
Aspect-Oriented Connectors for Coordination∗

Jennifer Pérez
Technical University of Madrid (UPM)

E. U. Informática, Carretera de Valencia, Km. 7
28031 Madrid, Spain

jperez@eui.upm.es

Carlos E. Cuesta
Dept. Computer Languages and Systems II

Rey Juan Carlos University
Móstoles 28933 Madrid, Spain

carlos.cuesta@urjc.es

ABSTRACT
Coordination has become a key concept in the industrial
systems as it leads to a better understanding of the interac-
tions that take place in complex and distributed systems. In
the last few years, coordination has been introduced in two
important fields of Software Engineering: Software Architec-
tures, through the notion of connector, and Aspect-Oriented
Software Development, through the notion of weaving and
by considering coordination as an aspect. In this paper,
we present how the Prisma model orchestrates its aspect-
oriented architectural models by using aspect-oriented con-
nectors. Due to the complexity of a coordination process,
they must be well founded and defined. This paper presents
the formalization of this combination of connectors and as-
pects to obtain more consistent, reusable and maintainable
coordination models.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
connectors, interaction; D2.2 [Software Engineering]: De-
sign Tools and Techniques—aspect-orientation, model-driven
engineering

Keywords
Coordination, Connector, Aspect-Orientation, Symmetric As-
pect, Software Architecture, Prisma

1. INTRODUCTION
Currently, there is a great interest in coordination. Coor-

dination orchestrates processes in order to achieve the cor-
rect functionality of software products. Good coordination

∗This research has been partially supported by the Span-
ish Ministry of Education and Science through the Tech-
nical University of Valencia, in the context of the National
Research Project Meta (Mec-Tin2006-15175-C05-01) and
within the framework of the ISSI Research Group on Soft-
ware Engineering and Information Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYANCO 2007 September 3-4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-720-X/07/0009/$5.00.

management is essential and is a risk factor for the synchro-
nization of difficult tasks that industrial systems must per-
form. As a result, several software development approaches
have taken coordination into account. Two widely used are
Component-Based Software Development (CBSD) [37] and
Aspect-Oriented Software Development (AOSD) [16].

On the one hand, coordination is an important topic in
CBSD and, by extension, in Software Architectures since
it can be used to synchronize the components that form a
specific architecture. In fact, Architecture Description Lan-
guages (ADLs) [22] could be classified according to the im-
portance they give to coordination. Some of these ADLs
have introduced the notion of connector, which is an archi-
tectural element that acts as a coordinator among other ar-
chitectural elements (either connectors or components) [1, 7,
22]. However, other ADLs do not include connectors [4, 19].
Those that use the notion of connector give more relevance
to coordination because they provide a specific architectural
element to define it. In addition, they offer an architectural
view of systems; whereas, an ADL without connectors has a
more compositional view, as in object-oriented models [19,
18]. As a result, an ADL should provide connectors in order
to separate coordination from computation and to provide
an architectural view instead of a compositional view.

On the other hand, AOSD allows the separation of cross-
cutting concerns of software systems in a modular entity
called aspect. Among the different crosscutting concerns
that can be identified in software systems, coordination is
perhaps one of the most common. But in addition to this
characterization as a concern, coordination has also emerged
as an important feature within AOSD itself, because the
different aspects of a software system must also be synchro-
nized. The need for aspect coordination has been identified
as a key feature in this approach [15].

In this paper, the formalization of a model that combines
Software Architectures and AOSD is presented. This model
is called Prisma [32]. Prisma encapsulates properties and
behaviour of different crosscutting-concerns into different as-
pects (coordination, safety, security, distribution, etc.). The
definition of a connector is specified by importing different
aspects, one of them must be a coordination aspect. As
a result, coordination models of connectors are not tangled
with the rest of concerns that affect the coordination process,
have cleaner specifications, are more reusable and maintain-
able.

In order to illustrate the properties of Prisma connectors
and their coordination processes, a case study is going to be
used throughout the paper. The case study is a connector

13

that must coordinate two components, an actuator and a
sensor. These three components belong to the software ar-
chitecture of a robot, and their correct coordination allows
the movement of a joint in this robot. The actuator sends
the joint the order to do movements, and the sensor reads
the results of those movements. In addition, the connector
has to take into account safety constraints in order to be
sure that the movements that it sends to the actuator are
safe both for the robot and its environment.

The main contribution of this paper is the formalization
of aspect-oriented connectors in order to define their coordi-
nation process in a formal way and thus, to avoid ambiguity.
Since Prisma connectors are observable processes that have
state and behaviour, the formalisms which are used to for-
malize the Prisma model are a variant of a Modal Logic
of Actions [36], and a extension of the π-calculus [24] which
provides priorities. The π-calculus is a process algebra which
is used to specify and formalize the processes of the Prisma

model, and the Modal Logic of Actions is used to formalize
the way in which the execution of these processes affects the
state of architectural elements.

The paper is structured as follows: first an overview of the
Prisma concept model is provided, explaining the reasons
behind its symmetric aspect model. Then the interest of
using aspect-oriented connectors is discussed in detail, jus-
tifying the relevance of the Prisma model and its merits
with regard to other proposals. Once this interest has been
stated, the concrete structure of connectors in Prisma is
described in detail, and the formalization of the relevant
Prisma concepts is provided and explained. Elements of the
language are specified in terms of a dialect of the π-calculus,
alongside with a real-world example of a connector within
a robotic system. The notion of weavings is described with
special care. After the structure of Prisma connectors and
its formalization have been described in detail, we briefly
discuss how it compares to related work, and highlight the
advantages of our model. We conclude by summarizing the
results and the directions of further work.

