
Concurrent Software Testing in Practice:
A Catalog of Tools

Silvana M. Melo, Simone R. S. Souza, Rodolfo A. Silva, and Paulo S. L. Souza
Institute of Mathematics and Computer Sciences, University of São Paulo

Avenida Trabalhador São-carlense, 400 - 13566-590
São Carlos, São Paulo, Brazil

{morita, srocio, adamshuk, pssouza}@icmc.usp.br

ABSTRACT
The testing of concurrent programs is very complex due to
the non-determinism present in those programs. They must
be subjected to a systematic testing process that assists in
the identification of defects and guarantees quality. Although
testing tools have been proposed to support the concurrent
program testing, to the best of our knowledge, no study
that concentrates all testing tools to be used as a catalog
for testers is available in the literature. This paper proposes
a new classification for a set of testing tools for concurrent
programs, regarding attributes, such as testing technique
supported, programming language, and paradigm of develop-
ment. The purpose is to provide a useful categorization guide
that helps testing practitioners and researchers in the selec-
tion of testing tools for concurrent programs. A systematic
mapping was conducted so that studies on testing tools for
concurrent programs could be identified. As a main result,
we provide a catalog with 116 testing tools appropriately
selected and classified, among which the following techniques
were identified: functional testing, structural testing, muta-
tion testing, model based testing, data race and deadlock
detection, deterministic testing and symbolic execution. The
programming languages with higher support were Java and
C/C++. Although a large number of tools have been catego-
rized, most of them are academic and only few are available
on a commercial scale. The classification proposed here can
contribute to the state-of-the-art of testing tools for concur-
rent programs and also provides information for the exchange
of knowledge between academy and industry.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Programs

General Terms
Systematic review, Software Testing, Concurrent programs

Keywords
Systematic mapping, Concurrent programs, Testing tools

1. INTRODUCTION
The activities of Verification, Validation, and Testing en-

sure quality of the software. Software testing is the process
of executing a program for finding errors. Mistakes can occur
in the software development process, therefore, the testing
activity should be conducted throughout the software devel-
opment cycle. Different testing phases, namely unit testing,
integration testing, functional testing, system testing and
acceptance testing should be performed. This study focuses
on unit testing tools, in which each system module is tested
separately so that logical and implementation faults can be
found [71].

Testing techniques, such as structural, functional, and
fault-based testing proposed to sequential programs have
been adapted for use in concurrent programs. Other tech-
niques have been developed specially for concurrent programs
and consider features, as non-determinism, synchronization
and communication of concurrent/parallel processes. They
also look on common mistakes found in the concurrent soft-
ware, such as race conditions, deadlocks, livelocks, and atom-
icity violation.

The use of concurrent software has increased, mainly be-
cause of the availability of multicore processors and computer
clusters. Modern business applications use concurrency to
improve the overall system performance, consequently, a va-
riety of testing techniques (and their associated tools) have
been proposed to test concurrent programs. However, no
classification methodology of testing tools that helps the
testing practitioner in the analysis and selection of a tool ad-
equate to their needs has been designed. This paper proposes
a new classification for a set of testing tools for concurrent
programs regarding attributes, such as testing technique,
programming language and paradigm of development. A
useful categorization is provided to guide the tester during
the selection of testing tools for concurrent programs.

The paper is organized as follows: Section 2 presents
the concepts and challenges related to concurrent software
testing; Section 3 provides a catalog with 116 testing tools for
concurrent programs with some of their descriptions; finally,
Section 4 addresses the conclusions and future work.

2. CONCURRENT SOFTWARE TESTING
AND CHALLENGES

Concurrent programming enables a smart use of features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804328

31

Figure 1: Example of non-determinism in concurrent programs.

for the increase in efficiency (in terms of time of execution),
avoiding idleness of resources (as it occurs in the sequential
process) and lowering computational costs [32]. However,
some challenges may raise in the testing of such programs.
The non-determinism enables different executions of a pro-
gram with a single input and production of different and
correct outputs. This non-deterministic behavior is due to
communication and synchronization of concurrent (or par-
allel) processes (or threads). Figure 1 shows an example of
non-determinism, in a program composed of four parallel
processes. In Exec1 a race condition occurs between s1 and
s2, related to r1 and r2, and s3 and s4 related to r3 and r4.
Each execution represents a likely synchronization sequence
in the concurrent program. The testing activity identifies all
possible synchronization sequences and analyzes the outputs.
The deterministic execution technique can be used to force
the execution of a sequence for a given input in the presence
of non-determinism [57].

Other features related to communication and synchroniza-
tion between processes (or threads) impose challenges on
concurrent program testing, such as development of tech-
niques for static analysis, detection of errors related to syn-
chronization, communication, data flow, deadlocks, livelocks,
data race, and atomicity violation, adaptation of testing tech-
niques for sequential programming to concurrent programs,
definition of a data flow criterion that considers message
passing and shared variables, automatic test data generation,
efficient exploration of interleaving events, reduction of costs
in testing activities, deterministic reproduction for a given
synchronization sequence, and representation of a concurrent
program that captures relevant information to the test.

Studies in the domain of software testing for concurrent
programs have proposed solutions for such problems and some
testing tools have been developed to support the utilization
of the techniques. The need for the execution and testing
of different synchronization sequences and the deterministic
execution of the program are solutions to this issue. However,
they impose high costs on the testing activity. Regarding
of this, we consider the building of tools to automatize this
activity very promising.

