
Toward a Formal Theory of Extensible Software*

Shriram Krishnamurthi Matthias Felleisen

Department of Computer Science

Rice University

Houston, TX 77005-1892, USA

shriram@cs, rice. edu

Abstract

As software projects continue to grow in scale and scope, it
becomes important to reuse software. An important kind of
reuse is extensibility, i.e., the extension of software without
accessing existing code to edit or copy it. In this paper, we
propose a rigorous, semantics-based definition of software
extensibility. Then we illustrate the utility of our defini-
tions by applying them to several programs. The examina-
tion shows how programming style affects extensibility and
also drives the creation of a variant of an existing design
pattern. We consider programs in both object-oriented and
functional languages to prove the robustness of our defmi-
tions.

1 Introduction

As software projects have continued to grow in scale and
scope, it has become increasingly important to reuse pro-
gram components. Reuse lowers software development costs
by reducing development time, decreasing the number of er-
rors, and increasing the consistency of software systems. In
short, there are compelling reasons to study and understand
software reuse.

Researchers have recognized the importance of software
reuse and have made it the subject of numerous studies [13,
19, 20, 23, 28, 29]. Many of the studies cited in these surveys
describe metrics for reuse. Others examine actual software
artifacts and estimate the extent of reuse in those systems.
Most of this research, however, suffers from two important
shortcomings.

1. There are no rigorous definitions of reuse, which makes
reusable software difficult to identify and classify, es-

*This research was partially supported by NSF grants CCR-
9619756 and CCR-9708957, and by a Texas ATP grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice end the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SlGSOFT '98 11198 Florida, USA
© 1998 ACM 1-58113-108-9/98/0010...$5.00

pecially since methods such as "copy-and-paste" or
"scavenging" are considered reuse techniques by some
authors [19]. This also makes it impossible to express
the reusability properties of programs and components
in a precise manner.

2. Most of the methods of analyzing software reuse are
syntactic. For example, reuse is often measured in
terms of lines-of-code [28], which is a coarse measure
that can vary widely across languages. Other syntactic
measures suffer from similar problems.

In this paper, we focus on a specific kind of reuse called
extensibility. 1 An extensible program can be adapted to new
tasks without accessing its source code. In particular, our
definition prevents two acts. The first is source modification,
which can introduce unexpected behavioral and structural
changes. The second is copying of code, which increases
the clerical effort needed to maintain programs by introduc-
ing potential inconsistencies. Extensibility is particularly
critical for a producer who wishes to market programs that
clients can customize, but who does not want to reveal pro-
prietary source code.

Our work provides a semantic definition for extensibil-
ity. Hence, we can state, prove and compare the extensible
properties of programs on a rigorous basis. It also helps us
focus on the behavior of the program, freeing us from both
ambiguous and language-sensitive syntactic characteristics.
With these formal definitions, we can even compare the ex-
tensible properties of programs across (semantically related)

languages.
By using a rigorous characterization, software engineers

can determine whether a given program is extensible in
certain ways. Documenting programs with corresponding
statements will be invaluable to the program design process
since it enables design for anticipated classes of extensions.
More significantly, it can be used to create a catalogue of ex-
tensible software that can simplify the process of designing

large and complex systems.
Design patterns [15] are a step in this direction, but pat-

terns and their extensible properties are usually only stated

1This is colloquially called "black-box reuse" [19].

88

a b s t r a c t class Subject {
String name;
String getName () {

r e t u r n name; } }

class Prince e x t e n d s Subject {
Prince (String name) {

this.name = name; } }

class Princess e x t e n d s Subject {

Princess (String name) {
this.name = name; } }

class Frog e x t e n d s Subject {
Frog (String name) {

this.name = name; } }

Figure 1: EditObjl

class Wizard e x t e n d s Subject {
Wizard (String name) {

this.name = name; } }

Figure 2:EditObj2 Extension

a b s t r a c t class Subject {
String name;
String getName 0 {

r e t u r n name; }
Subect kiss () {

r e t u r n this ; } }

class Prince k e x t e n d s Subject {
Prince k (String name) {

this.name = name; } }

class Princess k e x t e n d s Subject {
Princess k (String name) {

this .name = name; } }

class Frog k e x t e n d s Subject {
Frog k (String name) {

this .name = name; }
Subject kiss () {

re tu rn new Prince k (name); } }

Figure 3:EditObj3

informally. As we illustrate, these informal statements can
be misleading. In addition, patterns are currently defined
in terms of object-oriented designs, which narrows their ap-
plicability.

We first present our definitions in the context of object-
oriented languages. Subsequently, we extend the definitions
to apply to functional languages as well. This extension
requires only one change, concerning the one definition that
directly refers to the syntax of the underlying language. The
remaining definitions carry over unchanged. This switch
illustrates that our definitions are robust, i.e., they depend
only minimally on the specifics of the language.