2. AN OVERVIEW OF PRISMA
Prisma provides a model for the description of software

architectures of complex and large systems. It introduces
aspects and connectors as first-class citizens of software ar-
chitectures, and therefore is an aspect-oriented ADL.

This section present just a brief introduction to the Prisma

model; more detailed descriptions for it and the associated
language can be found for example in [31, 32, 30].

From the aspect-oriented point of view, Prisma is a sym-
metric model that defines functionality as an aspect. One
concern can be specified by several aspects of a software ar-
chitecture, whereas a Prisma aspect represents a concern
that crosscuts the software architecture. This crosscutting
is due to the fact that the same aspect can be imported by
more than one architectural element of a software architec-
ture. In this sense, aspects crosscut those elements of the
architecture that import their behaviour (see Figure 1).

A Prisma architectural element can be seen from two dif-
ferent views: internal and external. In the external view, ar-
chitectural elements encapsulate their functionality as black
boxes and publish a set of services that they offer to other
architectural elements (see Part A of Figure 2). These ser-
vices are grouped into interfaces to be published through
the ports of architectural elements. Each port has an asso-

Figure 1: Crosscutting Concerns in Prisma

ciated interface that contains the services that are provided
and requested through the port. As a result, ports are the
interaction points of architectural elements.

Figure 2: Views of a Prisma Architectural Element

The internal view shows an architectural element as a
prism (white box view). In this metaphor, each side of the
prism is an aspect that the architectural element imports.
In this way, architectural elements are represented as a set
of aspects (see Part B in Figure 2) and the weaving relation-
ships among aspects.

Since Prisma uses a symmetric aspect-oriented model [13]
that it is applied at the architectural level, the weaving pro-
cess indicates that the execution of an aspect service can
trigger the execution of services in other aspects. In Prisma,
in order to preserve the independence of the aspect specifi-
cation from other aspects and weavings, those weavings are
specified outside aspects and inside architectural elements.
As a result, aspects are independent of the context of appli-
cation and weavings coordinates the different aspects that
form an architectural element. This way of describing the
relationship between aspects provides greater flexibility, as
different behaviours can be specified for the same architec-
tural element by importing the same aspects and defining
different weavings (coordination processes of aspects).

Prisma has two kinds of architectural elements: compo-
nents and connectors. A component is an architectural ele-
ment that captures the functionality of software systems and
does not act as a coordinator among other architectural ele-
ments; whereas, a connector is an architectural element that
acts as a coordinator among other architectural elements.

Connectors do not have the references of the components
that they connect and vice versa. Thus, architectural ele-
ments are orthogonal and unaware of each other. This is
possible due to the fact that the channels defined between

14

components and connectors have their references (attach-
ments) instead of architectural elements. Attachments are
the channels that enable the communication between com-
ponents and connectors. Each attachment is defined by at-
taching a component port with a connector port.

Figure 3: Attachments in Prisma

Since Prisma architectural elements are aspect-oriented,
connectors import a set of aspects to perform the coordi-
nation process. As such, connectors have a coordination
aspect. A coordination aspect defines how several archi-
tectural elements are synchronized while they communicate
with each other. The coordination aspect is based on the no-
tion of contract proposed by Andrade and Fiadeiro [3]. This
allows us to define several coordination models as different
coordination aspects. Since Prisma aspects are reusable
types, a coordination model that has been specified as an
aspect can be reused to create different connectors for the
same architectural model or a different one.

2.1 Aspect-Oriented Connectors
It is important to keep in mind that current software sys-

tems perform complex coordination processes that have to
take into account not only the coordination concern, but
also other concerns such as: safety, distribution, security,
etc. These other concerns are necessary in order to pro-
vide a correct coordination process. For example: The con-
nectors that coordinate the actuators and sensors of tele-
operated robots need to check that the movement is safe
for the robot before sending the movement to the actuator.
Prisma aspect-oriented connectors are presented as a solu-
tion for the specification of these complex coordination pro-
cesses by improving the reusability and maintenance of soft-
ware. This is improvement has been achieved by overcoming
the disadvantages of the rest of ADLs. Current ADLs can
be classified into three different kinds: non-aspect-oriented
ADLs without connectors, non-aspect-oriented ADLs with
connectors, and aspect-oriented ADLs. Next, we present
how they specify complex coordination processes that have
to take into account several concerns:

• Non-aspect-oriented, connector-less ADLs. There
are ADLs that prefer the absence of connectors because
they distort the compositional nature of software archi-
tectures. Some ADLs, such as Darwin [19], Leda [4],
and Rapide [18] do not consider connectors as first-
class citizens. However, these ADLs make difficult the
reusability of components because they have the coor-
dination process tangled with the computation inside
them, and they are aware of the coordination process
that has to happen in order to communicate with the
rest. The notion of connector emerges from the need to
separate the interaction from the computation in order
to obtain more reusable and modularized components
and to improve the level of abstraction of software ar-
chitecture descriptions. Mary Shaw [34] presents the

need for connectors due to the fact that the specifi-
cation of software systems with complex coordination
protocols is very difficult without the notion of connec-
tor. From her experience in the software architecture
field, she demonstrates that the connector provides not
only a high level of abstraction and modularity to soft-
ware architectures, but also an architectural view of
the system instead of the object-oriented view of com-
positional approaches. She also defends the idea of
considering connectors as first-order citizens of ADLs.
Figure 4 illustrates how two components (actuator and
sensor) are communicated using an ADL without con-
nectors. The coordination process is encapsulated in
the components and tangled with the computation and
other concerns.

