the reported results in these
papers is under a threat.

Figure 1: Tie-breaking problem using different com-
binatorial criteria for two-way prioritization using
the TERP Spreadsheet test suite.

In this work, we demonstrate that even systematic meth-
ods often contain a component of randomness due to tie-
breaking. The tie-breaking issue arises when an algorithm is
required to pick one of the candidates that are considered to
be equal by a given criterion. For instance, the two-way pri-
oritization technique may have two or more situations when
tie-breaking may occur: during the execution, when there
are multiple candidates with the same score to be a next
test case in an order, and after the execution, when there
are still test cases with the same scores. In this study, we ex-
plore the latter instance. To provide a motivational example
for the issue, one of the object programs was used: TERP
Spreadsheet1. The detailed description of object programs

1https://www.cs.umd.edu/users/atif/TerpOffice/

2

Figure 2: Three user sessions: (a) a user does online shopping; (b) the second user does online shopping,
similar to (a); (c) a user changes their payment method.

is available in Section 5.1. TERP Spreadsheet was chosen
since its test suite has the lowest fault density among subject
applications and has more than 250 test cases.

Figure 1 displays ranges of the average percentage of faults
detected (APFD) metric [16] for TERP Spreadsheet using
three combinatorial criteria: window (win), parameter (par),
and parameter/value (pv) pairs, along with random order-
ing (random). The APFD metric measures the rate of fault
detection in a prioritized test suite and its values range from
0% to 100% with higher numbers indicating faster fault de-
tection rates. Figure 1 demonstrates that the use of window
pairs as a prioritization criterion leads to a significant vari-
ation in values, ranging from 46.93% to 83.54%, with the
standard deviation of 5.7%. The use of parameter pairs or
parameter/value pairs still produces the range of more than
2% variance in APFD between minimum and maximum val-
ues.

The use of deterministic tie-breaking mechanisms may
have an undesirable impact if a non-relevant criterion is cho-
sen. For instance, if a tester decides to break ties using test
case identifiers, results may still be in the same wide range
of possible values. On the other hand, the use of relevant
criteria for breaking ties indicates that a tester employs a
hybrid Rank prioritization method.

3.2 Fine-Grained and Coarse Criteria
The use of fine-grained criteria may also lead to undesir-

able results independent of the tie-breaking problem. Con-
sider three test cases demonstrated in Figure 2. Each block
in the figure represents a window. Window names are shown
at the top of the blocks. In each block, there are parame-
ters and values, which are used to pass information from one
block to another. For instance, Login, Shop, Cart, Check-
out, and Confirmation are window names for test case a. In
window Login, there are parameters login, password, remem-
ber me and values john, secret, yes correspondingly. Con-

sider applying two-way interaction prioritization [8] using
the fine-grained criterion such as pairs of parameter-values
to the given example. In test case a, there are 3*4 pairwise
interactions between parameter-values in Login and Shop
windows, 3*5 between parameters in Login and Cart win-
dows, etc. The total number of pairwise inter-window inter-
actions between parameter-values in test case a is 239. Sim-
ilarly, there are 239 inter-window interactions in test case
b. There are 27 pairwise inter-window interactions in test
case c. When the two-way inter-window prioritization al-
gorithm starts choosing test cases, test cases a and b have
the same scores and test case c has a lower score. As a
result, the prioritized order is either [a,b,c] or [b,a,c], de-
pending on tie-breaking. It is likely that the first two test
cases will execute similar segments of the code and find the
same faults. Test case c has a different execution path and
may find different faults. To address the issue, testers may
consider using more coarse criteria such as two-way inter-
actions between windows. Given that two-way interaction
prioritization relies on uncovered criteria to find the next
test case for a prioritized suite, the resulting order is [a,c,b]
or [b,c,a] and addresses the issue with fine-grained criteria.

