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ABSTRACT

Social coding sites (e.g., Github) provide various features
like Forking and Sending Pull-requests to support crowd-
based software engineering. When using these features, a
large amount of user behavior data is recorded. User behav-
ior data can reflect developers preferences and interests in
software development activities. Online service providers in
many fields have been using user behavior data to discover
user preferences and interests to achieve various purposes.
In the field of software engineering however, there has been
few studies in mining large amount of user behavior data.
Our goal is to design an approach based on user behavior
data, to recommend relevant open source projects to devel-
opers, which can be helpful in activities like searching for
the right open source solutions to quickly build prototypes.
In this paper, we explore the possibilities of such a method
by conducting a set of experiments on selected data sets
from Github. We find it a promising direction in mining
projects’ relevance from user behavior data. Our study also
obtain some important issues that is worth considering in
this method.
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1. INTRODUCTION

Crowd-Based Software Engineering(CBSE) allows anyone
to participate in software development tasks including docu-
mentation, design, coding and testing. CBSE is widely used
in practise in recent years, especially in social coding sites
like Github. Github encourages transparency and collabo-
ration in software development activities[3]. It hosts soft-
ware repositories on git, a distributed version control sys-
tem, which supports pull-based development paradigm [4],
allowing any developer to clone any public repository and
commit changes at will. The maintainer of a project is able
to pull valuable commits and branches to the original repos-
itory. By exploiting such software development paradigm,
millions of free softwares emerge in the effort of commu-
nity. Hosting more than 10 million repositories’, Github
has become the resource pool for many developers who are
searching for open source solutions.

To support crowd-based software development, Github
has implemented various features to improve the openness
and dissemination of development process [7]. By using
these features, developers can easily be notified of the lat-
est changes of a project by “watching” a project, or clone
a project’s repository for his/her own use by “forking” a
project. The use of these features generates abundant user
behavior data, which contains rich information about the
process of software development. To be specific, a devel-
oper only pays attention to relevant projects that satisfy
certain preferences and interests. For example, a developer
who is interested in data visualization may pay attention to
projects written in R language that are suitable for statisti-
cal analysis and projects for data visualization like d3.js?; A
web application developer who is a back-end expert may be
interested in cache management systems like Memcached®
or Redis*. User behavior data records developers’ activities
around relevant projects, thus can reflect user preferences
and interests. As a result, if two projects are relevant in
satisfying the same preference or interest, it is most likely
that similar groups of people will pay attention to them,
generating similar user behavior data. So it is possible for
us to find relevance between such projects via user behavior.

Based on this hypothesis, it is a promising method to
help developers find relevant projects by mining user behav-

"https://github.com/blog/1724-10-million-repositories
https://github.com/mbostock /d3
Shttps://github.com/memcached /memcached
“https://github.com/antirez/redis



ior data. Provided that most of the developers nowadays
build prototype applications based on multiple open source
building blocks, recommending relevant projects(e.g., rec-
ommending d3.js to R programmers, or recommending Re-
dis to a Memcached user) can be helpful to developers that
are searching for the right open source components. In order
to propose such a recommendation method, we need to find
a way of properly describing relationships between projects
in user data. It is also necessary to pay attention to pros
and cons in such a method. In this paper, we explore the
possibilities of finding relevant projects via analyzing user
behavior data. Specifically, we try to answer three research
questions below:

RQ1 What types of user behavior data are suitable for
recommending relevant projects?

RQ2 What are the relationships between relevant projects
found via user behavior?

RQ3 How do projectsaf types affect recommendation re-
sults?

Aiming at answering these questions, we design a naive
vector similarity method to measure the relevance between
projects. We perform our method on a selected data set from
Github to generate a series of results. The details of our
research design is presented in Section 2. We use statistical
analysis combined with manual labelling to draw answers
to these questions. Our findings are listed in Section 3. We
discuss related work and give our conclusion in the remaining
sections.

2. RESEARCH DESIGN

To answer our research questions, we select multiple user
behavior data sets as our data source. An exploratory method
is performed to find relevant projects on each data sets.

