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ABSTRACT

Automated unit test generation bears the promise of significantly
reducing test cost and hence improving software quality. However,
the maintenance cost of the automatically generated tests presents
a significant barrier to adoption of this technology. To address
this challenge, in previous work, we proposed a novel technique
for automated and fine-grained incremental generation of unit tests
through minimal augmentation of an existing test suite. In this pa-
per we describe a tool FSX, implementing this technique. We de-
scribe the architecture, user-interface, and salient features of FSX,
and specific practical use-cases of its technology. We also report
on a real, large-scale deployment of FSX as a practical validation
of the underlying research contribution and of automated test gen-
eration research in general.

CCS Concepts

eSoftware and its engineering — Software testing and debug-
ging;

Keywords
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1. INTRODUCTION

Testing is the dominant process for establishing confidence in
the correctness of software [21]]. Functional unit tests, that test in-
dividual functions, are a key component of software testing. How-
ever, high-quality unit test suites are notoriously laborious to de-
velop [[12]. Automatic test generation, which has been actively re-
searched over the past two decades, can help reduce the cost of
software testing [26} 19,3337, 17,14} 22].

A significant barrier to the practical adoption of automatic (unir)
test generation tools is the maintainability cost of the generated
tests to the human developers responsible for them. The impor-
tance of writing compact test cases is well recognized as a means
of improving maintainability of tests. For example the GNU bug
reporting instructions [3|] espouse that, “smaller test cases make
debugging easier”, “GCC developers prefer bug reports with small,
portable test cases” and “minimized test cases can be added to
the GCC test suites”. Other practical software projects, such as
LLVM [5]], Mozilla [8], and Webkit [11]], mirror this view on com-
pact, minimal (unit) tests.
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In [41] we presented an approach and software prototype FSX
that approaches (unit) test generation from the standpoint of the
maintenance cost of generated test code. FSX is built on the
premise that every new line of test code adds to the maintenance
cost of the test suite - the developer needs to understand and main-
tain that line. Thus, FSX attempts to minimize the number of lines
of newly generated test code. Existing approaches for test-suite
augmentation [31} 38 35} 28| 40l [23]], i.e., using the test-suite for
a previous revision of the program to build the test-suite for the
current revision, operate at the granularity of complete test cases,
i.e., complete new tests are added to the test-suite. The existing test
suite is primarily used to identify test targets (e.g., branches, lines,
or execution paths) not covered by current tests. By contrast, FSX
treats each part of existing cases, including the test driver, test input
data, and oracles, as “test intelligence". It attempts to create tests
for uncovered test targets by copying and minimally modifying ex-
isting tests, where possible, rather than creating new ones.

The FSX approach is built on two key and novel pieces of tech-
nology. The first, is a technique for iterative, incremental refine-
ment of test-cases by concurrent driver generation and symbolic
execution. Instead of making all variables symbolic, it starts with a
minimal test driver (or an existing test driver when available) with
concrete input values. Then, based on diagnostic information ob-
tained during symbolic execution, the driver, and test-case is pro-
gressively enhanced by making only relevant variables symbolic,
or assigning appropriate objects. The second, is a precise and ef-
ficient byte-level dynamic dependence analysis, based on Reduced
Ordered Binary Decision Diagrams (ROBDDs) [13]. This analy-
sis tracks the correspondence between input values and symbolic
expressions, generating precise diagnostic information to guide the
(minimal) iterative enhancement of test drivers.

This paper addresses the implementation and deployment of the
FSX tool. Specifically, it makes the following contributions:

e It provides a detailed description of the architecture and user
interface of FSX as well as the software engineering prac-
tices used to develop and maintain it (Section ).

e It describes two specific use-cases of FSX (Section 3).

e It reports on a real, large-scale deployment of FSX (Sec-
tion [). We see this deployment as a practical validation of
not only FSX’s technology but in fact the larger body of work
in automated test generation that it builds upon.