The rest of this paper is organized as follows. Section 2
illustrates the principle of extensibility through two series of
programs produced by different design principles. Section 3
introduces our formal definition of extensibility. Section 4
applies the definitions from Section 3 to the examples in
Section 2 and uses the results to define a new, more extensi-
ble version of one of the programs and a corresponding new
design pattern. Section 5 shows the robustness of the defini-
tions by extending them to functional languages. Section 6
discusses directions for future work. The last two sections
describe related work and summarize the ideas in this paper.

2 A Motivating Example

We examine two contrasting approaches to software devel-
opment through two sequences of programs: EditObj and
Int. They implement two different representations of char-
acters and actions in a fantasy game. 2 EditObj represents
a "copy-and-paste" approach to program construction. Int
uses the Interpreter pattern [15], which is claimed to per-
mit programmers to add functionality without altering or
duplicating existing code.

Each element in the two sequences is a collection of class
definitions, which we call a repertoire. Both sequences begin
with a common initial repertoire, shown in Figures 1 and 4.
The repertoire represents all characters as instances of con-
crete subclasses of Subject, which contains one method: get-
Name.

The game is a moderate market success, so we decide
to extend it with new types of characters. Specifically, we
add wizards, a new class of subjects in our imaginary land.
Both sequences are adapted in the same manner: by adding

2The programs are written in Java [16] because it is a widely-
understood object-oriented language with simple formal models [6,
12], but the results apply equally to other, semantically-related
languages.

89

a b s t r a c t c lass Subject {
String name;
String getName 0 {

r e t u r n name; } }

class Prince e x t e n d s Subject {
Prince (String name) {

this.name = name; } }

c lass Princess e x t e n d s Subject {
Princess (String name) {

this.name = name; } }

class Frog e x t e n d s Subject {
Frog (String name) {

this.name = name; } }

Figure 4: Intl

c lass Wizard e x t e n d s Subject {
Wizard (String name) {

this.name = name; } }

Figure 5: Int~ Extension

c lass Prince k e x t e n d s Prince {
Prince k (String s) {

s u p e r (s); }
Subject kiss 0 {

r e t u r n th is ; } }

c lass Princess k e x t e n d s Princess {
Princess k (String s) {

s u p e r (s); }
Subject kiss 0 {

r e t u r n th is ; } }

c lass Frog k e x t e n d s Frog {
Frog k (String s) {

s u p e r (s); }
Subject kiss O {

r e t u r n n e w Prince k (name); } }

Figure 6: Inh Extension

a new concrete subclass, Wizard, of Subject, and endowing
it with the appropriate methods. Figures 2 and 5 illustrate
this extension.

This version is even more successful. To sustain player
interest, we introduce the first behavioral change into the
game: each subject must respond to being kissed. Most
subjects ignore this advance, except frogs, who turn into
princes. This change illustrates how the two sequences dif-
fer. For the first, EditObj, the resulting repertoire is shown
in Figure 3. z (The subscript 'k ' indicates that the class has
a kiss method.) For the second, Int, we use subclassing to
add the new method, as shown in Figure 6.

Based on the informal discussion in Section 1, we con-
sider the elements of Int constructed through extension,
which the elements of EditObj are not. We formalize this
intuition in the next section.

3The class names in EditObjs mirror those in Int3 so that they
can support the same client expressions. This sti l l forces changes in
clients so that they can create instances of the right classes. This
problem can be eliminated through the use of the Abstract Factory
pattern [15] or a module system.

3 ExtensibUity in Object-Oriented Languages

In this section, we define extensibility in terms of a simple
model of sequential object-oriented languages.

To define extensibility, we must first agree on (the ab-
s tract syntax of) a minimal syntactic core language. Pro-
grams consist of a tree of classes and a directed acyclic graph
of interfaces. A class is defined incrementally through a
sequence of class extensions. A class extension describes
a collection of fields and methods relative to some super-
class. The complete class is the aggregate of all these ezten-
sions, s tar t ing from some universal base class (called Object
in Java). Similarly, interfaces are specified incrementally
through interface extensions, start ing with an empty inter-
face. We assume the language has the s tandard collection
of expressions (including, for example, conditionals and as-
signment).

D e f i n i t i o n 1 (D e f i n i t i o n) Each well-formed class or in-
terface extension is a definition.

D e f i n i t i o n 2 (R e p e r t o i r e) A repertoire is a well-formed
set of definitions.

90

D e f i n i t i o n 3 (P r o g r a m) A program consis ts o f (1) a rep-

ertoire r and (2) an express ion e (no ta ted r . e) such tha t the

result ing combina t ion is closed (i.e., has no free variables) .

Given a semantics for the programming language [6, 12],
we can express when two programs have equivalent observ-
able behavior in terms of termination.

De f in i t i on 4 (E q u i v a l e n c e)

• For the programs p l a n d p 2 , pl is functionally equiv-

alent to p2 (no ta ted p l -~ p2) i f pl hal ts w i thou t error

i f f p~ halts wi thou t error.

• For repertoires rl and r2, rl is functionally equivalent
to r~ (no ta ted rt ~ r2) i f f o r all express ions e such

that r~. e and r2 • e are programs, rt • e -~ r2 • e.

