
Model-Driven Test-Case Construction

Stefan Baerisch
Software Engineering Group

University of Oldenburg, Oldenburg, Germany
and

GESIS / Social Science Information Centre
Bonn, Germany

stefan.baerisch@gesis.org

ABSTRACT
Automatic system tests are frequently coupled to implemen-
tation details of the system under test. Such a tight coupling
is problematic for a number of reasons: It prevents reuse of
existing tests for multiple versions or variants of a system or
for a number of systems in a system family and it makes the
ability to construct executable tests for a system dependent
on programming skills. In this paper we present an approach
that decouples test specification and test execution by us-
ing system models and test models for the representation
of systems under test and tests. We motivate the use of
abstract test models and system models, introduce the rel-
evant concepts of our approach and discuss the relationship
to relevant fields.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Design, Reliability

Keywords
Model-Driven Testing, Test Automation, Acceptance Test-
ing

1. INTRODUCTION
Automatic system tests compare the implementation of

system against its requirements. Since many requirements
on the system level are not implementation dependent and
systems within a system family frequently share require-
ments, the reuse of tests for multiple systems would be
preferable to rewriting the tests. However, this tight cou-
pling of tests with the systems under test (SUTs) and dif-
ferences in the feature set and interfaces of the SUTs prevent
such reuse.

Copyright is held by the author/owner(s).
ESEC/FSE’07, September 3–7, 2007, Cavat near Dubrovnik, Croatia.
ACM 978-1-59593-812-1/07/0009.

One method of software quality assurance is the use au-
tomatic system tests which compare the behavior of a sys-
tem under test with its expected behavior. The expected
behavior of a system represents functional or non-functional
requirements for the system as defined by stakeholders or do-
main experts. This requirements are identified in an analysis
phase and are then documented in an implementation inde-
pendent way. In order for the requirements to be testable,
they have to be encoded in executable software.

We call the information about the requirements encoded
in an executable test the intentions of a test. Besides the
intentions, an automatic system test must also include infor-
mation necessary for its execution. Among this information
are details about the implementation of the SUT and the
testing harness used. While the combination of the inten-
tion of a test with implementation details is necessary for the
execution of a test, a tight coupling of the intention of a sys-
tem test and the specific implementation details of the SUT
have negative consequences when compared to an approach
that decouples test specification and test execution:

• It leads to increased costs for test creation and main-
tenance since changes to the SUT or test harness have
to be reflected in the test.

• It prevents reuse of the test since the implementation
and the intention can not be separated.

• It prevents the specification of test cases by domain
experts in many domains, since programming skills are
needed to write executable tests.

The disadvantages of tight coupling become more relevant
in cases where a family of SUTs has to be tested. Such
testing of multiple systems within a system family can be
necessary for different reasons:

• Different versions of a system have to be tested. In
cases where more than one version of a system exists,
for instance a development version and a production
version, system tests are needed for all versions.

• Different variants of a system have to be tested. Vari-
ants may differ in their interfaces, the functionality
available, in the technologies used or in optimizations.

• Different systems with similar requirements have to be
tested, for example during a system migration.

If implementation details necessary for test execution and
test intentions are not separated in the above situations, au-
tomatic system tests have to be manually adapted to changes

587



in the interface, even if the tested requirements as expressed
by the intentions are identical. When the different systems
within a system family are not only different regarding their
interfaces, but also differ in their features [5], the reuse of
test cases without a clear separation of intention and execu-
tion details is hindered by the fact that the features exercised
by a test case can not be determined from the test case itself.
In order to allow the reuse of tests, an approach to automatic
system testing must fulfill the following requirements:

• The specification of tests independent from the imple-
mentation of the tested system and the test harness
must be supported.

• It is necessary to be able to select tests for a SUT
based both on the features exercised by a test and the
features available for a system.

• The system must be able to add information needed for
test execution to the test intention in order to execute
the test on the SUT.

2. RESEARCH QUESTION
Our research addresses the question how the intention and

implementation of automatic system tests can be expressed
in a way that allows the reuse of tests for different versions or
variants of a system or for multiple systems within a family
of systems and enables domain experts without program-
ming skills to specify tests.

It is our hypothesis that it is possible to achieve this goal
by modeling the intentions of tests and the relevant aspects
of different SUTs in abstract, formal models. These models
are used for the specification of abstract tests which are
used for the generation of executable test code in a model
transformation phase. By separating the development of a
set of core assets for testing in an application domain and the
development of the infrastructure needed for the execution
of test for specific systems, the reuse of test intentions is
supported.

In order to answer the research question and to validate
our hypothesis, the following details have to be considered:

• How can the tests be identified that are relevant for the
quality assurance of a system and can be expressed by
abstract models?