2. TECHNIQUE

FSX’s fine-grained incremental test generation method consists
of three main components: Incremental Symbolic Execution, Event
Diagnosis, and Incremental Driver Generation, as shown in Fig-
ure |1} Given a function-under-test and a set of previous tests [H it
generates an updated set of tests, with the objective of maximizing
the structural coverage of the generated tests, while minimizing the
difference between the generated and previous tests.

ITest drivers are simply tests with some of the inputs symbolized.
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Figure 1: Overview of incremental test generation in FSX.

To perform test generation, FSX’s incremental symbolic execu-
tion engine executes the drivers one at a time. If the test termi-
nates without any indicative events, it is retained in the new test
suite. Indicative events are either exceptions, such as null pointer
or out-of-bound memory accesses, or the discovery of uncovered
test targets (e.g., branches). Intuitively, indicative events constitute
targets for subsequent test generation. Any indicative events are
passed on to the event diagnosis engine which generates diagno-
sis information explaining the causes of each event. Given the set
of diagnoses, incremental driver generation enhances the previous
drivers by attempting to resolve the indicative events. Then, the
entire process, starting with incremental symbolic execution, is it-
erated on the newly obtained enhanced drivers until the coverage
goal is satisfied or the drivers cannot be enhanced any further.

Incremental symbolic execution. Conceptually, FSX’s incre-
mental symbolic execution engine can be seen as a standard sym-
bolic executor for C programs, such as KLEE [14], enhanced with
symbolic support for C++-specific language constructs, intrinsics
and libraries, such as in KLOVER |[25]], and further enhanced with
path-pruning techniques based on recorded previous execution his-
tory, similar to DISE [28]] or Memoise [40]. In addition to standard
test generation, it also collects indicative events, which it passes on
to the event diagnosis engine. Note, however, that the FSX tool is
built from scratch. It does not share code with any of these tools.

Event diagnosis. The event diagnosis engine outputs a diagno-
sis, i.e., a set of causes, for a given indicative event. To do this it
collects several pieces of diagnostic information during the sym-
bolic computation, principally, 1) for each computed value, the set
of inputs, called the relevant input set, from which the value is de-
rived, 2) the type and structure of untyped input data, dynamically
cast to specific types, within the function-under-test, as it is used,
and 3) range information for composite types, such as arrays (to
facilitate fixing of out-of-bound memory access events). One of
the key innovations of FSX is the precise computation of relevant
input sets, which are encoded as Boolean characteristic functions,
and compactly represented through Reduced-Ordered Binary De-
cision Diagrams (ROBDDs) [13].

Incremental driver generation. Incremental driver generation
enhances the previous drivers, to eliminate any indicative events,
by suitably modifying the values of inputs relevant to such events.
This is done based on the recorded diagnostic information, includ-
ing the relevant input sets, and the type of the event. For a null
pointer access the corresponding pointer is assigned to either a
new object allocated based on its type information or a pointer to
an already-allocated object compatible to its type. For an out-of-
bound memory access, the accessed object is resized to be suffi-
ciently bigger, based on recorded range information. In case of a
branch-not-taken event, the relevant inputs are assigned symbolic
values using one of several strategies implemented in FSX.
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Figure 2: Application modernization and regression testing.

3. USAGE SCENARIOS

3.1 Application Modernization & Regression
Testing

Application modernization is a process of converting a legacy
system to a modern programming language or hardware platform.
Typically, the correctness of the modernization is verified by ex-
ecuting a reference test suite on both the legacy and the modern
system and checking the equivalence of the output values. Regres-
sion testing is a type of software testing that ensures that changes
made to a given program do not introduces any new faults (regres-
sions), i.e., the program behaves correctly, as before. To conduct
regression testing, the test suite for the original program is applied
to newer versions of the product code to ensure that all test cases,
except the ones affected by the changes, continue to pass.

To apply FSX to these use-cases, we use it to generate a full
test suite, from scratch, optionally using an existing test suite as
a seed, as shown in Figure J] FSX generates test cases with test
oracles that enforce (assert) the current actual output values of the
program-under-test. These test cases can then be used for applica-
tion modernization or regression testing purposes. In Section[f] we
discuss a real industrial deployment experience of FSX for mod-
ernization of a large in-house product.