Next we define when one program conservatively extends
the behavior of another.

D e f i n i t i o n 5 (C o n t a i n m e n t) For the repertoires rl and

r2, r2 contains rl (no ta ted rl C_ r2) i f f o r each de f in i t ion d

in r l , d is in r~.

D e f i n i t i o n 6 (A p p r o x i m a t i o n)

• The program pl approximates the program p2 (no ta ted

pl E p2) i f p2 hal ts wi thou t error whenever pl halts

wi thou t error.

• For repertoires rl and r2, rl approximates r2 (no ta ted

rl f-- r2) i f f o r all express ions e such tha t rl . e and

r2 • e are programs, r l • e [- r 2 • e .

D e f i n i t i o n 7 (Behav io ra l E x t e n s i o n) For repertoires rl

and r2, r2 behaviorally extends rt (n o t a t e d r l <3r2) i / r1 C_ r2

and rl E_ r2.

This definition requires the extension to mimic the behavior
of the extended program on inputs common to both; thus it
allows only conservat ive extensions. 4

It suffices to use termination as a test for equality because
equivalence and approximation are defined in terms of all

expressions that are closed with respect to the repertoire.
This includes expressions of the form

if ((e has the desired value))
(halt)

else
(loop forever)

This expression reports, via termination, whether the ex-
pression e reduces to the desired value. If e does not termi-
nate, it will not test equal to any value through this process.

With these definitions, we can define our key notion: rel-
ative extensibility.

4 W h e n a p r o g r a m is e x t e n d e d in a n o n - c o n s e r v a t i v e f a s h i o n , i t

is i m p o s s i b l e t o d e t e r m i n e h o w t h e s e c h a n g e s in b e h a v i o r will af-

f ec t c l i en t s . T h e r e f o r e , o u r d e f i n i t i o n s d o n o t a c c o m m o d a t e s u c h

e x t e n s i o n s .

D e f i n i t i o n 8 (R e l a t i ve E x t e n s i b i l i t y) For reper to i resx ,

r and r ~, x is an extensible version of r with respect to r' i f

r ~ x and there exis ts a repertoire x ' such that x <3 x ~ and
X I _~ r I"

Relative extensibility is a property of one repertoire x with
respect to two others, r and r ' . Suppose x and r have the
same observable behavior. (They may even be the same

program.) There are many possible programs r ' that can
be produced starting from r. The de f in i t ion places no con-

s traints on the re lat ionship between r and r~; r ' may have
been obtained through extension, by manual editing (like

the E d i t O b j sequence of Section 2), or even by replacing r
entirely. For some of these r ' , we can produce x ' as a be-
havioral extension of x such that x ' and r ' have the same
behavior. That is, x' is x with some additional definitions.
Therefore we call it an extensible version of r with respect
to r t.

This definition has an important implication: extensi-

bility is always defined with respect to specific propert ies .

In our definition, the property is represented by the "dif-
ference" between r and r ' . We believe it is meaningless to
speak about extensibility without mentioning the properties
in question.

4 Success and Failure of Patterns

To illustrate the utility of our definitions, we apply them to
the examples of Section 2. This reveals the strengths and
weaknesses of the Interpreter pat tern in providing extensi-
bility.

4.1 The EditObj and Int Sequences

Proposi t ion 1 In t l <~ Int~ <~ Int3.

Proof Sketch By construction, I n h C_ Int2 C_ Ints . None
of the repertoire extensions overrides a method, or contains
a method that is invoked, in the repertoire that it extends.
Therefore, the observable behavior of existing programs is
not affected by any of the extensions. O

Proposition 1 shows that the I n t sequence conforms to
our definition of extensibility. Next we show that the first
three repertoires in I n t are equivalent to their Edi tOb j coun-
terparts.

Proposi t ion 2 Edi tObj l -~ In t t and EditObj2 ~- Int2.

Proof Sketch This follows trivially since the repertoires
are syntactically identical. O

Proposi t ion 3 EditObj3 ~- In ts .

Proof Sketch Any expression that forms a program with
both EditObj3 and Int3 can create instances of only the
Princek, Princess k or Frog k classes. The kiss method in
Frog k also creates instances of Prince k. Thus, the objects
created by each program have the same methods with the

91

a b s t r a c t class Subject {
String name;
String getName 0 {

r e t u r n name; }
a b s t r a c t Subject kiss 0;
a b s t r a c t Subject spellCast (); }

class Princek, s e x t e n d s Subject {
Princek, s (String name) {

this.name = name; }
Subject kiss () {

return this; }
Subject spelICast 0 {

r e t u r n this; } }

class Princessk, s e x t e n d s Subject {
Princessk, s (String name) {

this.name = name; }
Subject kiss () {

r e t u r n this; }
Subject spellCast 0 {

r e t u r n this; } }

class Frogk, s e x t e n d s Subject {
Frogk, s (String name) {

this.name = name; }
Subject kiss () {

r e t u r n new Princek, s (name); }
Subject spellCast 0 {

r e t u r n this.kiss 0; } }

Figure 7:EditObj4

class Princek, s e x t e n d s Prince k {
Princek, s (String s) {

s u p e r (s); }
Subject spellCast 0 {

r e t u r n this; } }

class Princessk, s e x t e n d s Princess k {
Princessk, s (String s) {

s u p e r (s); }
Subject spellCast 0 {

r e t u r n this; } }

class Frogk, s e x t e n d s Frog k {
Frogk, s (String s) {

s u p e r (s); }
Subject spelICast 0 {

r e t u r n this.kiss 0; } }

Figure 8 : In t4 Extension

same implementations. Therefore they have the same ob-
servable behavior. []