Figure 4: Sensor-Actuator Coordination by Using a
Connector-less Adl

• Non-aspect-oriented ADLs with connectors. Most
ADLs provide connectors as a first order citizens of
the language such as: ACME [11], Aesop [10], C2 [20,
21], SADL [25], UniCon [34, 35], Wright [1], CommU-
nity [9], Pilar [5], ArchWare’s π-ADL [27, 28], etc. All
of these languages go a step forward with regard to the
previous kind of ADLs. They improve the reusability
of components and connectors by separating compu-
tation from coordination. However, their connectors
are non-aspect-oriented and they specify their coordi-
nation processes by tangling the code inside them. For
example: the coordination process between an actua-
tor and a sensor of a robot will imply the specification
of a connector with tangled concerns of coordination
and safety (see Figure 5).

Figure 5: Sensor-Actuator Coordination by Using
an Adl with Connectors

• Aspect-oriented, connector-less ADLs. Most aspect-
oriented approaches applied to software architectures
and their ADLs are based on an original ADL without
connectors such as: PCS [14], DAOP-ADL [33], Aspec-
tLEDA [26], AOCE [12], etc. These ADLs introduce
the aspect-oriented behaviour by means of connectors,
i.e., aspects are connectors among components. How-
ever, when there are two components that are coordi-
nated by several connectors (aspects), the connectors
cannot be synchronized among them (weavings among
aspects). And in those ADLs that could try to solve
this problem by connecting both connectors they will
lose the reusability of the concerns of those connectors,

15

because they will be dependent to the connector (as-
pect) that are connected to. Figure 6 illustrates how
two components are communicated using an aspect-
oriented ADL without connectors.

Figure 6: Sensor-Actuator Coordination by Using a
Connector-less Aspect-Oriented Adl (AoAdl)

• However, in Prisma a new kind of ADLs is introduced,
namely aspect-oriented ADLs with connectors.
Prisma is based on an ADL with connectors, and as-
pects are introduced as a new concept in software ar-
chitectures for concerns called aspects. As a result,
each concern is specified in its aspect and the coordi-
nation rules among the different aspects are inside the
connector being aspects reusable and independent one
to each other. Figure 7 presents how Prisma coordi-
nates the sensor and the actuator by separating the
concerns or computation, safety and coordination. As
a result, they are not scattered through the architec-
ture and they are not repeated.

Figure 7: Sensor-Actuator Coordination by Using
the Prisma Adl

In addition, Figure 7 shows that the coordination process
among components, connectors and aspect is very complex.
For this reason, this coordination process must be very well
defined and formalized in order to guarantee that it coor-
dinates all the pieces of software successfully. The formali-
zation of this coordination process is the main contribution
of this paper from previous presentations of Prisma. It is
detailedly presented along the next section.

3. CONNECTORS IN PRISMA
A connector is an architectural element that acts as a

coordinator between other architectural elements. As such,
connectors have a coordination aspect. An example is the

connector that synchronizes the Actuator and the Sensor
of a robot joint. This connector imports a safety aspect
and a coordination aspect to coordinate the movements of
the robot in a safe way for the joint, the robot and the
environment that surrounds it.

3.1 Architectural Element
Since a connector is an architectural element, a connector

is formalized as an architectural element. An architectural
element is formed by a set of aspects, their weaving rela-
tionships, and one or more ports. These ports represent
interaction points among architectural elements.

Formalization: Architectural Element
An architectural element AE is built by composing a set of
aspects A1, A2, . . . , An, which are conceived as the smallest
modules in our approach, and will be defined in section 3.3.
The resulting element AE is in turn defined itself by the
4-tuple (A,X,Φ,Π), as follows:

A. The set of attributes in aspects A1, A2, . . . , An.

X. The set of the services in aspects A1, A2, . . . , An. See
Definition 1, in section 3.4 below.

Φ. The set of formulae (in a modal Logic of Actions) pro-
viding constraints for aspects A1, A2, . . . , An.

Π. The process PAE , defined as follows:

PAE ::= PP1|| . . . ||PPm ||PA1 || . . . ||PAn ||PW

This means that the processes of the ports, weavings and
aspects of the architectural element are executed concur-
rently. For this reason, PAR is defined as their parallel com-
position, and therefore their dependencies are expressed and
solved just as concurrency conflicts.

A brief comment about the role of the Modal Logic of Ac-
tions in Prisma is relevant here. Basically, the formulae in
Φ are used for implementing obligations, prohibitions, and
permissions, providing the concurrent equivalent of a deon-
tic logic. As a result, it permits the analysis and formulation
of assertions about processes that change the execution en-
vironment. A formula of this Modal Logic of Actions is
written following the structure ψ[a]ϕ, where ψ and ϕ are
well-formed formulae (wff) in conventional first-order logic,
which characterize the state before or after the execution of
the action a, respectively. As usual in modal logics, the con-
struct [] represents the necessity operator, and a represents
an action. As a result, the meaning of formulae which are
constructed following this pattern (ψ[a]ϕ) is the following:
“if ψ is satisfied before the execution of a, ϕ must be satisfied
after the execution of a”.

To conclude, we provide an example for an architectural
element (and particularly of a connector), namely the Robot-
Connector in charge of synchronizing the Actuator and the
Sensor of a robot (see Figure 7). This connector imports
the SMotion safety aspect and the CoordJoint coordination
aspect as mentioned above and is formed by the follow set
of ports and weavings (see Figure 8).