Li et al. [41] propose a taxonomical overview of soft-
ware testing tools for both sequential and concurrent pro-
grams. The classification is based on testing activities and
testing stages. The considered activities were test plan-
ning/designing, test generation, test execution, test adequacy,
test feedback/fault localization, assess readiness and test pro-
cess management. In relation to testing stages, the following

stages are covered: static checking, unit testing, integration
testing, system testing/ maintenance testing. In relation to
concurrent testing, the authors cite just one model checking
tool. Differently, in this paper we present several testing
tools for concurrent programs, mainly for the unit testing
stage.

Muhammad and Labiche [97] conducted and described a
systematic review on state-based testing tools. They pro-
posed a classification of the tools found. The authors high-
light that just a few commercial tools were found in the
review. The authors argue that this happened due the use
of only academic databases for selection of studies. In our
study we face with the same problem, but nevertheless, we
believe that the academic databases are the most reliable
bases for systematic mapping.

3. A CATALOG OF TESTING TOOLS FOR
CONCURRENT PROGRAMS

We conducted a systematic mapping (following the process
defined by Petersen et al. [80]) to identify tools proposed
for testing concurrent programs. The focus of this paper
is not the systematic mapping and, therefore, details about
the mapping are not shown due to space restrictions The
conducted mapping was more extensive, including other re-
search questions (out of scope of this paper). Thus, only
the necessary information to understand how the catalog
was generated is shown here. A search string was defined
with the words “testing”, “concurrent software” and their syn-
onyms. The search was performed in 5 research databases
and 6316 papers were returned, of which 334 were selected.
We identified 116 different testing tools for concurrent pro-
grams. Figure 2 shows the number of testing tools developed
from 1992 to 2014.

We can observe a continuous increase in the number of
papers in this research area. The bubble chart in Figure
3 illustrates the current state-of-the-art of the concurrent
software testing domain in relation to the total number
of tools available for each testing technique proposed and
programming language supported.

Although a large number of supporting tools for concurrent
program testing has been proposed, their maturity level
should be analyzed. Most tools represent concepts proof of
academic proposals, which may be a threat to the validity
of this study that considered only academic data bases to
conduct the search of primary studies. Finding commercial
tools is hard because the vendors offer only user’s manuals

32

Figure 2: Proposition of concurrent testing tools over the years (1992-2014).

Figure 3: Testing tools by testing approach and implementation language.

and case studies with no technique information in scientific
paper for proprietary reasons. The transference of technology
from the academy to the industry still remains a challenge in
the concurrent software testing domain. Therefore, a closer
interaction between the interests of academy and industry
is required so that a feedback loop can be created between
them.

We have defined a set of relevant attributes to classify the
concurrent testing tool selected from the systematic map-
ping. The definition was based on features of the concurrent
programs and information considered relevant for the tester
to select the desired testing tool. The following attributes
were defined: testing technique, paradigm programming, and
language supported. Based on such attributes, we have de-
veloped a catalog of tools for testing concurrent programs,

shown in Table 1. Subsections 3.1 and 3.2 address some most
important tools divided into two groups: one containing
tools that apply testing techniques (functional, structural,
and mutation testing) and another with tools that test spe-
cific characteristics of concurrent programs (model checking,
deadlock and data race detection, deterministic testing, and
symbolic execution).

3.1 Structural Testing Tools
For the structural testing technique, ValiPar [105] sup-

ports the application of control flow and data flow criteria
for concurrent programs in different programming languages
and using different paradigms of development. For programs
that use the message-passing paradigm, ValiPVM [103]
supports the testing of programs in PVM (Parallel Virtual

33

Table 1: A testing tools catalog for concurrent programs
Technique Paradigm Language Tools

Shared
Pthread

ValiPthread [88], DellaPasta
[118]memory

Structural Message MPI ValiMPI [35]
testing passing C Monitoring tool [40], Maple [121]

Pascal Steps [51], Pet [33]
PVM ValiPVM [103]

Both
Ada CATS [120]
Java ValiJava [104], New JLint [5], JML toolset [4]
C Valipar [105]

Shared Java Oshajava [116], Tiddle [86], Ndetermin [10], Race-
Fuzzer [93], Rstest [107]

memory C TMUnit [34], Storm [83], Relaxer[11]
Functional Message MPI ISP-GEM [38]
testing passing Ada TSG [13]

Both

UML TCaseUML [2]
PLINQ SLUG [108]
Ada TCgen [47]
C/C++ ATEMES [49]

Shared Java Javalanche [91], MutMut [30], ConMan [8]
Mutation memory C, C++ Comutation [31], CCmutator [54]
testing Message

MPI ValiMut [100]
passing

Java Vyrdmc [25], Cute [94], Fusion [113], Bandera [21],
TJT [1], TIE [65], SearchBestie [55]

C, C#, Java Chess [70]
Shared C, C++ CDSchecker [74], Inspect [119]
memory C, Pthread Concurrit [9], C2Petri [48], RegressionMaple [110]

Model .Net Gambit [20]
Based C#, Java, D DemonL [115]
testing Message C Magic [14]

passing C, MPI MPI-SPIN [99]

Both
C, C++ VIP [23]
LISP Spin [36]
Java, LTL EDA [106]
Java Droidracer [66], ConEE [76], Carisma [123], Jcute [95],

Concrash [64], Contest [53], Epaj/Eprfj [90], Have
[17], Javapathfinder [112], Omen [87], Penelope [102],
RccJava [27], Enforcer [6], Calfuzzer [92], ConcJunit
[85], Kivati [18]

C, C++ ConMem [3], Ctrigger [79], Light64 [72], Pike [28],
SPin [12], Racez [98], MultiRace [81], ThreadSanitizer
[96], Gadara [114]

