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ABSTRACT
The testing of concurrent programs is very complex due to
the non-determinism present in those programs. They must
be subjected to a systematic testing process that assists in
the identification of defects and guarantees quality. Although
testing tools have been proposed to support the concurrent
program testing, to the best of our knowledge, no study
that concentrates all testing tools to be used as a catalog
for testers is available in the literature. This paper proposes
a new classification for a set of testing tools for concurrent
programs, regarding attributes, such as testing technique
supported, programming language, and paradigm of develop-
ment. The purpose is to provide a useful categorization guide
that helps testing practitioners and researchers in the selec-
tion of testing tools for concurrent programs. A systematic
mapping was conducted so that studies on testing tools for
concurrent programs could be identified. As a main result,
we provide a catalog with 116 testing tools appropriately
selected and classified, among which the following techniques
were identified: functional testing, structural testing, muta-
tion testing, model based testing, data race and deadlock
detection, deterministic testing and symbolic execution. The
programming languages with higher support were Java and
C/C++. Although a large number of tools have been catego-
rized, most of them are academic and only few are available
on a commercial scale. The classification proposed here can
contribute to the state-of-the-art of testing tools for concur-
rent programs and also provides information for the exchange
of knowledge between academy and industry.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Programs

General Terms
Systematic review, Software Testing, Concurrent programs

Keywords
Systematic mapping, Concurrent programs, Testing tools

1. INTRODUCTION
The activities of Verification, Validation, and Testing en-

sure quality of the software. Software testing is the process
of executing a program for finding errors. Mistakes can occur
in the software development process, therefore, the testing
activity should be conducted throughout the software devel-
opment cycle. Different testing phases, namely unit testing,
integration testing, functional testing, system testing and
acceptance testing should be performed. This study focuses
on unit testing tools, in which each system module is tested
separately so that logical and implementation faults can be
found [71].

Testing techniques, such as structural, functional, and
fault-based testing proposed to sequential programs have
been adapted for use in concurrent programs. Other tech-
niques have been developed specially for concurrent programs
and consider features, as non-determinism, synchronization
and communication of concurrent/parallel processes. They
also look on common mistakes found in the concurrent soft-
ware, such as race conditions, deadlocks, livelocks, and atom-
icity violation.

The use of concurrent software has increased, mainly be-
cause of the availability of multicore processors and computer
clusters. Modern business applications use concurrency to
improve the overall system performance, consequently, a va-
riety of testing techniques (and their associated tools) have
been proposed to test concurrent programs. However, no
classification methodology of testing tools that helps the
testing practitioner in the analysis and selection of a tool ad-
equate to their needs has been designed. This paper proposes
a new classification for a set of testing tools for concurrent
programs regarding attributes, such as testing technique,
programming language and paradigm of development. A
useful categorization is provided to guide the tester during
the selection of testing tools for concurrent programs.

The paper is organized as follows: Section 2 presents
the concepts and challenges related to concurrent software
testing; Section 3 provides a catalog with 116 testing tools for
concurrent programs with some of their descriptions; finally,
Section 4 addresses the conclusions and future work.

2. CONCURRENT SOFTWARE TESTING
AND CHALLENGES

Concurrent programming enables a smart use of features
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Figure 1: Example of non-determinism in concurrent programs.

for the increase in efficiency (in terms of time of execution),
avoiding idleness of resources (as it occurs in the sequential
process) and lowering computational costs [32]. However,
some challenges may raise in the testing of such programs.
The non-determinism enables different executions of a pro-
gram with a single input and production of different and
correct outputs. This non-deterministic behavior is due to
communication and synchronization of concurrent (or par-
allel) processes (or threads). Figure 1 shows an example of
non-determinism, in a program composed of four parallel
processes. In Exec1 a race condition occurs between s1 and
s2, related to r1 and r2, and s3 and s4 related to r3 and r4.
Each execution represents a likely synchronization sequence
in the concurrent program. The testing activity identifies all
possible synchronization sequences and analyzes the outputs.
The deterministic execution technique can be used to force
the execution of a sequence for a given input in the presence
of non-determinism [57].

Other features related to communication and synchroniza-
tion between processes (or threads) impose challenges on
concurrent program testing, such as development of tech-
niques for static analysis, detection of errors related to syn-
chronization, communication, data flow, deadlocks, livelocks,
data race, and atomicity violation, adaptation of testing tech-
niques for sequential programming to concurrent programs,
definition of a data flow criterion that considers message
passing and shared variables, automatic test data generation,
efficient exploration of interleaving events, reduction of costs
in testing activities, deterministic reproduction for a given
synchronization sequence, and representation of a concurrent
program that captures relevant information to the test.