2.1 Data

The data sets we use® are contributed by the work of Geor-
gios Gousios and Diomidis Spinellis [5]. It includes data of 89
most starred Github projects of 9 most commonly used pro-
gramming languages. The number of Github users involved
in this data set is 499,485. The time of the recorded user
behavior data ranges from 2008 when Github is launched, to
September of 2013. From the various features implemented
on Github, we select 5 most commonly used ones as our user
behavior data source. We describe each of these features be-
low:

Fork. To fork a project means to clone the entire git
repository of the project. After forking, a developer owns
a copy of the original repository and gains full access to
any version control data. Forking is usually the first step
to start using a project or to create a new branch to make
contribution to the original project.

Watch. Watching a project is like following a person on
twitter, which means subscribing every event that happens
to this project, including branch merging, version evolving
and bug reporting.

Issues Comment. Github has its own issue tracking sys-
tem. A public project’s issue tracking system is transparent
to all users on Github, which means everyone is free to raise
or discuss issues. For convenience we do not discriminate
users who raise issues from those who comment on others’
issues. They are considered equivalent in issue discussions.

®http://ghtorrent.org/msr14.html
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Table 1: Number of Records in Data Set

Data Set Number of Records
Fork 108,628
Watch 295,798
Comment on issues 534,104
Pull-Request 78,955
Membership 1,941

Pull-Request. If a developer wants to contribute to a
project, but is not an authorized committer, he or she can
send a Pull-Request to the project which includes the code
commits. The maintainers of the project are then able to
review the code to decide whether the pull-request can be
added to the main branch.

Member. To gain membership of the project means to
become an authorized committer and to have direct access
to commit to the central repository.

We exclude some other important features provided by
Github like following other users, we do not use developer-
developer relationship in our method at the moment. The
5 features we choose give us 5 different data sets, listed
in Table 1. Each of the data sets records feature usage
data about the user and the target project, i.e., when a user
forks(or watches/adds a comment to the issues of/sends a
pull-request to/become the member of) a project, a new
record is added to the corresponding data set. It is to be
noted that some of these features are open to all users on
Github like Fork or Watch, others may require some profes-
sional skills and knowledge like Pull-Request or Member.

2.2 Method

The basic idea of our method is to measure the relevance
between two projects by comparing how similar the user
behavior data on two projects is. Our method consists of
the following steps:

1st. For each of the 5 features, represent a project as an
n-dimensional user vector with n as the Number of all users.
Take Fork as an example:

(1
Each u; is either 0 or 1 depending on the records in the data
sets. For example, if user k has forked project j, then uy in
Prori(j) is 1. With the data of 5 features, we now have 5
types of user vectors for each project.

2nd. For each type of user vectors, calculate pairwise
relevance score for all projects using cosine distance. For
instance, the Fork relevance score of Project ¢ and Project
7 is calculated as such:

RelScorepork(i,7) = cos(ﬁpork(i), Prork (1))
_ ﬁFork(i) o ﬁFa'rk(j)
| Prork ()| * [ Prork () I

3rd. For each project, rank other projects by relevance
score. As a result, for each project, our method generates
5 ranked lists of 88 other projects using 5 types of user be-
havior data sets.

To answer the research questions, we perform quantitative
methods combined with qualitative analysis on the gener-
ated results. For quantitative analysis, we focus on the sta-
tistical characteristics of the relevance scores in the ranked

Prork(i) = (U1, ... tin)’

()
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Figure 1: Average Relevance Score List of Fork

lists. For qualitative analysis, we manually label the rela-
tionships between the relevant projects found by our method
into 4 types(see Section 3.2). We recruit 3 graduate students
in computer science major with more than 4 years of pro-
gramming skills to label 1283 pairs of relationships. We
divide the 1283 items into 3 subsets with each student la-
belling 2 subsets for cross validation. Conflicts in labelling
is resolved by group discussion. More details our analysis
methods are presented in Section 3.