To study the extensibility characteristics of the Inter-
preter pattern in more depth, we add one more action to
our game: characters can now cast spells on one another.
The details of spells are unimportant for our exposition;
hence, the spellCast method always returns th is except for
Frogs, which behave as if they have been kissed. As before,
in EditObj4 we add the spellCast method directly to the
existing source (Figure 7), while in Int4 we add it through
class extension (Figure 8). (The 's' subscript indicates the
presence of the spellCast method.)

Now it is not true that EditObj4 -~ Int4. The kiss method
in Int4 is inherited from Int3, and any object created by that
method will only create instances of Princek, not Princek, s.
Hence, the two repertoires are not equivalent.

P r o p o s i t i o n 4 EditObj4 ~ Int4.

P r o o f Ske tch It suffices to present an expression e such
that EditObj4 terminates without an error while the program
Int4. e raises an error. Consider

(new Frogk, s ("Kermit")).kiss 0 •

EditObj4 creates an instance of Princek, s that contains the
spellCast method. In contrast, lnt4 invokes the kiss method
inherited from Frog k. This method creates an instance of
Prince k that does not contain a spellCast method. There-
fore, the expression

((new Frogk, s ("Kermit")).kissO).spellCast(...)

results in an error in repertoire Int4, but not in EditObj4. []
Our propositions show that lntl is an extensible version

of EditObjl with respect to each of EditObj2 and EditObj3.
However, Irtt3 is not an extensible version of EditObja with
respect to EditObj4. The proof's counter-example shows
that any extension of Int3 that is equivalent to EditObj4
must ensure that the kiss method creates instances of the
most recent subclass of Prince k. The next section describes
a combination of patterns that increases the reuse potential
of program components based on the Interpreter pattern.

92

class Prince k e x t e n d s Prince {
Prince k (String s) {

s u p e r (s); }
Subject kiss 0 {

r e t u r n this; } }

class Princess k e x t e n d s Princess {
Princess k (String s) {

s u p e r (s); }
Subject kiss 0 {

r e t u r n this; } }

class Frog k e x t e n d s Frog {
Frog k (String s) {

s u p e r (s); }
Subject makePrince (String s) {

r e t u r n n e w Prince k (s); }
Subject kiss 0 {

r e t u r n makePrince (name); } }

Figure 9 :ExtInt3 Extension

class Princek, s e x t e n d s Prince k {
Princek, s (String s) {

s u p e r (s); }
Subject spellCast 0 {

r e t u r n this; } }

class Princessk, s e x t e n d s Princess k {
Princessk, s (String s) {

s u p e r (s); }
Subject spelICast 0 {

r e t u r n this; } }

class Frogk, s e x t e n d s Frog k {
Frogk, s (String s) {

s u p e r (s); }
Subject makePrince (String s) {

r e t u r n n e w Princek, s (s); }
Subject spellCast 0 {

r e t u r n this.kiss 0; } }

Figure 10:ExtInt4 Extension

4.2 A More Extensible Interpreter Pattern

Instead of hard-coding the object instantiation in the kiss
method of Frogk, we should decouple object creation from
other processing done by the method. We can encode this
idea by introducing a virtual constructor (sometimes called a
Factory Method [15]) to perform the creation, and overriding
the constructor to reflect extensions to Prince k. A new series
of repertoires, ExtInt, illustrates this pattern. The first two
repertoires in the series are the same as those in EditObj
and Int. In the third repertoire, we add the kiss method
(Figure 9) and introduce the virtual constructor. The fourth
implements spellCast and overrides the virtual constructor
(Figure 10).

P r o p o s i t i o n 5 EditObji ~- ExtIntl for i E 1, 2, 3, 4.

P r o o f Ske tch The proof exploits the fact that the virtual
constructor is always overridden to create instances of the
most recent extension. Other than this, it resembles the
proof for the equivalences of EditObj and Int. rn

From these results, we can conclude the following.

C o r o l l a r y 1

• Ext[nh is an extensible version of EditObjl with re-
spect to EditObj2, EditObj3 and EditObfi.

• ExtInt3 is an extensible version of EditObj3 with re-
spect to EditObj4.

Our a t tempt to prove the relative extensibility of the Int
sequence thus yields three results. First, it proves that some
members of lnt are indeed extensible (with respect to the
EditObj sequence), validating the intuition behind the In-
terpreter pat tern [15, pages 246-247]. Second, it identifies
where the extensibility of the Interpreter pat tern fails. Fi-
nally, it corrects this failure and suggests a new composite
design pattern.