Studies in the domain of software testing for concurrent
programs have proposed solutions for such problems and some
testing tools have been developed to support the utilization
of the techniques. The need for the execution and testing
of different synchronization sequences and the deterministic
execution of the program are solutions to this issue. However,
they impose high costs on the testing activity. Regarding
of this, we consider the building of tools to automatize this
activity very promising.

Li et al. [41] propose a taxonomical overview of soft-
ware testing tools for both sequential and concurrent pro-
grams. The classification is based on testing activities and
testing stages. The considered activities were test plan-
ning/designing, test generation, test execution, test adequacy,
test feedback/fault localization, assess readiness and test pro-
cess management. In relation to testing stages, the following

stages are covered: static checking, unit testing, integration
testing, system testing/ maintenance testing. In relation to
concurrent testing, the authors cite just one model checking
tool. Differently, in this paper we present several testing
tools for concurrent programs, mainly for the unit testing
stage.

Muhammad and Labiche [97] conducted and described a
systematic review on state-based testing tools. They pro-
posed a classification of the tools found. The authors high-
light that just a few commercial tools were found in the
review. The authors argue that this happened due the use
of only academic databases for selection of studies. In our
study we face with the same problem, but nevertheless, we
believe that the academic databases are the most reliable
bases for systematic mapping.

3. A CATALOG OF TESTING TOOLS FOR
CONCURRENT PROGRAMS

We conducted a systematic mapping (following the process
defined by Petersen et al. [80]) to identify tools proposed
for testing concurrent programs. The focus of this paper
is not the systematic mapping and, therefore, details about
the mapping are not shown due to space restrictions The
conducted mapping was more extensive, including other re-
search questions (out of scope of this paper). Thus, only
the necessary information to understand how the catalog
was generated is shown here. A search string was defined
with the words “testing”, “concurrent software” and their syn-
onyms. The search was performed in 5 research databases
and 6316 papers were returned, of which 334 were selected.
We identified 116 different testing tools for concurrent pro-
grams. Figure 2 shows the number of testing tools developed
from 1992 to 2014.

We can observe a continuous increase in the number of
papers in this research area. The bubble chart in Figure
3 illustrates the current state-of-the-art of the concurrent
software testing domain in relation to the total number
of tools available for each testing technique proposed and
programming language supported.

Although a large number of supporting tools for concurrent
program testing has been proposed, their maturity level
should be analyzed. Most tools represent concepts proof of
academic proposals, which may be a threat to the validity
of this study that considered only academic data bases to
conduct the search of primary studies. Finding commercial
tools is hard because the vendors offer only user’s manuals
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Figure 2: Proposition of concurrent testing tools over the years (1992-2014).

Figure 3: Testing tools by testing approach and implementation language.

and case studies with no technique information in scientific
paper for proprietary reasons. The transference of technology
from the academy to the industry still remains a challenge in
the concurrent software testing domain. Therefore, a closer
interaction between the interests of academy and industry
is required so that a feedback loop can be created between
them.

We have defined a set of relevant attributes to classify the
concurrent testing tool selected from the systematic map-
ping. The definition was based on features of the concurrent
programs and information considered relevant for the tester
to select the desired testing tool. The following attributes
were defined: testing technique, paradigm programming, and
language supported. Based on such attributes, we have de-
veloped a catalog of tools for testing concurrent programs,

shown in Table 1. Subsections 3.1 and 3.2 address some most
important tools divided into two groups: one containing
tools that apply testing techniques (functional, structural,
and mutation testing) and another with tools that test spe-
cific characteristics of concurrent programs (model checking,
deadlock and data race detection, deterministic testing, and
symbolic execution).

3.1 Structural Testing Tools
For the structural testing technique, ValiPar [105] sup-

ports the application of control flow and data flow criteria
for concurrent programs in different programming languages
and using different paradigms of development. For programs
that use the message-passing paradigm, ValiPVM [103]
supports the testing of programs in PVM (Parallel Virtual

33



Table 1: A testing tools catalog for concurrent programs
Technique Paradigm Language Tools

Shared
Pthread

ValiPthread [88], DellaPasta
[118]memory

Structural Message MPI ValiMPI [35]
testing passing C Monitoring tool [40], Maple [121]

Pascal Steps [51], Pet [33]
PVM ValiPVM [103]

Both
Ada CATS [120]
Java ValiJava [104], New JLint [5], JML toolset [4]
C Valipar [105]

Shared Java Oshajava [116], Tiddle [86], Ndetermin [10], Race-
Fuzzer [93], Rstest [107]

memory C TMUnit [34], Storm [83], Relaxer[11]
Functional Message MPI ISP-GEM [38]
testing passing Ada TSG [13]

Both

UML TCaseUML [2]
PLINQ SLUG [108]
Ada TCgen [47]
C/C++ ATEMES [49]