On the other hand, the use of coarse criteria in a single-
criterion method may result in a large number of test cases
with the same scores. Consider the following example:

• A test suite contains n test cases
• A tester uses the number of windows in a test case as

a criterion for prioritization
• The number of windows varies from i to j, where j > i

and d = j − i
• n is significantly larger than d

There are at most d different scores for prioritization for
the given example. Since n is significantly larger than d, a
prioritized order effectively will be a partitioned test suite

3

1 function multiLevelPrioritization
Data:

unorderedSet
Result:

orderedSet
2 pairs← generateWindowPairs(unorderedSet)
3 orderedSet ← prioritizeTestCases(pairs, unorderedSet)
4 testCaseList←

extractTestCasesWithTheSameScore(orderedSet)
5 if testCaseList 6= ∅ then
6 pairs← generateParameterPairs(testCaseList)
7 testCaseList← prioritizeTestCases(pairs,

testCaseList)
8 orderedSet ← mergeScores(orderedSet, testCaseList)
9 testCaseList←

extractTestCasesWithTheSameScore(orderedSet)
10 if testCaseList 6= ∅ then
11 pairs←

generateParameterValuePairs(testCaseList)
12 testCaseList← prioritizeTestCases(pairs,

testCaseList)
13 orderedSet ← mergeScores(orderedSet,

testCaseList)
14 end

15 end

Algorithm 1: Description of the proposed algorithm.

with d partitions and randomly ordered test cases inside each
of the partitions.

4. MULTILEVEL COARSE-TO-FINE-
GRAINED TEST SUITE
PRIORITIZATION

To address the issues described in Section 3, we propose
the multilevel prioritization algorithm for user session-based
test suites. The method is characterized as a Rank hybrid
technique and pseudo-code is shown in Algorithm 1.

The algorithm is a modification of the two-way inter-
window prioritization algorithm. Starting from an unordered
set of test case, the algorithm generates window interaction
pairs (line 2), and creates an ordered list from the given test
suite (line 3). The algorithm then extracts test cases that
have the same scores (line 4) and uses window/parameter
interaction pairs to reassign scores for extracted test cases
(lines 6-8). At the third level, the algorithm repeats the
process: extracts test cases with the same scores and uses
window/parameter/value interaction pairs to recalculate the
scores (lines 9-13). If there are any test cases left with the
same scores, random tie-breaking is applied.

The algorithm addresses the issues with fine-grained and
coarse criteria and should produce more reliable results com-
pared to single-criterion methods. We evaluate the results
of the algorithm in Section 5.

5. EMPIRICAL STUDY
This study answers the following research questions:

RQ1. How effective is the fault detection rate using the mul-
tilevel coarse-to-fine-grained approach compared to the
methods that use a single criterion?

RQ2. What is the difference in the fault detection rate vari-
ance between the proposed multilevel coarse-to-fine-
grained method and single criterion methods?

Table 1: Object programs and associated data
Description Word Ssheet Paint OJS
Lines of code 4,893 12,791 18,376 364,290
of classes 104 125 219 1,557
of methods 236 579 644 13,905

of test cases 105 268 274 109
of faults 58 34 118 29
of test cases with one or
more faults

87 40 68 106

of unique windows in a
test suite

10 7 10 320

of parameters in a test
suite

120 148 213 132

of parameter/value tuples
in a test suite

141 186 248 467

of sequences in a test case
(max/avg)

13/4.03 9/2.54 11/2.59 74/16.75

of faults found by a test
case (max/avg)

9/3.65 7/0.24 17/1.18 5/2.27

5.1 Object Programs
We use four object applications in this study: TERP

Word, TERP Paint, TERP Spreadsheet, and Open Jour-
nal Systems (OJS).

TERP Office2 was developed at the University of Mary-
land using the Java programming language. It includes four
applications: TERP Word, TERP Paint, TERP Spread-
sheet, and TERP Calc. TERP Calc contains only two win-
dows, which makes it an inadequate candidate for the study.
The detailed description of TERP Office and the fault seed-
ing process is provided in the previous work [8]. All faults
were seeded manually and were similar to naturally occur-
ring faults. Examples of faults include modified relational,
logical, and arithmetic operators.

Open Journal Systems is a web-based journal system that
was created by Public Knowledge Project. OJS test cases
are user session-based test cases. User sessions were cap-
tured using web-server logs and converted for replay by our
tool. The Open Journal Systems metrics were calculated
using PHP Depend3. Multiple third-party libraries such
as CodeIgniter4 and Smarty5 are included in OJS, which
may increase a risk of additional challenges: the libraries
may have compatibility issues or hidden faults and also con-
tribute to a higher code complexity. The faults for OJS ap-
plication were seeded manually by students at the University
of North Texas. Categories of faults include appearance is-
sues, incorrect behavior, broken links, and database errors.
Table 1 lists the object programs and their associated data.