5 Extensibility in Functional Languages

In a typical functional programming language such as ML,
Haskell or Scheme, a program consists of a sequence of func-
tion and data definitions followed by an expression over the
definitions which initiates evaluation. This structure differs
only slightly from our defmitions in Section 3, when a deft-
nition was either a class or interface extension. Now we also
allow function and data (or type) definitions.

De f in i t i on 9 (Def in i t i on) Each function and data or type
description is a defirfition.

The remainder of our definitions of extensibility can stay
unchanged since they are effectively independent of the con-
structs in the ambient programming language.

93

;; Exp = 0 ;; interp-1 : Exp ----+ Num
(def ine (interp-1 expr)

(error 'interp "no semantics for ~s" expr))

Figure 11: EditFunl

;; Exp = n u m (val) [plus (lhs rhs)

(define-struct num (pal))
(define-struct plus (lhs rhs))

;; interp-2 : Exp - - 4 Num

(def ine (interp-2 expr)
(cond

((n~m? expr) (num-,al e~pr))
((plus? expr) (+ (interp-2 (plus-lhs expr))

(interp-e (plus-rhs expr))))
(else (error 'interp "no semantics for "s" expr))))

Figure 12:EditFun2

;; Exp ----- num (val) I plus (lhs rhs) I minus (lhs rhs)

(define-struct hum (pal))
(define-struct plus (lhs rhs))
(deline-struct minus (lhs rhs))

;; interp-3 : Exp ~ Num
(def ine (interp-3 expr)

(cond
((hum? expr) (num-~al expr))
((plus? expr) (+ (interp-3 (plus-lhs expr))

(interp-3 (plus-rhs expr))))
((minus? expr) (- (interp-3 (minus-lhs expr))

(interp-3 (minus-rhs expr))))
(else (error 'interp "no semantics for -s" expr))))

Figure 13:EditFun3

Let us illustrate the meaning of the revised definitions
with a series of interpreters for an arithmetic language. Each
member of the series adds new terms to the language and de-
fines their meaning. Our examples are written in Scheme [1],
extended with a mechanism called d e f i n e - s t r u e t for defin-
ing structures.

The first sequence is called EditFun. These interpreters
are built in the same spirit as the EditObj sequence of Sec-
tion 2. The language of EditFunl (Figure 11), the first in-
terpreter, is empty. Therefore, it raises an error for all in-
puts. The second interpreter, EditFun~, shown in Figure 12,
understands numbers and an addition operation. Finally,
EditFun3 (Figure 13) also processes subtraction.

The EditFun sequence does not reuse code, even though
much of it is repeated from one stage to the next. To rem-
edy this we create a second sequence, MidFun, which reuses
existing interpreters and only adds the implementation of
new operations. The first interpreter (which is identical to
EditFunl) is shown in Figure 14. Figures 15 and 16 present
extensions which handle the added language features. In
each extension, the outer function--make-interp-2 in Fig-
ure 15 and make-interp-3 in Figure 16--accepts an argu-
ment that represents the next interpreter to invoke for un-
recognized terms. The inner function defines the interpreter

proper.

Unfortunately, though the MidFun sequence of inter-
preters is better from the perspective of reuse, it is not
equivalent to EditFun. Specifically, the term

(interp-3 (make-plus (make-minus (make-hum 1)
(make-hum 2))

(make-n~m 3)))
results in an error in MidFun3 but not in EditFun3 because
the recursive calls which evaluate the arguments to the ad-
dition operator in MidFun2 invoke interp-2, which cannot
handle subtraction. Therefore, MidFun2 is not an extensible
version of EditFun2 with respect to EditFun3.

The solution to this problem is presented in the Fun
sequence (Figures 17, 18 and 19). The repertoires in this
sequence are similar to those in MidFun but with a key
difference: each inner interpreter accepts two arguments.
The first argument is the expression, as before. The sec-
ond argument is the interpreter that should be used for all
recursive calls. The latter interpreter is also passed to the in-
terpreter invoked for unrecognized terms, pre-interp-2 and
pre-interp-3 are the values corresponding to the inner func-
tion declarations. 5

This programming pattern emulates two properties:

SThe successful extensibility of Emacs [32], which is one of the
most widely used extensible products, uses "hooks" to enable exten-
sions. One can understand hooks as a weak form of the next protocol
in our functional pattern.