3. STUDY RESULT

In this section, we present statistic results to answer all
research questions. We also use manual labelling to answer
RQ2. The detail of the studies for each question is described
below.

3.1 What types of user behavior data are suit-
able for recommending relevant projects?

To answer RQ1, we need to inspect the statistical charac-
teristics of the generated ranked lists. As mentioned in Sec-
tion 2.2, we have generated 5 ranked lists for each project,
that is, we have 5 sets of lists for 5 user behavior data sets,
each containing 89 ranked lists of 89 projects. Each ranked
list has 88 items with the corresponding relevance scores.
For each set of lists, we generate a Average Relevance Score
List, by calculating the average of the relevance scores at
each position for all 89 projects. As a result, we have 5 av-
erage relevance score lists, representing the statistical char-
acteristics for 5 types of user behavior data.

Figure 1 shows the average score list generated by records
of Fork. The y-axis is the value of the average relevance
score, the x-axis the ranked sequence number The shape of
the chart clearly shows that the scores of top results signif-
icantly exceed the rest, which are a long tail of low-value
results. The chart indicates that a project is significantly
relevant with a few other projects, and has low relevance
score with most of other projects. This indication agrees
with the common sense that developers are only interested
in projects that satisfy their preferences, thus a project can
only be relevant to a few other projects that are related to
a common preference or purpose. The chart of Fork, as a
result, shows that the user behavior data of Fork is able
to reflect user preferences and interests. We conclude that
the data set of Fork is suitable for recommending relevant
projects.
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Figure 2: Average Relevance Score Lists of 4 Other
Data Sets

We present the average lists generated by the other 4 user
behavior data sets in Figure 2. The results of Waitch, Pull-
Request and Member are all similar to the result of Fork,
with top results of high relevance scores and a long tail of low
relevance scores. As our previously analysis, the 3 types of
data are all suitable for recommending relevant projects.On
the other hand, the result generated by Issue Comment is
entirely different. The shape of the chart does not show
a significant difference between top results and bottom re-
sults. instead, it presents a linear relationship between the
relevance scores and the ranked sequence number. We would
have a similar ranked list if each relevance score is randomly
given within a certain range. In a word, the result of Issue
Comment data set resembles that of a randomly generated
data set and contains no valuable information regarding rel-
evance between projects. From the results presented above,
we give our first finding below:

Finding 1. 4 types of user behavior data sets including
Fork, Watch, Pull-Request and Member are suitable for rec-
ommending relevant projects, while the Issue Comment data
set is not suitable in our method and needs further study.

In the studies afterwards, we exclude the results generated
by Issue Comment data set based on this finding.

3.2 What are the relationships between rele-
vant projects found via user behavior?

One important issue in building a recommendation sys-
tem is the explanation of the recommended results. In our
method, we need to explain why top results in the ranked
list generated by user behavior data are relevant to a cer-
tain project. We observe top results of the generated ranked
lists and find 3 major types of relationship between projects.
Most of the relationships between two relevant projects be-
long to the 3 types listed below:

Dependence. Project A is dependent on project B if B is
used in A as a dependent library, a framework or other nec-
essary components. For example, Project Nodejs® is depen-
dent on Project Libuv” because it is build on top of Libuv’s
asychronous I/O library.

Shttps://github.com/joyent /node
"https://github.com/joyent/libuv



Table 2: Distribution of Relationships in Top-1 Re-
sults

Top-1
Data set Dependence  Co-use Similar  Unknown
Fork 37.93% 40.23%  14.94% 6.90%
Watch 21.13% 49.30% 16.90% 12.68%
Pull-req 45.35% 37.21%  4.65% 12.79%
Member 48.65% 35.14% 5.41% 10.81%
Total 37.37% 40.93%  11.03% 10.68%

Top-5
Data set Dependence  Co-use Similar  Unknown
Fork 19.08% 39.08% 7.82% 34.02%
Watch 15.30% 36.26% 8.22% 40.23%
Pull-req 20.91% 32.45% 5.29% 41.35%
Member 41.77% 26.58% 2.53% 29.11%
Total 20.03% 35.39% 6.78% 37.80%
Co-use. This type of relationship indicates that two

projects are often used together to serve a common purpose.
R-language-based projects are often used with Storm?®, a dis-
tributed computation framework, to achieve mass scale data
processing.