The original test suites were processed in order to elim-
inate bugs that were found by 80 or more percent of test
cases and test cases that find more than 20 percent of the
bugs. The removal of bugs was the first step with the re-
moval of test cases following it. The process was repeated
until there were no more such bugs and test cases present in
a test suite. The number of test cases before processing for
TERP Paint was 300, for TERP Spreadsheet was 282, for
TERP Word was 237, and for OJS was 277. The number
of bugs before processing for Paint was 182, for Spreadsheet
was 79, for Word was 96, and for OJS was 67.

2https://www.cs.umd.edu/users/atif/TerpOffice/
3http://pdepend.org
4http://codeigniter.com
5http://www.smarty.net

4

5.2 Independent and Dependent Variables
Our independent variable is a prioritization method. We

consider four control techniques and one heuristic technique:

• Control

– Random ordering (Rnd)
– A combinatorial prioritization method that uses

pairs of windows as a criterion (Win)
– A combinatorial prioritization method that uses

inter-window pairs of parameters as a criterion
(Par)

– A combinatorial prioritization method that uses
inter-window pairs of parameter/values as a cri-
terion, also known as two-way inter-window pri-
oritization (PV)

• Heuristic

– A hybrid multilevel coarse-to-fine-grained priori-
tization method (ML)

Our dependent variable and an evaluation metric is the
average percentage of faults detected (APFD) metric [16].

The APFD metric is described as follows:

APFD = 1− TF1 + TF2 + ...TFm

mn
+

1

2n
(1)

In Equation 1, n is a number of test cases in test suite
TS that is ordered using some technique, m is a number of
faults found by test suite TS, TFi is the first test case in
TS that finds fault i. The APFD metric represents the area
under the curve on the axis where x is the number of test
cases executed and y is the total number of faults found.

5.3 Experiment Process
The proposed algorithm and baselines were implemented

in Python 2.7 programming language using xmltodict6 and
standard libraries. The experiment was conducted on Core
i7-4770 3.4Ghz with 32GB of memory and 3TB hard drive
using Ubuntu Linux 12.04 LTS operating system.

For each of the single-criterion prioritization methods, hy-
brid multilevel prioritization, and random ordering, the ex-
periment was repeated 1,000 times using random tie-breaking
for test cases with the same scores. As a result, 20,000
APFD values were obtained for analysis for all four object
programs and five prioritization methods.

6. RESULTS
In this section, we present the results of our study and

data analyses for each research question. Further, we discuss
implications of our results and guidance to testers.

6.1 Data Analysis
In order to answer RQ1, we use Mann-Whitney U-test

and Vargha and Delaney A12 effect size statistic as recom-
mended by Arcuri and Briand [11]. The non-parametric
tests were chosen because the population distributions can-
not be characterized as normal and have unequal variances.
Table 2 provides the results of the tests and effect sizes.
Mann-Whitney U-test at a significance level of 0.05 indi-
cates that there is a significant difference among techniques
(all p-values are lower than 5.0e-03).

6https://github.com/martinblech/xmltodict

Table 2: Mann-Whitney U-test p-values and Vargha
and Delaney A12 effect size measures for random or-
dering and single-criterion methods against hybrid
multilevel prioritization.

App ML/Rnd ML/Win ML/Par ML/PV
p-value A12 p-value A12 p-value A12 p-value A12

OJS <0.0001 0.91 <0.0001 0.79 <0.0001 0.79 <0.0001 0.95
Paint <0.0001 1.00 <0.0001 1.00 <0.0001 1.00 <0.0001 0.28
Sprd <0.0001 1.00 <0.0001 0.99 <0.0001 0.67 0.00276 0.54