• On what level of abstraction must SUTs and tests be
represented to be independent from implementation
details but suitable for automatic testing? How can
information about implementation details that is nec-
essary for the execution of tests be managed?

• How can test models be represented in a way that
allows their instantiation by domain experts without
specific technical skills?

• How can the variability of different SUTs be expressed
and when in the test specification and execution pro-
cess should this variability be considered? Is it more
feasible to define tests completely independent of the
specifics of a system under test and add details in a
separate step or should test be specified under consid-
eration of the specifics of multiple systems as repre-
sented by their system models?

3. APPROACH
In this section we give an overview of our approach, called

Model-Driven Test Case Construction (MTCC). We intro-
duce the different types of models and metamodels, discuss
their use in the testing process and illustrate how reuse of
tests can be achieved by separating the development of sys-
tem independent tests and the generation and execution in-
frastructure for specific infrastructures.

3.1 Use of Models in MTCC
MTCC uses two models to represent SUTs and the tests

executed on the SUTs:

• Test models express the intention of the test, they rep-
resent the domain-specific requirements that are veri-
fied by the test.

• System models describing the SUT must include in-
formation about the features and interfaces that are
relevant for the definition and the execution of tests,
but still abstract from implementation details.

In order to transform test-models into executable tests for
specific systems, both information from the test model and
the system model is necessary. We consider two approaches
to combine information from the two types of models:

• In an early binding approach, system models for one
or multiple SUTs are used to instantiate a specific test
metamodel that only supports the definition of tests
that can be executed on these SUTs.

• Using a late binding approach, tests are modeled using
only the test metamodel. Test models are then selected
based on exercised features and expected interfaces.

Since tests are expressed as models and not as executable
code, our approach uses a separate model-transformation
step following the specification of the test models and their
binding to a specific system model. We use a transforma-
tion approach based on templates [8] to include both details
about the SUT and the testing harness.

3.2 Process
MTCC separates the testing-process into the five steps

presented in Figure 1. In the following, we will give an
overview of the steps and the relevant concepts and than
present the activities and methodologies used in the realiza-
tion of the approach.

Metamodel Definition In a first step, metamodels are
defined. The metamodels define the concepts that
are relevant for testing systems within a specific do-
main and the constraints to apply to these concepts [7].
The TestMetaModel describes basic structures for test
within the domain of interested. The SystemMeta-

Model includes concepts for the description of the fea-
tures offered by different SUTs and for the description
of the interfaces used for testing.

System Modeling The SystemMetaModel is instantiated
in a second step. This model instance represents the
features and interfaces of one specific system under
tests. The SystemModel is used to instantiate a special-
ized variant of the TestMetaModel restricted to those
test which can be executed on the modeled system.

588



TestMetaModel
«MetaModel»

SpecificTestModel
«Model»

SystemModel
«Model»

TestGenerator
«Generator»

SystemMetaModel
«MetaModel»

SpecificTestMetaModel
«MetaModel»

TestCase
«Generated»

SystemTemplate
«Template»

TestTemplate
«Template»

Step 1 Step 2 Step 3

 Step 4

Domain
Engineer

Application
Engineer

Domain
Expertdefines

defines

specialization
of

instance
of

restricts

instance of

uses

uses

uses

uses

Editor

System TestHarness executes

tests

defines
instantiates

generates

represents

defines

 Step 5

Figure 1: Steps and concepts of the MTCC approach
to model-driven test case construction

Test Modeling A test is modeled by a domain expert us-
ing an editing environment.

Test Generation The previously defined test model is trans-
formed into an executable test case. Details about a
SUT and the test runner used for testing are supplied
by templates. Templates are source code fragments
without an underlying metamodel.

Test Execution The test case generated by the test gen-
erator are executed on the system.

The approach shown in Figure 1 uses an early binding
strategy to manage the variability between different SUTs.
Information about a SUT as represented by the system mod-
els is introduced into a test metamodel before it is instanti-
ated. Test modeling is done based on an restricted Specific-

TestMetaModel. We also consider alternative approaches
where the TestMetaModel is either restricted with as System-
Model representing a superset of multiple systems.

3.3 Reuse of Tests
We consider the specification of test intentions and the

preparation of the execution of tests as two separate activ-
ities, similar to core asset and product development in the
context of software product lines.

• A number of core assets are central to our approach.
These include test intentions for a domain of systems
expressed in abstract test models. The models are in-
stances of test metamodels. These metamodels, to-
gether with metamodels for the systems under test and
the infrastructure for system model instantiation and
test specification form the core assets of our approach.

• The executable tests for the SUT in combination with
the infrastructure used for test generation and execu-
tion are a product based on the core assets.

The separation of abstract test models from test genera-
tion and test execution allows the reuse of existing tests for
different systems if all tested system share the features that
are exercised by a test model. Differences in the interfaces of
the systems become only relevant in the test generation step
where templates include the specific information for systems
and test harnesses needed to execute the tests.