The formalization of this connector is therefore given by
the following composite π-process:

PRobotConnector ::= PPAct ||PPSen ||PASMotion||
PACoordJoint ||PW

16

Fig.8(a). Black Box Representation

Connector RobotConnector

Coordination Aspect Import CoordJoint;
Safety Aspect Import SMotion;

Weavings

SMotion.DangerousCheck(NewSteps,
Speed, Safe)

beforeif (Safe = true)
CoordJoint.movejoint(NewSteps, Speed);

End Weavings;

Ports

PAct : IMotionJoint,
Played Role CProcessSuc.ACT;

PSen : IRead,
Played Role CProcessSuc.SEN;

End Ports

.
End Connector CnctJoint;

Fig.8(b). Prisma Specification

Figure 8: The RobotConnector Connector

3.2 Ports
Ports are the interaction points of architectural elements

(components and connectors). Every port has associated a
process, which establishes the services that publishes, and
how and when they can be executed.

Formalization: Ports
Let P be a port of an architectural element, such that its
behaviour is specified by a process PR1. Then its semantics
are given by the process PP , defined simply as follows:

PP ::= PR1

An example is the port PAct in the RobotConnector ex-
ample (see Figure 8)), which has its behaviour specified as
a process PPAct, which in turn refers to the generic definition
of another process ACT .

PPAct ::= ACT

3.3 Aspect
An aspect defines the structure and the behaviour of a spe-

cific concern of the software system. Examples of concerns
are functionality, coordination, safety, distribution, among
others.

Structure is defined by a set of attributes, each of which
has a value in every state. The state of the aspect at any
given moment is determined by the value of its attributes.
An aspect defines a semantics for its services. This seman-
tics captures when the services cannot be executed, how the
execution of services changes the state of the aspect, and
the order in which they can be executed. The behaviour
of an aspect is defined by means of a protocol. The pro-
tocol describes how the different services of the aspect are
coordinated.

Formalization: Aspects
An aspect is defined as follows by the 4-tuple (A,X,Φ,Π):

A. A set of attributes.

X. A set of services (see section 3.4).

Φ. A set of formulae in a modal logic of actions.

Π. A set of π-terms; this is, a set of concurrent terms
describing partial processes in the π-calculus.

The contents of set Π are therefore a set of π-calculus
processes. For instance, let α be an aspect whose behaviour
is specified by by the PRT1 protocol. Then its semantics is
the process Pα defined as follows:

Pα ::= PRT1

Again, in the RobotConnector example of Figure 8, the
SMotion aspect is similarly defined as:

PSMotion ::= SMotionProtocol

The dialect we use to describe terms in the Π set is a
syntactic variant of the polyadic π-calculus. It also includes
an extension to include priorities, which we will not describe
nor use here. But apart from this extension, the language
is largely standard, even in the choice of derived operators
(such as if . . . then). The main syntactic differences are
the use of the arrow (→) as the prefix operator to define a
sequence of actions, instead of the dot (.), which is used here
with its usual meaning at the programming level, to indicate
scope nesting.

Finally, the dialect provides also support for vector-like
tuples of channels, which are simply indicated as v. We will
assume an implicit indexing operator in this kind of vectors,
so the name v1 will refer to the first channel in the vector v.
This should be considered just as syntactic sugar.

3.4 Weavings
A weaving specification defines how the execution of a

service of an aspect can trigger the execution of a service of
another aspect. Of course, the same service can be involved
in several weavings.

In order to preserve the independence of the aspect specifi-
cation from other aspects and weavings, weavings in Prisma

are specified outside aspects and inside architectural ele-
ments, including connectors. As a result, weavings specified
inside connectors are the ones which coordinate the different
aspects that a connector imports.

A weaving is defined by means of operators that describe
the order in which services are executed.

A weaving that relates service s1 of aspect A1 and service
s2 of aspect A2 can be specified using the following opera-
tors. Note the use of the dot (.) operator to indicate scope
nesting, as indicated above.

• A2.s2 after A1.s1. A2.s2 is executed after A1.s1.

• A2.s2 before A1.s1. A2.s2 is executed before A1.s1

• A2.s2 instead A1.s1. A2.s2 is executed instead of
A1.s1

17

• A2.s2 afterif (Boolean condition) A1.s1. A2.s2 is ex-
ecuted after A1.s1 if the condition is satisfied.

• A2.s2 beforeif (Boolean condition) A1.s1. If the con-
dition is satisfied, A2.s2 is executed followed by A1.s1;
otherwise, only A2.s2 is executed.

• A2.s2 insteadif (Boolean condition) A1.s1. A2.s2 is
executed instead of A1.s1 if the condition is satisfied.

The invocation of A1.s1, the second argument of the weav-
ing, triggers the execution of weaving. When a weaving is
specified, the operator must be chosen from the point of view
of the triggered service, depending on whether the triggered
service needs the execution of a service before, after, or in-
stead of it. Therefore the before and after weaving modifiers
are not directly interchangeable.

Formalization: Weavings
The semantics of a weaving is a coordination process that
intercepts the invocation of a service A1.s1 and either re-
places it with, or executes it in relation to, another service
A2.s2. A1.s1 and A2.s2 belong to different aspects.

The weaving must be executed each time that A1.s1 is
invoked, upon which it executes either A2.s2 instead of A1.s1
or A1.s1 and A2.s2 in the correct order. This means that
the invocation of a service does not automatically trigger the
execution of its associated process. Taking into account that
the formalization of a service in Prisma is the following:

Definition 1. (Service) A service is a process that exe-
cutes a set of actions to produce a result.

Let S be a service. The semantics of S is a process in the
polyadic π-calculus called PS . This process has a channel
CS through which it is able to interact; or, conversely, it
can be invoked for execution (see Figure 9). We shall see
immediately that services are not invoked directly by other
processes, but only through weavings that coordinate exe-
cution of services within architectural elements.