3.2 Integration with Source Code Manage-
ment and Continuous Integration System

Modern Source Code Management (SCM) systems employ a
peer-to-peer approach where each peer owns a complete reposi-
tory and distributed repositories are synchronized by exchanging
patches from peer to peer. Some systems, such as GitHub, also pro-
vide a web-based user interface, with collaboration features such as
interactive patch exchange with code review, called pull requests
or merge requests. Continuous Integration (CI) systems are often
used in conjunction with SCM. Modern CI systems can automati-
cally and continuously obtain the latest revision from the associated
SCM system and automatically build and execute tests on the soft-
ware, according to project-specific built-and-test protocols, speci-
fied in a configuration file under the source tree. Recently SCM and
CI systems have become increasingly popular in industrial software
development, as well as in the open-source software community.

There are several advantages of integrating FSX with SCM and
CI systems. First, every time any revision is made to the product
code, FSX can be autonomously invoked to revise the test code ac-
cordingly. Second, FSX can automatically identify the project con-
figuration, from the CI configuration file, such as the code structure
of product and test code and the procedures of how to build and test
the software. Last, the collaboration feature of interactive patch ex-
change with code review is utilized for requiring users to verify test
oracles in the generated test code.
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Figure 3: Integration with SCM/CI system.
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Figure 4: FSX Software Architecture.

Figure [3] illustrates how a developer interacts with FSX via an
SCM system. When a developer commits a change to the product
code, FSX autonomously augments the existing test suite and gen-
erates a test code patch. Shortly after the commit, the developer
receives a pull request of the test code patch. In our web-based UlI,
the developer is requested to review the changes to the test code
and to confirm or edit the expected values of the newly-introduced
assertions. Once all expected values are confirmed, the developer
is allowed to merge the test code in his repository. In our system,
some expected values are randomly chosen and assigned erroneous
values to guard against “mindless” confirmation by the developers.

4. TOOL DESCRIPTION

FSX. We implemented the techniques presented in Section
in our test generation tool, FSX, which has been developed from
scratch with about 45,000 lines of C++ code and 7,500 lines of
Ruby code. The supported platforms are Ubuntu Linux 14.04 and
Mac OS X v10.9 or later. Figure ] shows the FSX software archi-
tecture. Clang [1] is used for parsing C/C++ programs and gener-
ating its AST representation and LLVM [[7] is used as the internal
representation for the symbolic execution. For SMT solvers, FSX
includes a customized version of STP [[18] enhanced with don’t
care analysis [27] and also unmodified Z3 [[16] which is more ef-
ficient than vanilla STP, but lacks the don’t care analysis feature,
used in FSX to minimize test drivers. FSXuses the CU Decision
Diagram Package (CUDD) [2]] for ROBDD manipulation.

FSX provides a mutation-based test oracle generation similar to
the one in EvoSuite [[17]. We implemented our own mutation anal-
ysis engine using the same set of mutators as PIT [9], which is
a well known practical Java mutation testing tool. FSX also im-
plements an automatic test stub generation functionality which can
be used to isolate units under test and to fix missing dependencies
when testing an incomplete program.
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Figure 5: Web-based Ul for test oracle verification.

To assure the software quality of FSX itself, it is comprehen-
sively and frequently tested using its test-suite, developed in-house.
It consists of 47 unit tests, 141 integration tests and 61 regression
tests comprising 9,100 lines of test code and providing an overall
line coverage of 73%.

The inputs to FSX are a program-under-test written in C or C++
and a set of previous tests written in Google Test format [4]. The
outputs from FSX are two sets of tests in the Google Test format:
normal tests which execute their units-under-test with normal ter-
mination and abnormal tests which are expected to terminate with
abnormal termination.