Similar. This means two projects have similar features
or functions, like Memcached and Redis, which can both be
used as memory caching systems.

Each of 3 types of relationship serves different recommen-
dation purposes. For example, a project contributor is more
interested in what the project is dependent on, but an ordi-
nary user of the project is more interested in projects that
can be co-used or with similar features. To determine what
recommendation purposes each user behavior data sets are
suitable for, we manually label top 5 results of all ranked
lists generated by 5 data sets. The 3 students we hired label
the results into 4 types including the aforementioned 3 and
an Unknown type, following this instruction: Firstly decide
if two projects are similar by reading the introduction in
the projects home page; If not, perform code search on two
projects to verify dependency; At last, use both projects’
name as keywords to conduct a search on Google, browsing
through the results on the first page to see if Co-use exists;
If the above steps fail to find a meaningful relationship, then
label it as Unknown. The results are presented in Table 2.
It is to be noted that we neglects the results with a relevance
score of zero when labelling.

We labelled 281 items in top-1 results in the ranked lists.
The total results shows that approximately 90% of Top-1
listed items are identified to have one of the 3 types of rela-
tionships with the corresponding projects. We also present
the distribution for the top-1 results generated by each of 4
types of user behavior data. We can see that different user
behavior data contribute differently to each type of rela-
tionship. The bold-font results show the percentages which
significantly exceed the corresponding percentages in total
result. We can infer that Fork and Watch may be used more
by ordinary users, for the data sets generate more results
with relationships of Co-use and Similar, which ordinary
users are likely to care about. On the contrary, the data sets
of Pull-Request and Member are more suitable for finding re-

Shttps://github.com/nathanmarz/storm
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Table 3: Project Classification

Number of
Projects
17

Category Description

Projects like a web site or a
mobile apps that can be used
by non-programmers

A collection of useful imple-
mentations that can be ref-
erenced in user programs
Stand-alone functional parts
that run independently and
provide APIs to other pro-
grams e.g., a database
Reusable  software  plat-
forms that are selectively
changeable by additional
user-written ~ codes  for
user-specific applications
Basic tools supporting soft-
ware development like pro-
gramming language, run-
times, package managing
tools.

User App

Library 22

Component 10

Framework 23

Dev-tools 11

lationships of Dependence. For top-5 results in the ranked
lists we labelled 1283 items. Comparing with the top-1 re-
sults, the percentage of Unknown relationship significantly
increased, for it is harder to find meaningful relationships
between projects with low relevance scores. For the distri-
butions generated by each data sets, comparing to the top-1
results, we can still see the similar differences in percentages
contributed by different data sets. Thus, for RQ2, we have
our conclusion below:

Finding 2. Most of relevant projects found by our method
can be identified to have one of 3 types of relationships which
are Dependence, Co-use and Similar. The data sets of Fork
and Watch are more suitable to find Co-use and Similar re-
lationships, and the data sets of Pull-Request and Member
are more suitable for Dependence relationships.

3.3 How do projects’ types affect recommen-
dation results?

When browsing through the top results of the ranked lists,
we notice a certain diversity in the recommendation effec-
tiveness between different projects. More specifically, we
find that for most projects, their relationships with the rec-
ommended relevant items can be explained in one of 3 types
labelled in Section 3.2, but for some projects, most of their
recommended relevant items are labelled as Unknown. For
these projects, our method shows low recommendation effec-
tiveness, regardless of the type of user behavior data set we
use. Based on this observation, we suspect that a project’s
type has a certain impact on the recommendation results.