94

;; Exp = 0 ;; interp-1 : Exp ~ Num
(de f ine (interp-1 expr)

(error ' interp "no semantics for -s" expr))

Figure 14: MidFunl

;; Exp [num (val) [plus (lhs rhs)

(define-struct hum (pal))
(define-struct plus (lhs rhs))

;; interp-2 : Exp - - + Num
(def ine (interp-2 e)

((make-interp-2 interp-1) e))

;; Interp = Exp -----4 Num

;; make-interp-2 : Interp ---+ Interp
(de f ine (make-interp-2 next)

;; the-interp-2 : Interp
(de f ine (the-interp-2 expr)

(c o n d
((hum? expr) (hum-pal expr))
((plus? expr) (+ (interp-2 (plus-lhs expr))

(interp-2 (plus-rhs expr))))
(else (next expr))))

the-interp-2)

Figure 15:MidFun2 Extension

;; Exp I minus (lhs rhs)

(define-struct minus (lhs rhs))

;; interp-3 : Exp -----+ Num
(define (interp-3 e)

((make-interp-s interp-2) e))

;; Interp = Exp ---+ Num

;; make-interp-3 : Interp ~ Interp
(de f ine (make-interp-3 next)

;; the-interp-3 : Interp
(de f ine (the-interp-3 expr)

(cond
((minus? expr) (-- (interp-3 (minus-lhs expr))

(interp-3 (minus-rhs expr))))
(else (next expr))))

the-interp-3)

Figure 16:MidFun3 Extension

i n h e r i t a n c e The next argument of each interpreter dic-
tates which interpreter 's behavior it inherits. Tech-
nically, this construction implements an "extensible
conditional", which object-oriented languages provide
automatically by means of inheritance and dispatch-
ing.

m o d u l a r i t y The interpreter provided as a second argument
to each interpreter is expected to handle the entire
language. Thus, interpreters do not need to be aware
of the rest of the language, so long as they are given
an extended interpreter and pass it appropriately when
they make calls. This pa t te rn has the same effect as
the virtual constructor described in Section 4.2.

We can now show that the Fun sequence is extensible
with respect to the members of EditFun. This validates our
design pat tern for extensible functional interpreters. More
importantly, it illustrates the robustness of our definitions,
which have a minimal dependence on the language's syntax.

6 Directions for Future Work

Ideally, we would fike to characterize whole groups of pro-
grams, not just individual ones. Design pat terns are a useful
start ing point, since they provide a convenient classification
of programs and program fragments. Unfortunately, current
formalisms for pat terns [4, 8, 30] are based largely on their
syntactic shape, not on their semantic properties. Since
these descriptions do not account for the behavior of pro-
grams, they are probably incompatible with our defufitions.
In addition, the syntactic nature of these formalisms also
commits them to certain language models, typically object-
oriented ones. We intend to re-classify pat terns based on
semantic properties, such as those outlined above. Then we
can formalize the extensibility of pat terns with respect to
certain properties.

It is fruitful to identify the facets of programs or pat terns
that designers might want to keep extensible. For instance,
the Interpreter pa t te rn defines a datatype (an abstract class

95

;; Exp = 0 ;; Interp -= Exp x Interp ~ Num

;; interp-1 : Exp) Num
(def ine (interp-1 e)

(pre-interp-1 e pre-interp-1))

;; pre-interp-1 : Interp
(de f ine (pre-interp-1 expr in t)

(error ' interp "no semantics for "s" expr))

Figure 17: FUnl

;; Exp I num (val) [plus (lhs rhs)

(define-struct hum (pal))
(deflne-struct plus (lhs rhs))

;; pre-interp-2 : Interp
(de f ine pre-interp-2

(make-interp- 2 pre-interp-1))

;; interp-2 : Exp ----4 Num
(def ine (interp-2 e)

(pre-interp-2 e pre-interp-2))

;; Interp = Exp x Interp - - + Num

;; make-interp-2 : Interp ---+ Interp
(de f ine (make-interp-2 next)

;; the-interp-2 : Interp
(de f ine (the-interp-2 expr in t)

(e o n d
((~um? expr) (n~m-val expr))
((plus? expr) (+ (in t (plus-lhs expr) in t)

(in t (plus-rhs expr) in t)))
(e lse (next expr in t))))

the-interp-~)

Figure 18: Funs Extension

;; Exp I minus (lhs rhs)

(define-struct minus (lhs rhs))

;; pre-interp-3 : Interp
(de f ine pre-interp-3

(make-interp-3 pre-interp-~))

;; interp-3 : Exp ---+ Num
(def ine (interp-3 e)

(pre-interp-3 e pre-interp-3))

;; Interp = Exp × Interp ~ Num

;; make-interp-3 : Interp ~ Interp
(de f ine (make-interp-3 next)

;; the-interp-3 : Interp
(de f ine (the-interp-3 expr in t)

(c o n d
((minus? expr) (- (in t (minus-lhs expr) in t)

(i n t (minus-rhs expr) in t)))
(e lse (next expr in t))))

the-interp-3)

Figure 19:Fun3 Extension

like Subject) with a set of variants (the concrete subclasses
like Prince). (Datatypes and variants are well-understood,
formal entities in functional languages such as Haskell [17]
or ML [24].) For each datatype, the pa t te rn provides a set of
tools (the methods in an object-oriented language, or func-
tions in a functional one). It is clearly useful to keep the
collection of variants and tools extensible.

We can then verify whether programs incorporate these
properties in an extensible manner. For example, we conjec-
ture that our version of the Interpreter pa t te rn can support
both da ta type and tool addition in an extensible fashion.
The proof highlights the steps that an implementation of
the pa t te rn must observe, such as delegating construction
of variants to virtual constructors and updat ing them in
concert with class extension.