4. EVALUATION
We plan to implement and evaluate MTCC in the domain

of scientific information retrieval systems. This domain has
a number of properties that motivate this choice:

• The domain is rapidly evolving, new features are fre-
quently introduced into existing systems and new sys-
tems are implemented. These frequent changes in-
crease the importance of automatic tests.

• Interfaces, data formats and procedures are not stan-
dardized. The resulting heterogeneity makes it possi-
ble to evaluate MTCC in the context of multiple sys-
tems.

• The specific functional and non-functional requirements
for scientific information retrieval systems are highly
dependent on the use cases of different stakeholders.
This motivates the involvement of domain experts in
the testing process, especially since concepts like the
relevance of a document can not be automatically ver-
ified.

MTCC will be evaluated in terms of efficiency and effec-
tiveness. This will be done by constructing automatic sys-
tem tests for a number of scientific search portals. The SUTs
form a system family in that they offer search and browsing
functionality over information from the same topic. Since
the SUTs share a number of functional and non-functional
requirements, but differ in the detailed requirements as in
the features offered and in their implementation.

MTCC will be compared to manual testing as well as the
automated testing using capture replay techniques. Of cen-
tral interest is the cost of test specification and execution
compared to those approaches and the ability of MTCC to
test requirements as defined by domain experts.

5. RELATED WORK
MTCC addresses similar fields of research as model-driven

testing (MDT) and automatic acceptance tests. It builds
on the concepts of software product line engineering and
domain engineering and extends these for the specification
of automatic system tests.

MTCC is similar to model-driven testing [3] in that tests
are not implemented manually but are generated from a
formal model. An important difference between MDT and
MTCC is that the latter is based upon a test-complete [2]
model of the SUTs and its environment, while MTCC mod-
els represent tests and those aspects of a SUT that are nec-
essary for test execution. The semantics of the tests are not
derived from the model.

Approaches for the automation of acceptance tests share
MTCC’s goal to allow test specification by domain experts.
In order to do so, FIT [6] or the approach described by
Andrea [1] separate the test specification phase from the
test execution phase. The difference between MTCC and
those approaches is that MTCC addresses the reuse of test
specifications for multiple systems.

Testing for Software Product Lines (SPLT) is related to
MTCC in that it addresses the generation and execution
of tests for systems within a system family. A difference
between both approaches is that MTCC does not assume
that SUTs are created in a SPL process using the same core
assets.

589



MTCC shares many aspects with software product lines [4]
and domain engineering [5], in particular the goal to gener-
ate a family of products, which in the case of MTCC are test
programs, from a set of common core assets. The concepts
of a features and feature modeling are important to MTCC
in order to describe the properties of a system under test.

We expect the greatest benefit of MTCC to be in the
reuse of existing test knowledge for different systems within
a domain and in the development of models and metamodels
for the descriptions of tests.

6. CONCLUSION AND FUTURE WORK
We presented MTCC, an approach for model-driven test

case construction. In order to allow reuse of automatic sys-
tem tests and to support test specification by domain ex-
perts. MTCC’s goal is to separate test intentions from im-
plementation specific aspects of test. MTCC builds on re-
search from the fields of software product lines, model-driven
development, domain engineering and automatic acceptance
testing. Implementation and evaluation of MTCC are done
in the domain of scientific information retrieval systems.

7. REFERENCES
[1] Andrea, J. Generative Acceptance Testing for

Difficult-to-Test Software. In Extreme Programming
and Agile Processes in Software Engineering (2004),
J. Eckstein and H. Baumeister, Eds., vol. 3092 of
Lecture Notes in Computer Science, Springer,
pp. 29–37.

[2] Binder, R. V. Testing Object-Oriented Systems:
Models, Patterns, and Tools. Addison-Wesley, 1999.

[3] Blackburn, M., Busser, R., and Nauman, A. Why
Model-Based Test Automation is Different and What
You Should Know to Get Started. In International
Conference on Practical Software Quality (2004).

[4] Clements, P., and Northrop, L. M. Software
Product Lines : Practices and Patterns, 3rd ed.
Addison Wesley, 2001.

[5] Czarnecki, K., and Eisenecker, U. W. Generative
Programming. Methods, Tools and Applications.
Addison-Wesley, 2000.

[6] Mugridge, R., and Cunningham, W. FIT for
Developing Software. Framework for Integrated Tests.
Prentice Hall PTR, 2005.

[7] Stahl, T., and VÃűlter, M. Model-Driven Software
Development. Wiley & Sons, 2006.

[8] Voelter, M., and Bettin, J. Patterns for
Model-Driven Development. EuroPLoP, 2004.

590