Data race Shared C, Pthread MDAT [56]
and memory .Net Colfinder [117], AutoRT/CorrRT [43]
deadlock UPC UPC-Check [22]
detection Fortran Eraser [68]

Message
C, MPI

Marmot [50], MPIRace-Check
[78]passing

C, C++ Dthreads [59], InstantCheck [73], DeSTM [84]
Pthreads Kendo [77], FPDet [124], Synctester [122], DetLock

[69]
Java,C, C++ RichTest [58]
Java Conan [60], IMunit [42], Dejavu [19], SAM [16], Coop-

erari [67], Java PathExplorer [37], TransDPOR [109]
Shared C Direct [15]

Deterministic memory Titanium Titanium [46]
Testing C++, Pthreads RFDet [62]

STM,C,C++ DeTrans [101]
Ruby DPR/TARDIS [63]

Message PVM Viper [75]
passing C, PVM DEIPA [61]

Ada SpyLayer [7], AIDA [24]
C Concrest [26]

Symbolic Shared Java SPF [82], Z3 [44], LCT [45]
execution memory C/C++/Java BEST [29]

C/Pthread MultiOtter [111], CDT-Eclipce [39]

34

Machine) and ValiMPI [35] for programs in MPI (Mes-
sage Passing Interface). For programs that use the shared
memory paradigm, ValiPthread [89] tests programs using
Posix standard for threads (PThreads) and ValiJava [104]
supports the testing of Java concurrent programs. Other
tools, such as STEPS [52] and Dellapasta [118] use a
graphical representation of the program to derive test cases
and apply coverage testing criteria to evaluate the testing
activity. MonitoringTool [40] the coverage of concurrent
programs according to the testing criterion k-tuples of con-
current commands, proposed by the same authors. This
criterion requires implementation of all sequences of k length
concurrent commands. This tool can be applied to concur-
rent C programs and the coverage analysis is achieved by
monitoring of the testing execution. Mechanisms to force the
execution of concurrent commands are implemented on tool.

3.2 Functional Testing Tools
For functional testing technique, OSHAJAVA [116] uses

dynamic analysis to test the specification of concurrent pro-
grams written in Java annotations. The instrumentation of
the bytecode is used to set each “write” operation with the
state of the communication updated and the “read” opera-
tion to check if a method violated or not its specification.
The semantic formalism is used to indicate when a dynamic
operation has violated the specification of an inter-thread
communication, so that the safety properties of multithreaded
programs can be checked. Other tools, such as SLUG [108]
and Ndetermin [10] also use a program specification to
derive test cases and evaluate the testing results.

3.3 Mutation Testing Tools
For mutation testing, MutMut [30] proposes an approach

for an efficient execution of mutants in multithreaded pro-
grams. It uses a technique for the selection of mutants to
be executed. When the original program is executed, the
technique selects points in the code for mutation considering
relevant aspects of the concurrent programs. The approach
also enables the tester to select a thread to be executed,
forcing the mutation introduced to be executed. ConMan
[8] implements a set of mutation operators for concurrent
programs in Java (J2SE 5.0). The mutation operators are
classified into operators that modify critical regions, key-
words, and calls for concurrent methods and operators that
replace concurrent objects. CCmutator [54] implements
those operators as well as new specific mutation operators
for concurrent programs in PThreads. It utilizes the High
Order Mutation technique, in which two or more mutations
are inserted in the program for the creation of strong mu-
tants and improvements in the quality of the testing case
set. Comutation [31] uses selective mutation based on the
mutation operators for concurrent Java programs. Selective
mutation selects a subset of mutation operators in which test
cases that have a high mutation score for this subset also
feature for the other operators. The objective is reduce the
mutation testing cost.

3.4 Model Checking Testing Tools
The model checking technique has been widely used in

concurrent software testing and enables the analysis of sys-
tem properties by a formal model. It can also be used to
explore the state space of a system. Techniques for state
space reduction are used to limit the testing search space.

Inspect [119] uses model checking for concurrent programs
in C language. The exploration of relevant interleavings
is facilitated by the use of an executable model of the in-
strumented version of the program and enables the tool to
communicate with the scheduler. CHESS [70] implements
a model checker to analyze the correctness of concurrent
programs in relation to the expected properties (e.g. inter-
leavings) derived from a test scenario. Testing scenarios are
defined by the tester and explore all possible synchronizations
among threads. Magic [14] analyzes events and states of the
operating system. The temporal logic language LTL (Linear
Temporal Logic) is used to instantiate finite state machines.
Also considering a concurrent system formalized in LTL, it
is proposed SPIN [36] which implements a model checker to
analyze the correctness of concurrent systems in relation to
the properties formally defined. This tool is instantiated for
the MPI pattern, MPISpin [99] and later used as the basis
for verification of concurrent code in Java, Bandera [21].

3.5 Deadlock and Data Race Detection Tools
Carisma [123] implements a data race detector based on

statistic sampling. A program, in a single site of the code,
can perform multiple accesses to the memory, therefore, the
tool uses an analysis of the trace of execution to estimate and
distribute sampling between such locations and collects a
fraction of all memory accesses. The information assists the
tool in detecting data races. In an attempt to prevent data
races, programmers generally write a code that will result
in a deadlock when executed with some inputs, due to the
misuse of synchronization primitives. Some tools, such as
Gadara [114], Marmot [50], and UPC-Check [22] address
the problem of deadlock detection. They analyze the code
and insert delays into it to force the execution of a given
synchronization sequence and then detect the presence of
deadlocks, or monitor the execution through a scheduler of
processes. Javapathfinder (JPF) [112] was developed by
NASA Research Center. It uses model checking to detect
deadlock and data race in Java programs (bytecode). The
user can also define the property classes to be analyzed. JPF
monitors the execution, extracts events (synchronization and
communication) that occur and analyzes them through an
observer process. The observer performs a verification based
on the information of the monitoring and information of an
analysis of error pattern. JPF is especially useful for the
verification of concurrent Java programs due its systematic
exploration of scheduling sequences of threads, which is a
difficult task in traditional testing tools. MPIRace Check
[78] performs data race detection for programs in MPI by
checking the communication messages between the processes.