Figure 9: Formalization of a Service

Let’s start by defining a service invocation. This will make
much easier to understand later the way in which we will
define the internal behaviour of a service.

Definition 2. (Service Invocation) Let x = x1 . . . xn be
the input parameters for a service S, and y = y1 . . . ym be
its output parameters. The invocation of S is formalized by
means of a message sent through channel CS .

Moreover, each output parameter yi must have a return
channel ryi, which is dynamically created for each invoca-
tion using the π-calculus restriction operator (ν). These
channels are used to send the results of S and to indicate
and acknowledge termination of the execution of S.

All this considered, a service invocation is described as the
following process.

(ν ry)(CS!(x, ry) → ry1?(y1) . . . rym?(ym))

The structure of this process defines the different ways
in which a service is able to interact; so, we are now able
to define the behaviour of a service as a set of π-calculus
processes, as indicated by the following definition.

Definition 3. (Service Process) The behaviour of a pro-
cess PS of a service S can be divided in three kinds of actions:

• Request Reception. The first action of PS must be the
reception of the messages that come through CS. This
reception is specified as follows.

CS?(x, ry)

• Service Execution. The execution of the service inter-
nal behaviour consists of processing a set of internal ac-
tions. We create the output parameters (y = y1 . . . ym)
and assume that internal actions bind them with some
useful value. Then this internal execution is specified
as follows.

(ν y)(τ)

• Termination. The last action in PS is always the send-
ing of the output parameters (y = y1 . . . ym) through
return channels (ry = ry1 . . . rym). This way, the in-
voker is confirmed that execution of S has ended. This
termination is therefore specified as follows.

ry1!(y1) . . . rym!(ym)

As a result, the complete formalization of PS is the repli-
cated sequence of these three actions.

PS ::= ∗(CS !(x, ry) → (νy)((τ) → ry1!(y1) . . . rym!(ym)))

This replication allows us to execute the service as many
times as it is necessary.

In terms of our formalization in the π-calculus, and given
a service S which is being controlled by the weaving, this
means that the weaving process PW interacts with PS via
the channel CS defined in Definition 1. To do so, it must
provide a channel CWS which other processes can use to
invoke S (see Figure 10).

Figure 10: Formalization of a Service Controlled by
a Weaving

Considering these two channels, the invocation of S by
other processes is defined as the following π-term:

(ν ry)CWS !(x, ry) → ry1?(y1) . . . rym?(ym))

And then the invocation of S by the weaving process is
therefore as follows:

(ν ry)(CS!(x, ry) → ry1?(y1) . . . rym?(ym))

After that, each weaving operator defines a different pro-
cess with an specific behaviour, to provide the required se-
mantics for each one of them. As an example, let’s consider
the process for the beforeif weaving operator, which involves
two services belonging to two different aspects.

18

P1...n ::= (ν ry) (CWA1 S1!(x, ry) → ry1?(y1) . . . rym?(ym))

PBWIF ::= ∗ (CWA1 S1?(x, ry) → (ν rs2)(CA2 S2!(x, rs2) → rs21?(s21) . . . rs2m?(s2m)) →

if (Boolean condition) = true) then

(ν rs1)(CA1 S1!(x, rs1) → rs11?(s11) . . . rs1m?(s1m)) → ry1!(s11) . . . rym!(s1m))

else
ry1!(s21) . . . rym!(s2m))

PA1 S1 ::= ∗ (CA1 S1?(x, rs1) → (ν s1)((τ) → rs11!(s11) . . . rs1m!(s1m)))

PA2 S2 ::= ∗ (CA2 S2?(x, rs2) → (ν s2)((τ) → rs21!(s21) . . . rs2m!(s2m)))

Table 1: Translation set of π-processes for beforeif Weaving Pattern

Figure 11: Translation for beforeif Weaving Pattern

A2.s2 beforeif (Boolean condition) A1.s1

According to Prisma formal semantics, this weaving pat-
tern will be translated to the π-calculus as a compound pro-
cess PBWIF , which has the context depicted in Figure 11.

This means that PBWIF receives the invocation of A1.s1
from another process (P1...n) through CWA1 S1. As BWIF
is a “before” weaving, PBWIF starts by invoking A2.s2 using
CA2 s2. Then, PA2 s2 receives the invocation, executes a
set of internal actions, sends the results, and notifies the
weaving that execution has finished. Next, if the boolean
condition in BWIF is true, the first service of the weaving
is executed; otherwise PBWIF sends the results of A2.s2 to
the process that invoked A1.s1. In the first case, when the
condition is satisfied, PBWIF invokes A1.s1 using CA1 s1 and
PA1 s1 receives the invocation upon which it executes a set of
internal actions, sends the results, and notifies the weaving
that the execution has finished. Finally, PBWIF sends the
results of A1.s1 to the process that invoked A1.s1.

The semantics of the set of weavings defined inside a con-
nector is therefore translated as the PW process, the parallel
composition of every individual weaving process.

PW ::= PAW1 || . . . ||PAWn ||PBW1 || . . . ||PBWn ||

PIW1 || . . . ||PIWn ||PAWIF1 || . . . ||

PAWIF n ||PBWIF1 || . . . ||PBWIF n ||

PIWIF1 || . . . ||PIWIF n

This means that the weavings are executed concurrently,
interacting as specified. In addition, the same service can
be involved in several weavings of the same architectural
element and there is an order for processing the different
weavings that a service triggers. This ordering establishes
that weavings are executed from more restrictive to less re-
strictive. The precedence is as follows: InsteadIf, Instead,
BeforeIf, Before, After, AfterIf. Deadlocks and infinite loops

that could appear when using these operators are avoided
at the specification time.