Command Line UL In Command Line mode, FSX’s operation
is file based and it generates unit tests for each function/method in
each C/C++ source file. FSX extracts the file dependencies from
the existing Makefile, allowing it to be run on any C/C++ project
that builds an executable with a Makefile, by simply issuing the
command:

fsx <fsx-options> make <make-options>

Web-based Ul. FSX has been integrated with our in-house
SCM/CI platform CodeCasa. CodeCasa is a Git-based SCM sys-
tem and provides a web-based user interface. We implemented
CodeCasa in Ruby and JavaScript using the Sinatra web application
framework [10]]. We also integrated FSX with CodeCasa according
to Scenario 2 in Section [3.2] Every time a developer commits a
change in a repository in CodeCasa, FSX sends a test code patch to
the developer. To merge the patch, the developer needs to review
the test code and to verify all test oracles, as shown in Figure 3]

S. EVALUATION

We present a representative subset of results from the full eval-
uation of FSX reported in [41]. The evaluation uses five revisions
(v.2.0.1 - v.2.0.5) of iPerf [6]], which is a widely-used open source
network bandwidth measurement tool, written in C++. iPerf-2.0.x
is comprised of 7 files, 39 functions, and approximately SKLoC,
i.e., an aggregate of 25KLoC over the 5 versions analyzed. All
experiments were run on Ubuntu 14.04 64-bit on an Intel Xeon
E5-2695 v2 2.40 GHz processor with 16GB of memory. The eval-
uation illustrates the scenario of test-suite augmentation, explained
in Section[3.21

FSX-Baseline. We use FSX-Baseline, a simplified version of
FSX, as a baseline for the experiments. It shares its symbolic exe-
cution core with FSX. The key difference is that its driver generator
generates a naive driver in a non-iterative, one-shot manner (ver-
sus the iterative, diagnosis-driven refinement in FSX), where all
assignable variables including function arguments, member vari-
ables and global variables are assigned symbolic values and any
pointers are set to new objects allocated in a reasonable manner.



Table 1: Test suite augmentation results from iPerf-2.0.1 to iPerf-2.0.5.

FSX FSX-Baseline

Version . .

Statement ~ Branch  #Tests Test  Runtime Statement ~ Branch #Tests Test Runtime

Coverage Coverage LOC [sec] Coverage Coverage LOC [sec]
2.0.1 79.4% 72.1% 114 3,247 — 79.4% 72.1% 114 3,247 —
2.0.2 79.5% 72.5% +1 +3 5.6 79.5% 72.5% +1 +51 13.9
2.0.3 79.9% 72.9% +5 +187 166.5 79.9% 72.9% +5 +3,424 481.6
2.04 80.0% 73.0% +2 +8 19.8 80.0% 73.0% +2 +1,140 27.2
2.0.5 79.8% 72.9% +3 +3 207.2 79.8% 72.9% +3 +1,807 433.8

Table[T|shows the results of this evaluation, comparing FSX and
FSX-Baseline. First, FSX is used to perform a full test suite gen-
eration (from scratch) on iPerf-2.0.1 Then each tool is used to per-
form test-suite augmentation using the generated test-suite of the
previous version as a starting point, for each of the next 4 versions
of iPerf. Thus, the generated test-suite for iPerf-2.0.1 is used as a
starting point for the generation of tests for iPerf-2.0.2, and so on.

Columns 2 — 6 show the test-generation results for FSX and
columns 7—11 the corresponding ones for FSX-Baseline. Columns
2 and 3 (respectively 7, 8) report the statement and branch cover-
age of the test-suite and column 6 (resp. 11) the total test generation
time. Column 4 (resp. 9) gives the total number of newly generated
tests (i.e., added through augmentation) and column 5 (resp. 10)
shows the number of lines of test code added or modified in the
test-suite. Thus, in generating tests for iPerf-2.0.4, FSX augments
the test-suite of iPerf-2.0.3 by merely adding 2 test cases and modi-
fying 8 lines of test-code, while FSX-Baseline also adds 2 tests but
needs to modify 1, 140 lines of test-code.