Word <0.0001 0.95 <0.0001 0.38 <0.0001 1.00 <0.0001 1.00

The Vargha-Delaney A12 measure range is between 0 and
1 and shows how often one technique outperforms another,
given that samples are independent. For example, in Ta-
ble 2, when the hybrid multilevel method (ML) is compared
to the single-criterion method that utilizes window pairs
(Win), the measure for OJS is 0.79, which indicates that
the hybrid multilevel prioritization method (ML) outper-
forms the single-criterion method in 79 percent of cases, and
higher values indicate stronger performance. If the A12 mea-
sure is less than 0.5, there is an indication that the second
technique performs better than the first. If the A12 measure
is equal to 0.5, it indicates that there is no difference between
compared methods. Only two instances of the A12 measure
show situations where the proposed method performs worse
than a single-criterion method: TERP Word in the case of
a single-criterion prioritization using window pairs (Win),
and TERP Paint in the case of a single-criterion prioriti-
zation using inter-window parameter/value pairs (PV). In
other cases, the proposed approach performs better than
single-criterion methods or random ordering.

We also utilize descriptive statistics for each object pro-
gram and prioritization method to determine the method
with the highest mean APFD values. Table 3 provides mean,
standard deviation, and maximum and minimum values for
each method and each application. The hybrid multilevel
prioritization algorithm (ML) outperforms all single-criterion
methods in two out of four applications. The comparison to
random ordering reveals that the hybrid multilevel approach
produces better results in all four applications. The compar-

Table 3: Experimental results showing mean, stan-
dard deviation, maximum APFD values, and mini-
mum APFD values.

Measure Rnd Win Par PV ML
Open Journal System
Mean value 0.7587 0.8155 0.8080 0.8037 0.8187
Standard deviation 0.0434 0.0033 0.0127 0.0090 0.0003
Minimum value 0.6363 0.8091 0.7683 0.7784 0.8183
Maximum value 0.8831 0.8217 0.8420 0.8281 0.8192

TERP Paint
Mean value 0.6415 0.7119 0.8385 0.8534 0.8521
Standard deviation 0.0574 0.0405 0.0049 0.0017 0.0013
Minimum value 0.4661 0.5916 0.8249 0.8492 0.8490
Maximum value 0.8098 0.8323 0.8499 0.8585 0.8553

TERP Spreadsheet
Mean value 0.6009 0.6450 0.7794 0.7846 0.7859
Standard deviation 0.0634 0.0570 0.0119 0.0104 0.0087
Minimum value 0.4173 0.4693 0.7462 0.7568 0.7597
Maximum value 0.7636 0.8354 0.8152 0.8139 0.8087

TERP Word
Mean value 0.7943 0.8431 0.8248 0.8286 0.8394
Standard deviation 0.0296 0.0163 0.0040 0.0035 0.0011
Minimum value 0.6903 0.7878 0.8149 0.8194 0.8374
Maximum value 0.8772 0.8869 0.8356 0.8371 0.8414

5

Figure 3: Box plots showing the ranges of possible APFD values for the object programs.

ison to the previously studied two-way combinatorial prior-
itization using parameter/values (PV) reveals that hybrid
multilevel prioritization (ML) yields higher mean APFD val-
ues in three out of four applications.

In order to answer RQ2, we compared standard devia-
tion values for the hybrid multilevel prioritization method
to single-criterion methods and random ordering. The hy-
brid multilevel technique shows the lowest standard devia-
tion among all methods. For instance, the standard devia-
tion for the TERP Word application is one order of magni-
tude lower than that of the method with the highest APFD
value. Low standard deviation values provide testers more
confidence in the results.

To demonstrate our results visually, we use box plots that
are shown in Figure 3. Box plots confirm previous conclu-
sions as the proposed hybrid multilevel prioritization ap-
proach reduces variance while performing equally well or
better than single-criterion approaches.

6.2 Discussion
As shown in Tables 2 and 3, the proposed approach gen-

erally produces better results with the least variance. This
section explores the relationship between the results and the
characteristics of the test suites of the object programs.

Given the results in Section 6.1, the prioritization methods
in the control group perform differently depending on the
object program. Random ordering demonstrates the worst
average APFD and the highest standard deviation values
among all methods, which is to be expected.