3.6 Deterministic Testing Tools
Tools are developed for provide threads control and deter-

ministic execution/re-execution in a non-deterministic envi-
ronment. They usually store information about a preliminary
execution (traces) to enable its re-execution, performing the
same synchronization sequence. Dejavu [19] records thread
schedules and the reproduction of a schedule in a controlled
execution. Dthreads [59] ensures deterministic execution,
even in the presence of data race, forcing the program to
produce the same output for each input sequence. SPY-
Layer [7] records and re-runs concurrent or distributed Java
programs, verifying and validating synchronization sequences.
The re-execution is used for error detection.

35

3.7 Symbolic Execution Tools
Symbolic execution is a powerful technique for the explo-

ration of systematic paths of a program with symbolic values
as inputs. MultiOtter [111] uses a symbolic executor to
trace values following the control flow of the program and
conceptually changes the execution if it finds a conditional
dependence of a symbolic value. LCT [45] uses a combina-
tion of dynamic and symbolic executions, known as Concolic
testing, in which the program under testing is executed in a
hybrid way with real test data and symbolic values for the
exploration of different behaviors of the program.

4. CONCLUSIONS
This paper presents a catalog that has addressed the state-

of-the-art of concurrent software testing area. The study
covered the period from 1992 to 2014 and 116 testing tools
were identified and classified into different testing techniques
and programming languages. We strongly believe the catalog
of tools and the other results provided in this study will be
useful for future research and also to help practitioners of
the area in the selection of testing techniques and tools.

The results also show concurrent software testing is still a
domain for new studies and a research trend. In recent years,
researchers have concentrated their efforts mainly on the C/C
++ and Java languages and on techniques for concurrent
context, such as: formal verification techniques, model check-
ing, static and dynamic analysis and deterministic execution.
Many tools implement a testing approach that combines
different testing techniques for increases in the quality of
testing.

In future studies, we aim at the development of an online
iterative catalog with information on all tools identified by
each technique, paradigm, language and others important
attributes. Additional research will be focus on analyses of
the benefits of the catalog to different stakeholders (testing
practitioners, enterprises and researchers) and how such
techniques and tools can be employed to improve higher
software quality.

5. ACKNOWLEDGMENT
This research is sponsored by FAPESP under process no.

2013/05046-9 and 2013/01818-7.

6. REFERENCES

[1] D. Adalid, A. Salmerón, M. D. M. Gallardo, and
P. Merino. Using spin for automated debugging of
infinite executions of java programs. J. Syst. Softw.,
90:61–75, Apr. 2014.

[2] C. ai Sun. A transformation-based approach to gen-
erating scenario-oriented test cases from uml activity
diagrams for concurrent applications. In COMPSAC,
pages 160–167. IEEE Computer Society, 2008.

[3] B. Aichernig, A. Griesmayer, E. Johnsen, R. Schlatte,
and A. Stam. Conformance testing of distributed con-
current systems with executable designs. In F. de Boer,
M. Bonsangue, and E. Madelaine, editors, Formal
Methods for Components and Objects, volume 5751
of Lecture Notes in Computer Science, pages 61–81.
Springer Berlin Heidelberg, 2009.

[4] W. Araujo, L. Briand, and Y. Labiche. On the ef-
fectiveness of contracts as test oracles in the detec-
tion and diagnosis of functional faults in concurrent
object-oriented software. Software Engineering, IEEE
Transactions on, 40(10):971–992, Oct 2014.

[5] C. Artho. Finding faults in multi-threaded programs.
Master’s thesis, Swiss Federal Institute of Technology
ETH Zǔrich, Zǔrich, 2001.

[6] C. Artho, A. Biere, and S. Honiden. Enforcer - efficient
failure injection. In Proceedings of the 14th Interna-
tional Conference on Formal Methods, FM’06, pages
412–427, Berlin, Heidelberg, 2006. Springer-Verlag.

[7] A. Bechini, J. Cutajar, and C. Prete. A tool for testing
of parallel and distributed programs in message-passing
environments. In Electrotechnical Conference, 1998.
MELECON 98., 9th Mediterranean, volume 2, pages
1308–1312 vol.2, May 1998.

[8] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation
operators for concurrent java (J2SE 5.0). Workshop
on Mutation Analysis, page 11, 2006.

[9] J. Burnim, T. Elmas, G. Necula, and K. Sen. Concurrit:
Testing concurrent programs with programmable state-
space exploration. In Proceedings of the 4th USENIX
Conference on Hot Topics in Parallelism, HotPar’12,
pages 16–16, Berkeley, CA, USA, 2012. USENIX Asso-
ciation.

[10] J. Burnim, T. Elmas, G. Necula, and K. Sen. Nde-
termin: Inferring nondeterministic sequential specifi-
cations for parallelism correctness. SIGPLAN Not.,
47(8):329–330, Feb. 2012.

[11] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent
programs on relaxed memory models. In Proceedings of
the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 122–132, New York,
NY, USA, 2011. ACM.