Once we have identified a set of extensible properties,
we can design programming constructs that automatically

endows the program with these properties and maintain
code dependencies automatically. The design of such con-
structs should be guided by identifying properties, as dis-
cussed above. The approach is outlined by Krishnamurthi,
et al. [18]. We have prototyped this idea, and will present
the details in a forthcoming publication.

7 Related Work

One of the earliest expositions of the idea of reusable soft-
ware components is due to McIlroy. In his influential pa-
per [22], McIlroy anticipated off-the-shelf software compo-
nents that programmers could combine to produce complete
programs.

Design pat terns [15] are a modern variation on McIlroy's
idea of software components. They are designs that pro-
grammers can combine to produce implementations (of sys-

96

tems). There are now numerous efforts to collate such pat-
terns. These efforts, however, do not provide formal speci-
fications of the properties of patterns, so users of pat terns
must convince themselves of the extensibility of individual
patterns. Though there have been a few efforts to formalize
pat terns [4, 8, 30], these formalisms are effectively syntac-
tic. Software architectures [31] are a more formal approach
to the problem of categorizing software designs, and some-
times offer tool support [2]. However, they are concerned
with general problems of software structure, not the specific
domain of extensibility.

Many authors [19] have informally defined "black-box"
reuse, which is the foundation for our notion of extensibil-
ity. O'Malley and Batory [3] define a formal semantics of
program components in terms of their exported types, and
use this to study principles like composition and reuse. In
particular, they define two kinds of reuse: algorithmic and
class-based. The la t ter captures the same essence as black-
box reuse, but is still defined in terms of the syntactic struc-
ture of the system. We do not directly address algorithmic
reuse.

Two groups of authors have a t tempted to provide formal
specifications of extensibility that are comparable to ours.
Frappier, Mili and Ben Ayed [14] use relational calculi to
specify programs. They then compile the specifications into
a conventional programming language. They compare the
specifications for syntactic and semantic similarity, which
are similar to our notions of containment and approxima-
tion, as well as proximity. However, they do not discuss
relative extensibility. In addition, their approach requires
the designer to write specifications in a specialized language,
and their calculi do not include language features for con-
trol and program organization such as those found in most
major contemporary languages. Nierstrasz, Schneider and
Lumpe [26] a t tempt to use programming language seman-
tics to formalize software compositions. The language they
use is a variant on the It-calculus. They also mention the
benefits of formalizing design patterns, but do not present
concrete examples of formalisms.

In contrast to both these works, our underlying formal-
ism [12], which uses a class-typed model [27] covers con-
structs such as classes, interfaces and mixins, and is closely
related to calculi for control and state [10]. We also believe
it is simpler and more tractable.

Our functional language example (Section 5) was imple-
mented in Scheme, which does not have a static typing dis-
cipline. In typed functional languages such as as ML or
Haskell, the solution is complicated because these languages
do not directly offer user-definable extensible data types to
implement the expression datatype. The solution can be
encoded using ML's exceptions [11] or proposed mixin mod-
ules [7], or with Haskell's type classes [21].

Our work was inspired by studies of the expressive power
of programming languages. Those works provide frame-
works and proofs for classifying which language constructs

can be expressed in terms of others. Felleisen [9] defines
expressive language features to be those which cannot be
expressed by local macro transformations. Mitchell's char-
acterization [25] uses the types of terms to arrive at a differ-
ent characterization of expressiveness. Both works employ
the underlying language's observational equivalence relation
as we do in Section 3, and both use contexts, which are im-
plicit (and constrained to disallow definitions) in our work.
Our notion of extension is closely related to Felleisen's con-
servative extension and Mitchell 's language extension.

Krishnamurthi, Felleisen and Friedman [18] noticed the
problem with the extensibility of the Interpreter pattern.
The Extensible Interpreter presented in Section 4 is a varia-
tion on their Extensible Visitor. The Fun sequence in section
Section 5 is based on the protocol presented by Cartwright

and Felleisen [5].

8 Summary

We have described a notion of program reuse called exten-
sibility. Extensible systems are important for two major
reasons. First , they provide commercial software produc-
ers a way to distribute systems that can be customized by
clients without access to source. Second, since extensibility
is usually achieved only through careful design, satisfying
our notion of extensibility forces programmers to embrace
and exploit key software engineering principles such as ab-
straction and delegation. For example, programs are usually
made more extensible by using inheritance, overriding and
late-binding in object-oriented languages and by the use of
parameterizat ion and higher-order procedures in functional
languages. It also compels both producers and clients to
advertise and adhere to interfaces, instead of exploiting in-
ternal knowledge about the system.

Our definition characterizes relative extensibility. It de-
termines whether a program can be extended to emulate
the behavior of another. We briefly show how the theory
can be used to drive the design of a new and useful design
pat tern. We also demonstrate that our definition is robust
in that it applies with little modification to both functional
and object-oriented languages.