As shown in the table, both FSX and FSX-Baseline are able to
perform test-suite augmentation and achieve comparable coverage
numbers for the augmented test suite, by adding similar number of
tests, per new revision. However, FSX adds or modifies signifi-
cantly fewer number of lines of test code, typically 10 — 15 times
lower than FSX-Baseline, during the augmentation. This difference
is because FSX, as per its design, is able to successfully re-use ex-
isting test-cases from the previous version, cloning and modifying
them minimally to create new test-cases, while FSX-Baseline al-
ways generates new test-cases for uncovered functionality.

6. TOOL DEPLOYMENT

We were approached by several product divisions to improve
their test development productivity, through the application of our
automatic test generation tool. Most recently FSX has been de-
ployed in an in-house application modernization project of an on-
line vending system. This product consists of 135 Makefiles and
2,580 C/C++ source files, with a total of 504,255 executable lines
of code. This product originally runs on Red Hat Enterprise Linux
(RHEL) 5.5/5.6, with the target platform of this modernization
project being RHEL 7.2.

This modernization project was conducted by a team according
to Scenario 1 in Figure [2} Since FSX supports neither the legacy
platform nor the destination modern platform, the team first ported
only the modules under test to Ubuntu Linux 14.04 but not any
other depending third-party modules. FSX is capable of generating
test cases for such an incomplete program by automatically gen-
erating test stubs for missing dependencies. Then, the team per-
formed a full test suite generation using FSX on Ubuntu Linux
14.04. The generated test suite achieved a statement coverage of
75.9% and branch coverage of 56.9%. The total runtime was about
14 hours. The team is currently executing the test suite on both the
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legacy platform and the modern platform to confirm the correctness
of the modernized product.

7. RELATED WORK

Symbolic Execution based test generation. FSX builds on more
then a decade of research activity on symbolic execution based
test generation. Prominent representatives of this area include
Symbolic PathFinder [30] for Java programs, KLEE [14] for C
programs, KLOVER [25] for C++ programs, SymJS [24] for
JavaScript applications, and BitBlaze [34] for security testing of
program binaries. DART [19] blends concrete and symbolic exe-
cution to realize concolic execution, CUTE and jCUTE [33]32] ex-
tend concolic testing to multi-threaded programs, SAGE [20] fur-
ther to whole program analysis, and Pex [36] for .NET. The in-
terested reader is referred to [29, |15] for a more complete survey.
FSX’s key innovation is the support for fine-grained, incremental
test generation for C/C++ programs, through iterative, automatic
generation of test drivers.

Incremental test generation. Several previous approaches have
proposed using symbolic execution based incremental test gener-
ation for test suite augmentation. DiSE [28] and Memoise [40]
focus on the characterization of changes between two program ver-
sions and running symbolic execution only on the changes. DiSE
marks changes by comparing control-flow graphs of the two ver-
sions while Memoise summarizes the symbolic execution of the
previous version in a symbolic execution tree. Xu et al. [39]] use
concolic execution to mutate path conditions derived from existing
test-cases to exercise uncovered test targets in the new program ver-
sion. eXpress [35] incorporates a similar re-use of previous tests,
albeit for regression test generation.

Overall, existing SE-based incremental test generation work re-
uses existing test cases only at the level of the path conditions the
test-case embodies. FSX additionally re-uses specific test artifacts
such as test drivers and test-oracles. Further, FSX’s approach of
iterative driver generation and incremental refinement of test-cases
addresses the core problems of test-driver generation and the deci-
sion of which variables to make symbolic. These are largely not
addressed in previous work.

8. CONCLUSIONS

In previous work [41]], we proposed a novel technique that con-
structs maintainable, high-quality unit test suites by performing
automated and fine-grained incremental generation of unit tests
through minimal augmentation of an existing test suite. In this
paper we described the tool FSX implementing that technique, in-
cluding its architecture, user interface, salient features, and specific
practical use-cases of this technology. We also reported on a real,
large-scale deployment of FSX which we see as a practical valida-
tion of the underlying research contribution, and more broadly, of
over two decades of research on automated test generation.
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