[12] Y. Cai, W. Chan, and Y. Yu. Taming deadlocks in
multithreaded programs. In Quality Software (QSIC),
2013 13th International Conference on, pages 276–279,
July 2013.

[13] R. Carver and R. Durham. Integrating formal methods
and testing for concurrent programs. In Proceedings
of the Tenth Annual Conference on Computer Assur-
ance, 1995. COMPASS ’95. Systems Integrity, Software
Safety and Process Security., pages 25–33, Jun 1995.

[14] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. Concurrent software verification with states,
events, and deadlocks. Formal Aspects of Computing,
V17(4):461–483, December 2005.

[15] K. Chatterjee, L. de Alfaro, V. Raman, and C. Sánchez.
Analyzing the impact of change in multi-threaded pro-
grams. In Proceedings of the 13th International Con-
ference on Fundamental Approaches to Software Engi-
neering, FASE’10, pages 293–307, Berlin, Heidelberg,
2010. Springer-Verlag.

36

[16] Q. Chen, L. Wang, and Z. Yang. Sam: Self-adaptive
dynamic analysis for multithreaded programs. In Pro-
ceedings of the 7th International Haifa Verification
Conference on Hardware and Software: Verification
and Testing, HVC’11, pages 115–129, Berlin, Heidel-
berg, 2012. Springer-Verlag.

[17] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. Have:
Detecting atomicity violations via integrated dynamic
and static analysis. In M. Chechik and M. Wirsing, edi-
tors, FASE, volume 5503 of Lecture Notes in Computer
Science, pages 425–439. Springer, 2009.

[18] L. Chew and D. Lie. Kivati: Fast detection and preven-
tion of atomicity violations. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys
’10, pages 307–320, New York, NY, USA, 2010. ACM.

[19] J.-D. Choi and A. Zeller. Isolating failure-inducing
thread schedules. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA ’02, pages 210–220, New York,
NY, USA, 2002. ACM.

[20] K. E. Coons, S. Burckhardt, and M. Musuvathi. Gam-
bit: Effective unit testing for concurrency libraries. In
Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 15–24, New York, NY, USA, 2010.
ACM.

[21] J. Corbett, M. Dwyer, and J. Hatcliff. Bandera: a
source-level interface for model checking java programs.
In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 762–765, 2000.

[22] J. Coyle, I. Roy, M. Kraeva, and G. Luecke. Upc-
check: a scalable tool for detecting run-time errors in
unified parallel c. Computer Science - Research and
Development, 28(2-3):203–209, 2013.

[23] J. Dingel and H. Liang. Automating comprehensive
safety analysis of concurrent programs using verisoft
and txl. In In Proceedings of the International Sym-
posium on Foundations of Software Engineering ACM
SIGSOFT 2004/FSE12, 2004.

[24] F. E. Eassa, L. J. Osterweil, and M. Z. Abdel Mageed.
Aida: A dynamic analyzer for ada programs. J. Syst.
Softw., 31(3):239–255, Dec. 1995.

[25] T. Elmas and S. Tasiran. Vyrdmc: Driving runtime
refinement checking with model checkers. Electr. Notes
Theor. Comput. Sci., 144(4):41–56, 2006.

[26] A. Farzan, A. Holzer, N. Razavi, and H. Veith.
Con2colic testing. In ESEC/FSE 2013, pages 37–47,
New York, NY, USA, 2013. ACM.

[27] C. Flanagan and S. N. Freund. Type-based race detec-
tion for java. In PLDI ’00, pages 219–232, New York,
NY, USA, 2000.

[28] P. Fonseca, C. Li, and R. Rodrigues. Finding complex
concurrency bugs in large multi-threaded applications.
In EuroSys ’11, pages 215–228, New York, NY, USA,
2011.

[29] M. Ganai, N. Arora, C. Wang, A. Gupta, and G. Bal-
akrishnan. Best: A symbolic testing tool for predicting
multi-threaded program failures. In ASE 2011, pages
596–599, 2011.

[30] M. Gligoric, V. Jagannath, and D. Marinov. Mut-
mut: Efficient exploration for mutation testing of mul-
tithreaded code. In ICST ’10, pages 55–64, Washington,
DC, USA, 2010.

[31] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam.
Selective mutation testing for concurrent code. In
ISSTA 2013, pages 224–234, New York, NY, USA,
2013. ACM.

[32] A. Grama, G. Karypis, V. Kumar, and A. Gupta.
Introduction to Parallel Computing. Addison Wesley,
2o edition, January 2003.

[33] E. L. Gunter and D. Peled. Path exploration tool. In
TACAS ’99, pages 405–419, London, UK, UK, 1999.

[34] D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer. C.:
TMunit: Testing software transactional memories. In
TRANSACT 2009, 2009.

[35] A. C. Hausen, S. R. Vergilio, S. Souza, P. Souza, and
A. Simao. Valimpi: Uma ferramenta para teste de
programas paralelos. In XX SBES, pages 1–6, Floria-
nopolis, SC, 2006.

[36] K. Havelund, M. Lowry, and J. Penix. Formal analysis
of a space-craft controller using spin. IEEE Trans.
Softw. Eng., 27(8):749–765, Aug. 2001.

[37] K. Havelund and G. Rosu. Monitoring java programs
with java pathexplorer. Technical report, 2001.

[38] A. Humphrey, C. Derrick, G. Gopalakrishnan, and
B. Tibbitts. Gem: Graphical explorer of mpi programs.
In ICPPW 2010, pages 161–168, Sept 2010.

[39] A. Ibing. Path-sensitive race detection with partial
order reduced symbolic execution. In Software Engi-
neering and Formal Methods, volume 8938 of Lecture
Notes in Computer Science, pages 311–322. 2015.