Acknowledgments

We thank Cormac Flanagan for stimulating discussions. The
anonymous referees provided helpful comments on the pre-
sentation.

References

[1] Abelson, H. and G. J. Sussman. Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge,
MA, 1985.

97

[2] Allen, R. and D. Garlan. A formal basis for architec-
tural cormection. ACM Transactions on Software En-
gineering and Methodology, July 1997.

[3] Batory, D. and S. O'Malley. The design and implemen-
tation of hierarchical software systems with reusable
components. A CM Transactions on Software Engineer-
ing and Methodology, 1(4):355-398, October 1992.

[4] Brown, K. G. Design reverse-engineering and auto-
mated design pattern detection in smalltalk. Master's
thesis, North Carolina State University, 1996.

[5] Cartwright, R. S. and M. Felleisen. Extensible deno-
tational language specifications. In Hagiya, M. and
J. C. Mitchell, editors, Symposium on Theoretical As-
pects of Computer Software, pages 244-272. Springer-
Verlag, April 1994. LNCS 789.

[6] Drossopoulou, S. and S. Eisenbach. Java is type safe--
probably. In European Conference on Object-Oriented
Programming, pages 389-418, 1997.

[7] Duggan, D. and C. Sourelis. Mixin modules. In Inter-
national Conference on Functional Programming, pages
262-273, May 1996.

[8] Eden, A. H., J. Gil and A. Yehudai. Precise specifica-
tion and automatic application of design patterns. In
Automated Software Engineering, 1997.

[9] Felleisen, M. On the expressive power of programming
languages. Science of Computer Programming, 17:35-
75, 1991.

[113] Felleisen, M. and R. Hieb. The revised report on the
syntactic theories of sequential control and state. The-
oretical Computer Science, 102:235-271, 1992.

[11] Findler, R. B. Modular abstract interpreters. Unpub-
lished manuscript, Carnegie Mellon University, June
1995.

[12] Flatt, M., S. Krishnamurthi and M. Felleisen. Classes
and mixins. In Symposium on Principles of Program-
ming Languages, pages 171-183, January 1998.

[13] Frakes, W. and C. Terry. Software reuse: Metrics and
models. ACM Computing Surveys, 28(2):415-435, 1996.

[14] Frappier, M., A. Mill and R. Ben Ayed. A relational cal-
culus for software reuse. In IJCAI Workshop on Formal
Approaches to the Reuse of Plans, Proofs and Programs,
1995.

[15] Gamma, E., R. Helm, R. Johnson and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Personal Computing Series.
Addison-Wesley, Reading, MA, 1995.

[16] Gosling, J., B. Joy and G. L. Steele, Jr. The Java
Language Specification. Addison-Wesley, 1996.

[17] Hudak, P., S. Peyton Jones and P. Wadler. Report on
the programming language Haskell: a non-strict, purely
functional language. ACM SIGPLAN Notices, 27(5),
May 1992. Version 1.2.

[18] Krishnamurthi, S., M. Felleisen and D. P. Friedman.
Synthesizing object-oriented and functional design to
promote re-use. In European Conference on Object-
Oriented Programming, pages 91-113, 1998.

[19] Krueger, C. W. Software reuse. ACM Computing Sur-
veys, 24(2):131-183, 1992.

[20] Leach, R. J. Software Reuse: Methods, Models, and
Costs. McGraw-Hill, 1997.

[21] Liang, S., P. Hudak and M. Jones. Monad transformers
and modular interpreters. In Symposium on Principles
of Programming Languages, pages 333-343, 1992.

[22] Mcllroy, M. D. Mass produced software components. In
Naur, P. and B. Randell, editors, Report on a Confer-
ence of the NATO Science Committee, pages 138-150,
October 1968.

[23] Mill, H., F. Mill and A. Mill. Reusing software: Issues
and research directions. IEEE Transactions on Soft-
ware Engineering, 21(6):528-562, June 1995.

[24] Milner, R., M. Tofte and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

[25] Mitchell, J. C. On abstraction and the expressive power
of programming languages. Science of Computer Pro-
gramming, 212:141-163, 1993.

[26] Nierstrasz, O., J.-G. Schneider and M. Lumpe. For-
malizing composable software systems - - a research
agenda. In IFIP Workshop on Formal Methods for
Open Object-based Distributed Systems, 1996.

[27] Palsberg, J. and M. I. Schwartzbach. Object-Oriented
Type Systems. Wiley, 1994.

[28] Poulin, J . S . Measuring Software Reuse: Princi-
ples, Practices, and Economic Models. Addison-Wesley,
1997.

[29] Prieto-Diaz, R. Status report: Software reusability.
IEEE Software, pages 61-66, May 1993.

[30] Sefika, M., A. Sane and R. H. Campbell. Monitoring
compliance of a software system with its high-level de-
sign models. In International Conference on Software
Engineering, 1995.

[31] Shaw, M. and D. Garlan. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall,
1996.

[32] Stallman, R. M. GNU Emacs Manual. Free Software
Foundation, Cambridge, MA, 1993.

98