An example of a weaving appears in the RobotConnector
case study. This connector imports the SMotion safety as-
pect and the CoordJoint coordination aspect. The need for
a weaving emerges due to the fact that the robot is moved
only after the connector is sure that a movement is safe.
The invocation of the moveJoint service (the second argu-
ment of the weaving) of the CoordJoint triggers the exe-
cution of the weaving (see the process PBWIFSMotionCoordJoint

in Figure 12). Specifically, the weaving of the connector
receives the invocation of the moveJoint service (the term
CWCoordJoint moveJoint?(newsteps, speed, ry) in the process) and
afterwards it specifies that the DangerousCheck service of
SMotion has to be executed, and it must answer before the
moveJoint service of CoordJoint is even invoked, hence the
term (ν rs2)(CSMotion DANGER!(newsteps, rs21) → rs21?(safe))
in the process. Then the condition guarantees that the exe-
cution of the moveJoint service is only performed if the safe
return parameter of the DangerousCheck service is set to
true (hence the if/then/else construct in Figure 12, which
encloses the invocation of the moveJoint service through
the CCoordJoint moveJoint channel). On the other hand, the pro-
cesses defining the behaviour of each one of the services,
which are in turn defined within the aspects, are ready to
be invoked by the weaving at any time (see the definition
for both PCoordJoint moveJoint and PSMotion DANGER as replicated,
hence permanent, processes in the Figure).

4. DISCUSSION AND RELATED WORK
Both coordination and architecture are generic high-level

abstractions of a software system; they provide different ap-
proaches to close concerns, and both have long and separate
research traditions. At the same time, there is an obvious re-
lationship between them. Both notions try to identify high-
level patterns in the system, though their perspectives are
slightly different. Architecture identifies structural patterns
defined by inner interaction within a (mostly) compositional
configuration, while coordination defines high-level interac-
tion patterns shown by the resulting structure.

However when the relationship between them is consid-
ered, even their relative ordering has not always been clear.
Different authors have considered their relationship in differ-
ent ways, and this is the best proof of their intertwining and
the intrinsic difficulty of their separation. For instance, An-
drade et al. [2] consider that configurations (architectural

19

PW ::= PBWIFSMotionCoordJoint

PBWIFSMotionCoordJoint ::= ∗(CWCoordJoint moveJoint?(newsteps, speed, ry) →

(ν rs2)(CSMotion DANGER!(newsteps, rs21) → rs21?(safe) →

if (safe = true) then
(ν rs1) (CCoordJoint moveJoint!(newsteps, speed, rs1) →

rs11?(s11) → ry1!(s11))
else

ry1!(s21)))

PCoordJoint moveJoint ::= ∗(CCoordJoint moveJoint?(newsteps, speed, rs1) → (ν s1)((τ) → rs11!(s11))

PSMotion DANGER ::= ∗(CSMotion DANGER?(newsteps, rs21) → ((τ) → rs21!(safe)))

Figure 12: Translation for the Weaving in the RobotConnector example

structures) are built on top of a coordination layer which
guarantees a shared behaviour. On the contrary, Eisenbach
and Radestock [8] conceive coordination as the higher level
abstraction, which is built on top of a configuration layer,
which guarantees a substrate for shared interaction. At the
same time, many authors present these two abstractions at
the same level and provide a common support for it; in par-
ticular, many coordination languages have also been pre-
sented as ADLs, provided that their particular abstractions
are equally good for describing both [19, 29]. In particu-
lar, connectors and special-purpose components bear many
similarities to some constructs in several control-driven co-
ordination proposals.

Probably among the most important reasons for the suc-
cess of the architectural approach is the implicit separation
of concerns it provides; the designer is just concerned with
the functionality of components (and possibly some relevant
non-functional requirements), but he is now relieved of de-
scribing compositional and coordination issues, which have
become the architect’s responsibility. Though connectors
are not the only way in which an ADL can describe interac-
tion and coordination abstractions, their existence and the
emphasis on them is probably the reason why these lan-
guages are so apt in specifying these issues. And once they
have been separated, we find that relevant high-level linguis-
tic constructs in different approaches are similar.

We could conclude that coordination is an emergent prop-
erty of some architectures; an architecture-level description
has the means for providing the coordination concern, but
of course it can also describe non-coordinated systems. In
summary, architectures describe interaction structures; and
coordination can be described as a higher-level abstraction
on interaction, therefore supported by architecture [6].

Connectors alone do not provide a global coordination pol-
icy, but only local coordination groups; therefore the use of
connectors (as discussed in section 2.1 and above) eases the
description of a coordinated system, but it is not a sufficient
condition. Shaw’s original identification of connectors [34]
tried not to provide a coordination, but an interaction ab-
straction. However, subsequent work has defined ever more
complex connectors, which were grouped in types and cate-
gories, tending towards the definition of much more complex
abstractions, even higher-order connectors [17]. Mehta pro-
vided an initial taxonomy for connectors [23], which could
have provided a basis for later developments in this direc-
tion, but this thread has not had a continuity.

The locality of the connector approach justifies still the
definition of generic coordination language proposals, which
provide the means to describe general policies. However an
aspect-oriented alternative is also possible. Instead of pro-
viding a complete language from scratch, it is also possible
to define an aspect-oriented extension of some existing lan-
guage. More than that, this would ease the integration of
this “coordination aspect” with other concerns in the ar-
chitecture. Consider also that early proposals for aspect-
orientation [16] defined specific-purpose languages to deal
with aspects, rather than aspectual extensions, so this evo-
lution towards an architectural extension is also within the
tradition in the field.