[40] E. Itoh, Z. Furukawa, and K. Ushijima. A prototype
of a concurrent behavior monitoring tool for testing of
concurrent programs. In APSEC 1996, pages 345–354,
Dec 1996.

[41] E. M. J. Jenny Li and D. M. Weiss. Software Testing:
Tools, pages 1178–1187. In: Encyclopedia of Software
Engineering Two-Volume Set (Print). Auerbach Publi-
cations, 2010.

[42] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu,
and D. Marinov. Improved multithreaded unit testing.
In T. Gyimothy and A. Zeller, editors, SIGSOFT FSE,
pages 223–233, 2011.

[43] A. Jannesari and F. Wolf. Automatic generation of
unit tests for correlated variables in parallel programs.
International Journal of Parallel Programming, pages
1–19, 2015.

37

[44] K. Kahkonen and K. Heljanko. Testing multithreaded
programs with contextual unfoldings and dynamic sym-
bolic execution. In ACSD 2014, pages 142–151, June
2014.

[45] K. Kähkönen, O. Saarikivi, and K. Heljanko. Lct: A
parallel distributed testing tool for multithreaded java
programs. Electronic Notes in Theoretical Computer
Science, 296:253 – 259, 2013.

[46] A. Kamil and K. Yelick. Enforcing textual alignment
of collectives using dynamic checks. In LCPC’09, pages
368–382, Berlin, Heidelberg, 2010.

[47] T. Katayama, Z. Furukawa, and K. Ushijima. Design
and implementation of test-case generation for concur-
rent programs. In Software Engineering Conference,
1998. Proceedings. 1998 Asia Pacific, pages 262–269,
Dec 1998.

[48] K. M. Kavi, A. Moshtaghi, and D.-J. Chen. Modeling
multithreaded applications using petri nets. Int. J.
Parallel Program., 30(5):353–371, Oct. 2002.

[49] C.-S. Koong, C. Shih, P.-A. Hsiung, H.-J. Lai, C.-H.
Chang, W. C. Chu, N.-L. Hsueh, and C.-T. Yang. Au-
tomatic testing environment for multi-core embedded
software—atemes. Journal of Systems and Software,
85(1):43 – 60, 2012.

[50] B. Krammer, M. S. Müller, and M. M. Resch. Mpi
application development using the analysis tool mar-
mot. In ICCS 2004, volume 3038 of Lecture Notes in
Computer Science, pages 464–471, 2004.

[51] H. Krawczyk and B. Wiszniewski. Systematic testing
of parallel programs. Technical report, Massachusetts
Institute of Technology, 1999.

[52] H. Krawczyk, B. Wiszniewski, P. Kuzora, M. Neyman,
and J. Proficz. Integrated static and dynamic analysis
of pvm programs with steps. Computers and Artificial
Intelligence, 17(5), 1998.

[53] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar.
Healing data races on-the-fly. In PADTAD ’07, pages
54–64, New York, NY, USA, 2007.

[54] M. Kusano and C. Wang. Ccmutator: A mutation
generator for concurrency constructs in multithreaded
c/c++ applications. In ASE, pages 722–725, 2013.

[55] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform
for search-based testing of concurrent software. In 8th
Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, pages 48–58, 2010.

[56] E. Larson and R. Palting. Mdat: A multithreading
debugging and testing tool. In SIGCSE ’13, pages
403–408, New York, NY, USA, 2013.

[57] Y. Lei and R. H. Carver. Reachability testing of concur-
rent programs. IEEE Trans. Software Eng., 32(6):382–
403, 2006.

[58] Y. Lei and R. H. Carver. Reachability testing of con-
current programs. IEEE Trans. Softw. Eng., 32(6):382–
403, June 2006.

[59] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
Efficient deterministic multithreading. In SOSP ’11,
pages 327–336, New York, NY, USA, 2011.

[60] B. Long, D. Hoffman, and P. Strooper. Tool support
for testing concurrent java components. Software En-
gineering, IEEE Transactions on, 29(6):555–566, June
2003.

[61] J. Lourenço, J. C. Cunha, H. Krawczyk, P. Kuzora,
M. Neyman, and B. Wiszniewski. An integrated testing
and debugging environment for parallel and distributed
programs. In EUROMICRO 97, page 291, Budapest,
Hungary, 1997.

[62] K. Lu, X. Zhou, T. Bergan, and X. Wang. Efficient
deterministic multithreading without global barriers.
In PPoPP ’14, pages 287–300, New York, NY, USA,
2014.

[63] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of
determinism in a parallel scripting language. In PLDI
’14, pages 519–529, New York, NY, USA, 2014.

[64] Q. Luo, S. Zhang, J. Zhao, and M. Hu. A lightweight
and portable approach to making concurrent failures
reproducible. In FASE’10, pages 323–337, Berlin, Hei-
delberg, 2010.

[65] G. Maheswara, J. S. Bradbury, and C. Collins. Tie:
An interactive visualization of thread interleavings. In
SOFTVIS ’10, pages 215–216, New York, NY, USA,
2010.

[66] P. Maiya, A. Kanade, and R. Majumdar. Race de-
tection for android applications. SIGPLAN Not.,
49(6):316–325, June 2014.

[67] E. R. B. Marques, F. Martins, and M. Simões. Coop-
erari: A tool for cooperative testing of multithreaded
java programs. In PPPJ ’14, pages 200–206, New York,
NY, USA, 2014. ACM.

[68] J. Mellor-Crummey. Compile-time support for effi-
cient data race detection in shared-memory parallel
programs. In PADD ’93, pages 129–139, New York,
NY, USA, 1993.