It is also expected that the single-criterion method using
parameter/value pairs (PV) produces the best performance
result in the control group as it has been shown previously
that the PV method generally produces better results com-
pared to other methods [8]. The PV method is also the
most fine-grained method among the tested single-criterion
methods. The results for TERP Paint and TERP Spread-
sheet confirm previous observations: single-criterion method
using parameter/value pairs1 (PV) has the highest mean
APFD value among the methods in the control group.

On the contrary, in two out of four object programs, Open
Journal Systems and TERP Word, the single-criterion pri-
oritization method using window pairs (Win) produces the
highest mean APFD values. To understand the reasons for
such difference, we further examined the characteristics of
the object programs.

In the case of OJS, the results of the single-criterion method

that utilizes window pairs (Win) are not surprising consider-
ing that OJS is a web application that has a number of web
pages (windows) with no parameters, in addition to having a
significantly larger number of windows in a test suite among
all object programs. While the standard deviation is the
smallest among the control group, it is still 10 times worse
than that of the proposed hybrid multilevel method (ML).

In the case of TERP Word, on the other hand, the per-
formance of the single-criterion method using window pairs
(Win) is not expected. Its performance is better than that
of the proposed hybrid multilevel prioritization (ML). The
answer to this phenomenon is the result of a number of fac-
tors. One of the factors is the standard deviation value: it
is the second worst among all methods. Other factors that
should be considered are the lowest number of test cases, the
highest fault density, and the median number of windows in
a test suite, which seems to indicate that combinatorial pri-
oritization using window pairs has a high fault detection rate
at the beginning, but quickly depletes available criteria, so
that the remaining part of the test suite is ordered randomly.

Comparing control group methods to the heuristic, the
hybrid multilevel prioritization (ML) algorithm outperforms
random ordering. Hybrid multilevel prioritization shows the
lowest standard deviation among the methods, which is ex-
pected as the number of tie-breaking cases decreases. The
overall performance of the algorithm varies on applications.
For two cases, TERP Paint and TERP Word, the hybrid
multilevel approach (ML) shows the second best result.

While the combinatorial prioritization method that uti-
lizes window pairs (Win) produces the highest average mean
AFPD for TERP Word, the range of possible APFD values
for the technique is almost 10 percent. Hybrid multilevel
prioritization (ML), on the other hand, has the range of val-
ues less than 1 percent and has the second best mean result,
which makes hybrid multilevel prioritization a more prefer-
able choice.

The single-criterion prioritization that uses inter-window
parameter/value pairs (PV) slightly outperforms the hybrid
multilevel method for TERP Paint. Considering that TERP
Paint has more than three times the faults of TERP Spread-
sheet, and a close number of test cases, the results indicate
a skew in the fault distribution between windows. As a con-
sequence, when the hybrid multilevel method uses its first
order criterion, pairs of windows (Win), the fault detection
rate is lower compared to single-criterion method using pa-
rameter/value pairs (PV).

6

The use of test suites for TERP Spreadsheet and Open
Journal System demonstrates that the hybrid multilevel pri-
oritization technique produces the best APFD values while
maintaining the lowest standard deviation, which also con-
firms the initial assumption that, in general, hybrid coarse-
to-fine-grained multilevel prioritization techniques outper-
form single-criterion methods.

Overall, the proposed hybrid multilevel approach produces
the lowest standard deviation, reducing testers’ uncertainty
in results. As indicated by Vargha and Delaney measure, it
generally produces better APFD values compared to single-
criterion methods or random ordering.

6.3 Threats to Validity
There are several threats to validity in this study. The ap-

plications under test and their test suites that we use may
not be representative of all systems. To reduce this threat,
we utilize multiple applications of different sizes: three GUI
applications and one Web application. In addition, we re-
move so-called easy bugs, the bugs found by 80 percent or
more of test suites, and so-called super test cases, test cases
that find 20 percent or more of bugs to make test suites and
faults more representative of real-life ones. A broader study
that includes a wider variety of applications may further
minimize the threat. Another threat to validity is the evalu-
ation metric used in the study. Our choice of the metric is a
widely adopted APFD metric that is used for test suite pri-
oritization by many researchers in the field, but APFD is not
the only possible measure of prioritization effectiveness. Fur-
thermore, we did not perform a cost-benefit analysis of using
the hybrid multilevel prioritization method, which may be
another threat.