Therefore we can provide coordination by means of pure
compositional ADLs, but connectors make it easier. Then,
an specific coordination language provides general policies,
but an aspect-oriented extension makes integration easier.
Thus, providing an aspect-oriented, connector-based ADL
would gather the benefits of different proposals. We refer
the reader again to section 2.1 for a detailed discussion of
the different approaches for providing coordination in ADLs,
including connector-based and aspect-oriented alternatives.

Our own previous work on the reflective ADL PiLar has
explored the way in which a very general architecture lan-
guage is able to describe coordination as a separate con-
cern, i.e. as an architectural aspect. In [5] this was made
by exploiting the reflective capabilities, thus proving that
this is indeed possible, but very complex. Later research
has explored also an aspect-oriented approach which makes
a non-explicit use of these reflective capabilities in PiLar,
providing an aspectual layer and showing how coordination
can be independently managed as an aspect [6]; but the re-
lationship between this aspect and others, though possible,
was complex, and is not explored in detail.

And this is the main benefit of the Prisma approach,
as highlighted in previous discussion. The aspect-oriented
structure of the language itself, and the symmetry of its
model, provide the basis to be able to relate coordination to
other concerns, such as safety. The notion of weaving, which
is required by the aspect model, provides also the means to
reconcile the conflicts between aspects, whenever they ap-
pear. This, combined to the benefits of both connectors and
aspects themselves for coordination, defines Prisma as one
of the most complete proposals in the field, gathering all the
benefits provided by other approaches in a single, consistent
and rigorous conceptual model.

20

5. CONCLUSIONS AND FUTURE WORK
In this paper, the advantages of combining software ar-

chitectures and AOSD to define coordination have been pre-
sented. In addition, a detailed analysis about how to take
more advantage of this combination has been done. From
this analysis, this paper defines and formalizes Prisma aspect-
oriented connectors. They are specified in an elegant and
novel way through the combination of AOSD and Software
Architectures. As a result, Prisma presents a coordination
process that provides the following advantages:

1. Connectors to coordinate components: Reusability and
maintenance of components and connector is improved
by separating coordination from computation.

2. Aspects to specify the coordination process of connec-
tors: Reusability and maintenance of different con-
cerns is improved by separating coordination from other
concerns that are necessary for the coordination pro-
cess (safety, security, distribution, mobility, etc.). There
are no tangled concerns inside complex connectors.

3. Weavings are inside connectors to coordinate their as-
pects: Reusability and maintenance of different aspect
is improved by not specifying weavings inside aspects.

4. Formalization of the coordination processes among as-
pects (weavings) and architectural elements. Thus,
non-ambiguity and proper execution of the different
coordination processes is guaranteed.

Future work will exploit the results of this formalization
to show the effects of combining several complex aspects,
and will consider also the combination with the influence
of assertions in the Modal Logic of Actions provided in ar-
chitectural elements, as well as the possibility of extending
this to a temporal logic such as the modal µ-calculus, which
has already been made for recent work in PiLar. Also,
a detailed comparison with the formalization and capabili-
ties of some other π-calculus-based ADLs, such as Leda [4],
PiLar [5] or π-ADL [27] will be carried out, studing the ex-
tent in which our results can be provided as extensions to
non-symmetric, non-aspect-oriented existing ADLs.

6. REFERENCES
[1] R. Allen and D. Garlan. A Formal Basis for

Architectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213 – 249,
July 1997.

[2] L. F. Andrade, J. L. Fiadeiro, J. Gouveia, and
G. Koutsoukos. Separating computation, coordination
and configuration. Journal of Software Maintenance,
14(5):353–369, 2002.

[3] L. F. Andrade, J. L. Fiadeiro, J. Gouveia,
G. Koutsoukos, and M. Wermelinger. 5th International
Conference on Coordination Models and Languages.
volume 2315 of Lecture Notes in Computer Science,
pages 5 – 13, York, UK, April 2002. Springer Verlag.

[4] C. Canal, E. Pimentel, and J. M. Troya. Specification
and Refinement of Dynamic Software Architectures. In
Software Architecture, pages 107 – 126, San Antonio,
Texas, February 1999. Kluwer Academic Publishing.

[5] C. E. Cuesta, M. P. Romay, P. de la Fuente, and
M. Barrio-Solórzano. Reflection-based,
Aspect-oriented Software Architecture. In Software
Architecture (EWSA 2004), volume 3047 of Lecture
Notes in Computer Science, pages 43–56. Springer,
Mayo 2004.

[6] C. E. Cuesta, M. P. Romay, P. de la Fuente, and
M. Barrio-Solórzano. Coordination as an Architectural
Aspect. Electronic Notes in Theoretical Computer
Science, 154(1):25–41, Mayo 2006.

[7] C. E. Cuesta, M. P. Romay, P. Fuente, and
M. Barrio-Solorzano. Architectural Aspects of
Architectural Aspects. In R. Morrison and
F. Oquendo, editors, Software Architecture:
Principles, Languages, Tools and Applications, volume
3527 of Lecture Notes in Computer Science, pages 247
– 262. Springer, 2005.

[8] S. Eisenbach and M. Radestock. Component
Coordination in Middleware Systems. In IFIP
International Conference on Distributed Systems
Platforms and OpenDistributed Processing
(Middleware’98), sep 1998.

[9] J. L. Fiadeiro and A. Lopes. CommUnity on the
Move: Architectures for Distribution and Mobility. In
F. S. de Boer, editor, Fmco 2003, volume 3188 of
Lecture Notes in Computer Science, pages 177 – 196.
Springer-Verlag, 2004.