[69] H. Mushtaq, Z. Al-Ars, and K. Bertels. Efficent and
highly portable deterministic multithreading (detlock).
Computing, 96(12):1131–1147, 2014.

[70] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI’08, pages
267–280, Berkeley, CA, USA, 2008.

[71] G. J. Myers. The Art of Software Testing. John Wiley
& Sons, New York, 2 edition, 2004.

[72] A. Nistor, D. Marinov, and J. Torrellas. Light64:
lightweight hardware support for data race detection
during systematic testing of parallel programs. In
42st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-42 2009), December 12-16,
2009, New York, New York, USA, pages 541–552, 2009.

38

[73] A. Nistor, D. Marinov, and J. Torrellas. Instantcheck:
Checking the determinism of parallel programs using
on-the-fly incremental hashing. In MICRO-43 2010,
pages 251–262, Dec 2010.

[74] B. Norris and B. Demsky. Cdschecker: Checking con-
current data structures written with c/c++ atomics.
SIGPLAN Not., 48(10):131–150, Oct. 2013.

[75] M. Oberhuber, S. Rathmayer, and A. Bode. Tuning
parallel programs with computational steering and con-
trolled execution. In HICSS 1998, volume 7, pages
157–166 vol.7, Jan 1998.

[76] A. Offenwanger and Y. Lucet. Conee: An exhaustive
testing tool to support learning concurrent program-
ming synchronization challenges. In WCCCE ’14, pages
11:1–11:6, New York, NY, USA, 2014.

[77] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient deterministic multithreading in software. SIG-
PLAN Not., 44(3):97–108, Mar. 2009.

[78] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park.
Mpirace-check: Detection of message races in mpi pro-
grams. In GPC’07, pages 322–333, 2007.

[79] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing
atomicity violation bugs from their hiding places. In
ASPLOS XIV, pages 25–36, New York, NY, USA, 2009.

[80] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.
Systematic mapping studies in software engineering.
In EASE’08, pages 68–77, 2008.

[81] E. Pozniansky and A. Schuster. Multirace: Efficient on-
the-fly data race detection in multithreaded c++ pro-
grams: Research articles. Concurr. Comput. : Pract.
Exper., 19(3):327–340, Mar. 2007.

[82] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder:
Symbolic execution of java bytecode. In ASE ’10, pages
179–180, New York, NY, USA, 2010.

[83] Z. Rakamaric. Storm: static unit checking of con-
current programs. In 32nd International Conference
on Software Engineering, 2010 ACM/IEEE, volume 2,
pages 519–520, May 2010.

[84] K. Ravichandran, A. Gavrilovska, and S. Pande. Destm:
Harnessing determinism in stms for application devel-
opment. In PACT ’14, pages 213–224, New York, NY,
USA, 2014.

[85] M. Ricken and R. Cartwright. Concjunit: unit testing
for concurrent programs. In B. Stephenson and C. W.
Probst, editors, PPPJ, pages 129–132. ACM, 2009.

[86] C. Sadowski and J. Yi. Tiddle: A trace description
language for generating concurrent benchmarks to test
dynamic analyses. In WODA 2009, 2009.

[87] M. Samak and M. K. Ramanathan. Multithreaded
test synthesis for deadlock detection. SIGPLAN Not.,
49(10):473–489, Oct. 2014.

[88] F. S. Sarmanho. Teste de programas concorrentes com
memória compartilhada. Master’s thesis, ICMC/USP,
São Carlos, SP, 2009.

[89] F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, and
A. S. S. ao. Structural testing for semaphore-based
multithread programs. In ICCS (1), pages 337–346,
2008.

[90] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and atom-
icity. In PPoPP ’05, pages 83–94, New York, NY, USA,
2005. ACM.

[91] D. Schuler and A. Zeller. Javalanche: Efficient muta-
tion testing for java. In ESEC/FSE ’09, pages 297–298,
New York, NY, USA, 2009. ACM.

[92] K. Sen. Effective random testing of concurrent pro-
grams. In ASE ’07, pages 323–332, New York, NY,
USA, 2007.

[93] K. Sen. Race directed random testing of concurrent
programs. In Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 08, pages 11–21, New York, NY,
USA, 2008. ACM.

[94] K. Sen and G. Agha. Cute and jcute: Concolic unit
testing and explicit path model-checking tools. In In
CAV, pages 419–423. Springer, 2006.

[95] K. Sen and G. Agha. A race-detection and flipping
algorithm for automated testing of multi-threaded pro-
grams. In E. Bin, A. Ziv, and S. Ur, editors, Haifa
Verification Conference, pages 166–182, 2006.

[96] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In WBIA ’09, pages
62–71, New York, NY, USA, 2009. ACM.

[97] M. Shafique and Y. Labiche. A systematic review
of state-based test tools. International Journal on
Software Tools for Technology Transfer, 17(1):59–76,
2015.

[98] T. Sheng, N. Vachharajani, S. Eranian, and R. Hundt.
Racez: A lightweight and non-invasive race detection
tool for production applications. In Proceedings of the
33rd International Conference on Software Engineering,
ICSE ’11, pages 401–410. ACM, 2011.

[99] S. F. Siegel. Verifying parallel programs with mpi-spin.
In F. Cappello, T. Hérault, and J. Dongarra, editors,
PVM/MPI, volume 4757 of Lecture Notes in Computer
Science, pages 13–14. Springer, 2007.

[100] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza.
Mutation operators for concurrent programs in mpi. In
Test Workshop (LATW), 2012 13th Latin American,
pages 1–6, April 2012.