6.4 Guidance to Testers
The use of single criterion for test suite prioritization of-

ten leads to an increased variability of the results and de-
creased confidence of performance of such methods due to
tie-breaking. Our recommendation for testers is to use mul-
tiple criteria for their prioritization methods in order to
minimize the discussed issues. Depending on the type of
test suite, testers may identify coarseness of chosen crite-
ria and employ hybrid multilevel prioritization from coarse
criteria to fine-grained. In the case of user session-based
test suites, our empirical study indicates that the use of
windows, parameters, and parameter/values pairs as crite-
ria for hybrid multilevel prioritization decreases the variance
and often outperforms the tested single-criterion methods.

7. CONCLUSION AND FUTURE WORK
In this paper, we demonstrated a motivational example,

where the use of prioritization methods that employ a sin-
gle fine-grained criterion leads to a decreased performance
even when tie-breaking is not a factor. A similar example
is given for the methods that employ a coarse-grained crite-
rion. Our proposal is to use multilevel coarse-to-fine-grained
prioritization that utilizes multiple criteria, which helps to
decrease the variability of results and increase potential per-
formance of prioritization. Our empirical results indicate
that the proposed algorithm lowers the variability of results,
in some cases significantly, and generally produces better re-
sults compared to single-criterion prioritization techniques.

In future work, we will apply the multilevel prioritiza-
tion method to different types of test suites and criteria.

We will conduct a comprehensive study on systematic tech-
niques used in test suite reduction, test suite generation, and
other software testing areas and how tie-breaking influences
the outcomes of such techniques. Furthermore, we plan to
evaluate the proposed multilevel prioritization considering
cost-benefit trade-offs.

8. ACKNOWLEDGMENTS
This work was supported by National Science Foundation

CAREER Award CCF-1564238 and grant CCF-1461065.

9. REFERENCES
[1] M. Wieczorek, Systems and Software Quality : The Next

Step for Industrialisation. Heidelberg: Springer, 2014.
[2] C. Jones and O. Bonsignour, The Economics of Software

Quality, 1st ed. Addison-Wesley Professional, 8 2011.
[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,

W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn
et al., “An orchestrated survey of methodologies for
automated software test case generation,” Journal of
Systems and Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[4] A. Causevic, D. Sundmark, and S. Punnekkat, “An
industrial survey on contemporary aspects of software
testing,” in International Conference on Software Testing,
Verification and Validation, 2010, pp. 393–401.

[5] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Test case prioritization: An empirical study,” in
International Conference on Software Maintenance, 1999,
pp. 179–188.

[7] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test
case prioritization: A family of empirical studies,” TSE,
vol. 28, no. 2, pp. 159–182, 2002.

[8] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a
single model and test prioritization strategies for
event-driven software,” TSE, vol. 37, no. 1, pp. 48–64, 2011.

[9] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei,
“Bridging the gap between the total and additional
test-case prioritization strategies,” in International
Conference on Software Engineering, 2013, pp. 192–201.

[10] S. Elbaum, S. Karre, and G. Rothermel, “Improving web
application testing with user session data,” in Proceedings
of the 25th International Conference on Software
Engineering, 2003, pp. 49–59.

[11] A. Arcuri and L. Briand, “A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering,” Software Testing, Verification and
Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[12] S. Sampath, R. Bryce, and A. M. Memon, “A uniform
representation of hybrid criteria for regression testing,”
TSE, vol. 39, no. 10, pp. 1326–1344, 2013.

[13] Y. Fazlalizadeh, A. Khalilian, M. A. Azgomi, and S. Parsa,
“Prioritizing test cases for resource constraint environments
using historical test case performance data,” in
International Conference on Computer Science and
Information Technology, 2009, pp. 190–195.

[14] R. Carlson, H. Do, and A. Denton, “A clustering approach
to improving test case prioritization: An industrial case
study,” in International Conference on Software
Maintenance, 2011, pp. 382–391.

[15] Z.-W. He and C.-G. Bai, “Gui test case prioritization by
state-coverage criterion,” in Proceedings of the 10th
International Workshop on Automation of Software Test,
2015, pp. 18–22.

[16] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” TSE, vol. 27,
no. 10, pp. 929–948, 2001.

7