[10] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
Style in Architectural Design Environments. In
SIGSOFTŠ94: Foundations of Software Engineering,
pages 175 – 188, New Orleans, dec 1994.

[11] D. Garlan, R. T. Monroe, and D. Wile. Acme:
Architectural Description of Component-Based
Systems. In G. T. Leavens and M. Sitaraman, editors,
Foundations of Component-Based Systems, volume 68,
pages 47 – 68. Cambridge University Press, 2000.

[12] J. C. Grundy, W. B. Mugridge, and J. G. Hosking.
Static and dynamic visualisation of component-based
software architectures. In 10th International
Conference on Software Engineering and Knowledge
Engineering, pages 18 – 20, San Francisco, jun 1998.
KSI Press.

[13] W. H. Harrison, H. L. Ossher, and P. L. Tarr.
Asymmetrically Vs. Symmetrically Organized
Paradigms for Software Composition. Technical
Report RC22685 (W0212-147), Thomas J. Watson
Research Center, IBM, 2002.

[14] M. M. Kande. A concern-oriented approach to software
architecture. PhD thesis, Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, 2003.

[15] G. Kiczales, E. Hilsdale, J. Huguin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of the European Conference on
Object-Oriented Programming. Springer-Verlag, 2001.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
and C. V. Lopes. Aspect-Oriented Programming. In
11th European Conference on Object-Oriented
Programming (ECOOP’97), volume 1241 of Lecture
Notes in Computer Science, pages 220 – 242. Springer,
1997.

[17] A. Lopes, M. Wermelinger, and J. L. Fiadeiro.
Higher-order architectural connectors. ACM

21

Transactions on Software Engineering and
Methodology, 12(1):64–104, 2003.

[18] D. C. Luckham and J. Vera. An Event-Based
Architecture Definition Language. IEEE Transactions
on Software Engineering, 21(9):717 – 734, sep 1995.

[19] J. N. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In Fifth
European Software Engineering Conference (ESEC),
Barcelona, sep 1995.

[20] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N.
Taylor. Using Object-Oriented Typing to Support
Architectural Design in the C2 Style. In ACM
SIGSOFTŠ96: Fourth Symposium on the Foundations
of Software Engineering (FSE4), pages 24 – 32, San
Francisco, oct 1996.

[21] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A
Language and Environment for Architecture-Based
Software Development and Evolution. In 21st
International Conference on Software Engineering
(ICSEŠ99), Los Angeles, may 1999.

[22] N. Medvidovic and R. N. Taylor. A classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions of
Software Engineering, 26(1), 2000.

[23] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a Taxonomy of Software Connectors. In Proceedings of
the 22nd International Conference on Software
Engineering (ICSE 2000), volume 11, pages 178 – 187,
Limerick, jun 2000.

[24] R. Milner. The Polyadic π-Calculus: A Tutorial.
Technical report, Laboratory for Foundations of
Computer Science, University of Edinburgh, oct 1993.

[25] M. Moriconi, X. Qian, and R. A. Riemenschneider.
Correct Architecture Refinement. IEEE Transactions
on Software Engineering, 21(4):356 – 372, apr 1995.

[26] A. Navasa, M. A. Pérez, and J. M. Murillo. Aspect
Modelling at Architecture Design. In Software
Architecture, volume 3527 of Lecture Notes on
Computer Science, pages 41 – 58. Springer Verlag, jun
2005.

[27] F. Oquendo. π-ADL: An Architecture Description
Language based on the Higher-Order Typed
π-Calculus for Specifying Dynamic and Mobile
Software Architectures. ACM Software Engineering
Notes, 29(3), may 2004.

[28] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux,
F. Gallo, H. Garavel, and C. Occhipinti. ArchWARE:
Architecting Evolvable Software. In Software
Achitecture (EWSA 2004), volume 3047 of Lecture
Notes in Computer Science, pages 257 – 271, St
Andrews, 2004. Springer.

[29] G. A. Papadopoulos and F. Arbab. Configuration and
dynamic reconfiguration of components using the
coordination paradigm. Future Generation Computer
Systems, 17(8):1023–1038, June 2001.

[30] J. Pérez. PRISMA: Aspect-Oriented Software
Architectures. PhD thesis, Department of Information
Systems and Computation, Polytechnic University of
Valencia, 2006.

[31] J. Pérez, N. Ali, J. A. Carśı, , and I. Ramos. Dynamic
Evolution in Aspect-Oriented Architectural Models.
3527:59 – 76, 2005.

[32] J. Pérez, N. Ali, J. A. Carsi, and I. Ramos. Designing
Software Architectures with an Aspect-Oriented
Architecture Description Language. In I. Gorton,
G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A.
Stafford, C. A. Szyperski, and K. C. Wallnau, editors,
Component-Based Software Engineering, volume 4063
of Lecture Notes in Computer Science, pages 123–138,
Västeras, Sweden, 2006. Springer Verlag.

[33] M. Pinto, L. Fuentes, and J. M. Troya. DAOP-ADL:
An Architecture Description Language for Dynamic
Component and Aspect-Based Development. In
Generative Programming and Component Engineering
(GPCE 2003), Lecture Notes in Computer Science,
Erfurt, sep 2003.

[34] M. Shaw. Procedure Calls Are the Assembly Language
of Software Interconnection: Connectors Deserve
First-Class Status. In Workshop on Studies of
Software Design, jan 1994.

[35] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for Software
Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, 21(4):314 –
335, apr 1995.

[36] C. Stirling. Modal and Temporal Logics. In Handbook
of Logic in Computer Science, volume II. Clarendon
Press, 1992.

[37] C. Szyperski. Component software: beyond
object-oriented programming. 1998.

22