[101] V. Smiljkovic, S. Stipic, C. Fetzer, O. Unsal, A. Cristal,
and M. Valero. Detrans: Deterministic and paral-
lel execution of transactions. In 26th International
Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), 2014, SBAC-PAD
2014, pages 152–159, Oct 2014.

39

[102] F. Sorrentino, A. Farzan, and P. Madhusudan. Pene-
lope: Weaving threads to expose atomicity violations.
In Proceedings of the Eighteenth ACM SIGSOFT In-
ternational Symposium on Foundations of Software
Engineering, FSE ’10, pages 37–46, New York, NY,
USA, 2010. ACM.

[103] P. S. L. Souza, E. Sawabe, A. S. Simao, S. R. Vergilio,
and S. R. S. Souza. ValiPVM - a graphical tool for
structural testing of PVM programs. In A. Lastovetsky,
T. Kechadi, and J. Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Inter-
face, volume 5205 of Lecture Notes in Computer Science
(LNCS), pages 257–264. Springer Berlin, Heidelberg,
2008.

[104] P. S. L. Souza, S. R. S. Souza, M. G. Rocha, R. R.
Prado, and R. N. Batista. Data flow testing in con-
current programs with message-passing and shared-
memory paradigms. In ICCS, pages 149–158, 2013.

[105] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S.
Simão, T. B. Goncalves, A. M. Lima, and A. C. Hausen.
Valipar: A testing tool for message-passing parallel
programs. In SEKE, pages 386–391, 2005.

[106] J. Staunton and J. A. Clark. Applications of model
reuse when using estimation of distribution algorithms
to test concurrent software. In SSBSE’11, pages 97–111,
Berlin, Heidelberg, 2011.

[107] S. D. Stoller. Testing concurrent Java programs us-
ing randomized scheduling. In Second Workshop on
Runtime Verification (RV), volume 70(4), July 2002.

[108] R. Tan, P. Nagpal, and S. Miller. Automated black
box testing tool for a parallel programming library. In
Proceedings of the 2009 International Conference on
Software Testing Verification and Validation, ICST ’09,
pages 307–316, April 2009.

[109] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay,
D. Marinov, and G. Agha. Transdpor: A novel dynamic
partial-order reduction technique for testing actor pro-
grams. In FMOODS/FORTE, volume 7273 of Lecture
Notes in Computer Science, pages 219–234, 2012.

[110] P. Thomson, A. F. Donaldson, and A. Betts. Concur-
rency testing using schedule bounding: An empirical
study. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’14, pages 15–28, New York, NY,
USA, 2014. ACM.

[111] J. Turpie, E. Reisner, J. S. Foster, and M. Hicks. Mul-
tiotter: Multiprocess symbolic execution. Technical
report, 2011.

[112] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with java pathfinder. SIGSOFT Softw.
Eng. Notes, 29(4):97–107, July 2004.

[113] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. In Proceedings of the
33rd International Conference on Software Engineering,
ICSE ’11, pages 221–230, New York, NY, USA, 2011.
ACM.

[114] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 281–294, Berkeley,
CA, USA, 2008. USENIX Association.

[115] S. West, S. Nanz, and B. Meyer. Demonic testing of con-
current programs. In T. Aoki and K. T. 0001, editors,
ICFEM, volume 7635 of Lecture Notes in Computer
Science, pages 478–493. Springer, 2012.

[116] B. P. Wood, A. Sampson, L. Ceze, and D. Gross-
man. Composable specifications for structured shared-
memory communication. In OOPSLA, pages 140–159.
ACM, 2010.

[117] Z. Wu, K. Lu, X. Wang, and X. Zhou. Collaborative
technique for concurrency bug detection. International
Journal of Parallel Programming, 43(2):260–285, 2015.

[118] C. S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-
path coverage for parallel programs. ACM SIGSOFT
Software Engineering Notes, 23:153–162, March 1998.

[119] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
runtime model checker for multithreaded c programs.
Technical report, 2008.

[120] M. Young, R. N. Taylor, D. L. Levine, K. A. Nies, and
D. Brodbeck. A concurrency analysis tool suite for ada
programs: Rationale, design, and preliminary experi-
ence. ACM Trans. Softw. Eng. Methodol., 4(1):65–106,
Jan. 1995.

[121] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam.
Maple: A coverage-driven testing tool for mul-
tithreaded programs. ACM SIGPLAN Notices,
47(10):485–502, Oct. 2012.

[122] X. Yuan, Z. Wang, C. Wu, P.-C. Yew, W. Wang, J. Li,
and D. Xu. Synchronization identification through on-
the-fly test. In Proceedings of the 19th International
Conference on Parallel Processing, Euro-Par’13, pages
4–15, Berlin, Heidelberg, 2013. Springer-Verlag.

[123] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse. Carisma:
A context-sensitive approach to race-condition sample-
instance selection for multithreaded applications. In
ISSTA 2012, pages 221–231, New York, NY, USA,
2012.

[124] X. Zhou, K. Lu, X. Wang, and X. Li. Exploiting
parallelism in deterministic shared memory multipro-
cessing. Journal of Parallel and Distributed Computing,
72(5):716–727, May 2012.

40

	Introduction
	Concurrent Software Testing and Challenges
	A Catalog of Testing Tools for Concurrent Programs
	Structural Testing Tools
	Functional Testing Tools
	Mutation Testing Tools
	Model Checking Testing Tools
	Deadlock and Data Race Detection Tools
	Deterministic Testing Tools
	Symbolic Execution Tools

	Conclusions
	Acknowledgment
	REFERENCES