Shared Java Javalanche [91], MutMut [30], ConMan [8]
Mutation memory C, C++ Comutation [31], CCmutator [54]
testing Message

MPI ValiMut [100]
passing

Java Vyrdmc [25], Cute [94], Fusion [113], Bandera [21],
TJT [1], TIE [65], SearchBestie [55]

C, C#, Java Chess [70]
Shared C, C++ CDSchecker [74], Inspect [119]
memory C, Pthread Concurrit [9], C2Petri [48], RegressionMaple [110]

Model .Net Gambit [20]
Based C#, Java, D DemonL [115]
testing Message C Magic [14]

passing C, MPI MPI-SPIN [99]

Both
C, C++ VIP [23]
LISP Spin [36]
Java, LTL EDA [106]
Java Droidracer [66], ConEE [76], Carisma [123], Jcute [95],

Concrash [64], Contest [53], Epaj/Eprfj [90], Have
[17], Javapathfinder [112], Omen [87], Penelope [102],
RccJava [27], Enforcer [6], Calfuzzer [92], ConcJunit
[85], Kivati [18]

C, C++ ConMem [3], Ctrigger [79], Light64 [72], Pike [28],
SPin [12], Racez [98], MultiRace [81], ThreadSanitizer
[96], Gadara [114]

Data race Shared C, Pthread MDAT [56]
and memory .Net Colfinder [117], AutoRT/CorrRT [43]
deadlock UPC UPC-Check [22]
detection Fortran Eraser [68]

Message
C, MPI

Marmot [50], MPIRace-Check
[78]passing

C, C++ Dthreads [59], InstantCheck [73], DeSTM [84]
Pthreads Kendo [77], FPDet [124], Synctester [122], DetLock

[69]
Java,C, C++ RichTest [58]
Java Conan [60], IMunit [42], Dejavu [19], SAM [16], Coop-

erari [67], Java PathExplorer [37], TransDPOR [109]
Shared C Direct [15]

Deterministic memory Titanium Titanium [46]
Testing C++, Pthreads RFDet [62]

STM,C,C++ DeTrans [101]
Ruby DPR/TARDIS [63]

Message PVM Viper [75]
passing C, PVM DEIPA [61]

Ada SpyLayer [7], AIDA [24]
C Concrest [26]

Symbolic Shared Java SPF [82], Z3 [44], LCT [45]
execution memory C/C++/Java BEST [29]

C/Pthread MultiOtter [111], CDT-Eclipce [39]
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Machine) and ValiMPI [35] for programs in MPI (Mes-
sage Passing Interface). For programs that use the shared
memory paradigm, ValiPthread [89] tests programs using
Posix standard for threads (PThreads) and ValiJava [104]
supports the testing of Java concurrent programs. Other
tools, such as STEPS [52] and Dellapasta [118] use a
graphical representation of the program to derive test cases
and apply coverage testing criteria to evaluate the testing
activity. MonitoringTool [40] the coverage of concurrent
programs according to the testing criterion k-tuples of con-
current commands, proposed by the same authors. This
criterion requires implementation of all sequences of k length
concurrent commands. This tool can be applied to concur-
rent C programs and the coverage analysis is achieved by
monitoring of the testing execution. Mechanisms to force the
execution of concurrent commands are implemented on tool.

3.2 Functional Testing Tools
For functional testing technique, OSHAJAVA [116] uses

dynamic analysis to test the specification of concurrent pro-
grams written in Java annotations. The instrumentation of
the bytecode is used to set each “write” operation with the
state of the communication updated and the “read” opera-
tion to check if a method violated or not its specification.
The semantic formalism is used to indicate when a dynamic
operation has violated the specification of an inter-thread
communication, so that the safety properties of multithreaded
programs can be checked. Other tools, such as SLUG [108]
and Ndetermin [10] also use a program specification to
derive test cases and evaluate the testing results.

3.3 Mutation Testing Tools
For mutation testing, MutMut [30] proposes an approach

for an efficient execution of mutants in multithreaded pro-
grams. It uses a technique for the selection of mutants to
be executed. When the original program is executed, the
technique selects points in the code for mutation considering
relevant aspects of the concurrent programs. The approach
also enables the tester to select a thread to be executed,
forcing the mutation introduced to be executed. ConMan
[8] implements a set of mutation operators for concurrent
programs in Java (J2SE 5.0). The mutation operators are
classified into operators that modify critical regions, key-
words, and calls for concurrent methods and operators that
replace concurrent objects. CCmutator [54] implements
those operators as well as new specific mutation operators
for concurrent programs in PThreads. It utilizes the High
Order Mutation technique, in which two or more mutations
are inserted in the program for the creation of strong mu-
tants and improvements in the quality of the testing case
set. Comutation [31] uses selective mutation based on the
mutation operators for concurrent Java programs. Selective
mutation selects a subset of mutation operators in which test
cases that have a high mutation score for this subset also
feature for the other operators. The objective is reduce the
mutation testing cost.