To confirm our suspicion, we classify 89 projects into 5
categories to see the statistical characteristics of the ranked
lists for each type of projects. We list the classification de-
tails in Table 3. We exclude 5 projects that can not be clas-
sified into any of the 5 categories, including 3 CMS® projects

http://en.wikipedia.org/wiki/Content_management_system
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Figure 3: Average Relevance Score Lists of Each Category

and 2 template projects'®. For projects in each category, we
use the method in Sectionfefsec:rql to generate the Average
Relevance Score Lists of 4 user behavior data sets. As a
result, for each user behavior data set, we have 5 Average
Relevance Score Lists of each project category. We present
the results in Figure 3.

As analyzed in Section 3.1, only top items in each ranked
list are closely relevant to the corresponding projects, so we
focus on the differences between each category in top items
in the average lists. From the figure we can identify 2 mutual
characteristics of the 4 charts. First, the average relevance
scores of User App’s relevant projects are significantly lower
than those of other categories. Second, except for the chart
of Watch, in which the results of each category are similar,
the average relevance scores of Library’s relevant projects
are above those of other categories. These findings can be
viewed as evidences of different user behavior paradigm on
different categories of projects. On one hand, User Apps
can attract all kinds of users for they require few profes-
sional knowledge in programming, a user of such a project
is not necessarily an expert of the related field. As a result,
the user behavior data of such projects contains few informa-
tion regarding users’ preferences and interests, which leads
to poor recommendation results. On the other hand, to use
a Library means to have enough professional knowledge of
the programming language as well as the library’s API doc-
umentation. Most of the a Library’s users are programmers
with a certain level of expertise in the related field. Thus,
the user behavior data of such projects can properly reveal

198ee https://github.com/johnmyleswhite/Project Template
and https://github.com/h5bp/html5-boilerplate
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users’ preferences and interests, making the recommenda-
tion results more accurate. To conclude our study on RQ3,
a project’s type can affect the effectiveness of our method:

Finding 3. User behavior data is more effective against
Library category in recommending relevant projects, and may
have poor results on User App projects.

4. RELATED WORK

We propose a method suitable for building a recommen-
dation system. Recommendation System for Software Engi-
neering(RSSE) is an important field of Research. Robillard
et al. [11], Happel and Maalej [6] has summarized important
issues and some representative work. Most researcher in this
field focus on recommending software artifacts of small grain
such as code snippets or bug reports. One that is similar
with ours in recommendation grain is the work by McMil-
lan et al [10], who detect similar applications by analyzing
package structure. Our work focus on find a broader sense of
“relevant” projects other than similar ones. The data source
we use is also different.

The data sets used by our method are from Github, which
attracts much academic attention in recent years. The shift
of development paradigm promoted by Github has been dis-
cussed by many researchers including Dabbish et al. [3],
Begel et al. [1], McDonald and Goggins. [9]. The data sets
provided by github have also become the resource pool for
many researchers. Bird et al. [2] summarized promises and
perils of mining Github data sets. We have not found any
research work on recommending projects from Github, but
there have been many studies on mining Github data sets
to enhance software engineering from other aspects. Mar-



low et al. [8] use user behavior data to form activity traces
and personal profiles. Vasilescu et al. [13] establish associa-
tions between Github users and StackOverflow users to find
relationships between user behaviors on the two web sites.
Thung et al. [12] build network structure of repositories and
users on Github to study influence of important projects
and developers. Gousios et al. [4] use Github data sets to
study the mechanism of pull-based development and to help
maintainers to decide pull-requests’ quality.

S. CONCLUSION

In this paper, we conduct an exploratory study on find-
ing relevant projects via user behavior. We design a simple
method of mining relevant projects from user behavior data
sets from Github. In our experiments, we explore the possi-
bility of such a method and other related issues. From the
results we draw 3 major findings: Firstly, 4 types of user be-
havior data including Fork, Watch, Pull-Request and Mem-
ber are suitable for finding relevant projects, while the Issue
Comment data set is not suitable in our method; Secondly,
different user behavior data sets are suitable for different
recommendation purposes; Thirdly, projects’ type can affect
the effectiveness of our method. Base on current findings,
we conclude that it is a promising method to mine relevance
between projects in user behavior data. In the future, we
hope to extend this method into a mature approach to build
a real-world project recommendation system.
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