3.4 Model Checking Testing Tools
The model checking technique has been widely used in

concurrent software testing and enables the analysis of sys-
tem properties by a formal model. It can also be used to
explore the state space of a system. Techniques for state
space reduction are used to limit the testing search space.

Inspect [119] uses model checking for concurrent programs
in C language. The exploration of relevant interleavings
is facilitated by the use of an executable model of the in-
strumented version of the program and enables the tool to
communicate with the scheduler. CHESS [70] implements
a model checker to analyze the correctness of concurrent
programs in relation to the expected properties (e.g. inter-
leavings) derived from a test scenario. Testing scenarios are
defined by the tester and explore all possible synchronizations
among threads. Magic [14] analyzes events and states of the
operating system. The temporal logic language LTL (Linear
Temporal Logic) is used to instantiate finite state machines.
Also considering a concurrent system formalized in LTL, it
is proposed SPIN [36] which implements a model checker to
analyze the correctness of concurrent systems in relation to
the properties formally defined. This tool is instantiated for
the MPI pattern, MPISpin [99] and later used as the basis
for verification of concurrent code in Java, Bandera [21].

3.5 Deadlock and Data Race Detection Tools
Carisma [123] implements a data race detector based on

statistic sampling. A program, in a single site of the code,
can perform multiple accesses to the memory, therefore, the
tool uses an analysis of the trace of execution to estimate and
distribute sampling between such locations and collects a
fraction of all memory accesses. The information assists the
tool in detecting data races. In an attempt to prevent data
races, programmers generally write a code that will result
in a deadlock when executed with some inputs, due to the
misuse of synchronization primitives. Some tools, such as
Gadara [114], Marmot [50], and UPC-Check [22] address
the problem of deadlock detection. They analyze the code
and insert delays into it to force the execution of a given
synchronization sequence and then detect the presence of
deadlocks, or monitor the execution through a scheduler of
processes. Javapathfinder (JPF) [112] was developed by
NASA Research Center. It uses model checking to detect
deadlock and data race in Java programs (bytecode). The
user can also define the property classes to be analyzed. JPF
monitors the execution, extracts events (synchronization and
communication) that occur and analyzes them through an
observer process. The observer performs a verification based
on the information of the monitoring and information of an
analysis of error pattern. JPF is especially useful for the
verification of concurrent Java programs due its systematic
exploration of scheduling sequences of threads, which is a
difficult task in traditional testing tools. MPIRace Check
[78] performs data race detection for programs in MPI by
checking the communication messages between the processes.

3.6 Deterministic Testing Tools
Tools are developed for provide threads control and deter-

ministic execution/re-execution in a non-deterministic envi-
ronment. They usually store information about a preliminary
execution (traces) to enable its re-execution, performing the
same synchronization sequence. Dejavu [19] records thread
schedules and the reproduction of a schedule in a controlled
execution. Dthreads [59] ensures deterministic execution,
even in the presence of data race, forcing the program to
produce the same output for each input sequence. SPY-
Layer [7] records and re-runs concurrent or distributed Java
programs, verifying and validating synchronization sequences.
The re-execution is used for error detection.
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3.7 Symbolic Execution Tools
Symbolic execution is a powerful technique for the explo-

ration of systematic paths of a program with symbolic values
as inputs. MultiOtter [111] uses a symbolic executor to
trace values following the control flow of the program and
conceptually changes the execution if it finds a conditional
dependence of a symbolic value. LCT [45] uses a combina-
tion of dynamic and symbolic executions, known as Concolic
testing, in which the program under testing is executed in a
hybrid way with real test data and symbolic values for the
exploration of different behaviors of the program.

4. CONCLUSIONS
This paper presents a catalog that has addressed the state-

of-the-art of concurrent software testing area. The study
covered the period from 1992 to 2014 and 116 testing tools
were identified and classified into different testing techniques
and programming languages. We strongly believe the catalog
of tools and the other results provided in this study will be
useful for future research and also to help practitioners of
the area in the selection of testing techniques and tools.

The results also show concurrent software testing is still a
domain for new studies and a research trend. In recent years,
researchers have concentrated their efforts mainly on the C/C
++ and Java languages and on techniques for concurrent
context, such as: formal verification techniques, model check-
ing, static and dynamic analysis and deterministic execution.
Many tools implement a testing approach that combines
different testing techniques for increases in the quality of
testing.

In future studies, we aim at the development of an online
iterative catalog with information on all tools identified by
each technique, paradigm, language and others important
attributes. Additional research will be focus on analyses of
the benefits of the catalog to different stakeholders (testing
practitioners, enterprises and researchers) and how such
techniques and tools can be employed to improve higher
software quality.
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