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Abstract 

As software projects continue to grow in scale and scope, it 
becomes important to reuse software. An important kind of 
reuse is extensibility, i.e., the extension of software without 
accessing existing code to edit or copy it. In this paper, we 
propose a rigorous, semantics-based definition of software 
extensibility. Then we illustrate the utility of our defini- 
tions by applying them to several programs. The examina- 
tion shows how programming style affects extensibility and 
also drives the creation of a variant of an existing design 
pattern. We consider programs in both object-oriented and 
functional languages to prove the robustness of our defmi- 
tions. 

1 Introduction 

As software projects have continued to grow in scale and 
scope, it has become increasingly important to reuse pro- 
gram components. Reuse lowers software development costs 
by reducing development time, decreasing the number of er- 
rors, and increasing the consistency of software systems. In 
short, there are compelling reasons to study and understand 
software reuse. 

Researchers have recognized the importance of software 
reuse and have made it the subject of numerous studies [13, 
19, 20, 23, 28, 29]. Many of the studies cited in these surveys 
describe metrics for reuse. Others examine actual software 
artifacts and estimate the extent of reuse in those systems. 
Most of this research, however, suffers from two important 
shortcomings. 

1. There are no rigorous definitions of reuse, which makes 
reusable software difficult to identify and classify, es- 
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pecially since methods such as "copy-and-paste" or 
"scavenging" are considered reuse techniques by some 
authors [19]. This also makes it impossible to express 
the reusability properties of programs and components 
in a precise manner. 

2. Most of the methods of analyzing software reuse are 
syntactic. For example, reuse is often measured in 
terms of lines-of-code [28], which is a coarse measure 
that can vary widely across languages. Other syntactic 
measures suffer from similar problems. 

In this paper, we focus on a specific kind of reuse called 
extensibility. 1 An extensible program can be adapted to new 
tasks without accessing its source code. In particular, our 
definition prevents two acts. The first is source modification, 
which can introduce unexpected behavioral and structural 
changes. The second is copying of code, which increases 
the clerical effort needed to maintain programs by introduc- 
ing potential inconsistencies. Extensibility is particularly 
critical for a producer who wishes to market programs that 
clients can customize, but  who does not want to reveal pro- 
prietary source code. 

Our work provides a semantic  definition for extensibil- 
ity. Hence, we can state, prove and compare the extensible 
properties of programs on a rigorous basis. It also helps us 
focus on the behavior of the program, freeing us from both 
ambiguous and language-sensitive syntactic characteristics. 
With these formal definitions, we can even compare the ex- 
tensible properties of programs across (semantically related) 

languages. 
By using a rigorous characterization, software engineers 

can determine whether a given program is extensible in 
certain ways. Documenting programs with corresponding 
statements will be invaluable to the program design process 
since it enables design for anticipated classes of extensions. 
More significantly, it can be used to create a catalogue of ex- 
tensible software that can simplify the process of designing 

large and complex systems. 
Design patterns [15] are a step in this direction, but pat- 

terns and their extensible properties are usually only stated 

1This is colloquially called "black-box reuse" [19]. 
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a b s t r a c t  class Subject { 
String name; 
String getName () { 

r e t u r n  name; } } 

class Prince e x t e n d s  Subject { 
Prince (String name) { 

this.name = name; } } 

class Princess e x t e n d s  Subject { 

Princess (String name) { 
this.name = name; } } 

class Frog e x t e n d s  Subject { 
Frog (String name) { 

this.name = name; } } 

Figure 1: EditObjl 

class Wizard e x t e n d s  Subject { 
Wizard (String name) { 

this.name = name; } } 

Figure 2:EditObj2 Extension 

a b s t r a c t  class Subject { 
String name; 
String getName 0 { 

r e t u r n  name; } 
Subect kiss () { 

r e t u r n  this ;  } } 

class Prince k e x t e n d s  Subject { 
Prince k (String name) { 

this.name = name; } } 

class Princess k e x t e n d s  Subject { 
Princess k (String name) { 

this .name = name; } } 

class Frog k e x t e n d s  Subject { 
Frog k (String name) { 

this .name = name; } 
Subject kiss () { 

re tu rn  new Prince k (name); } } 

Figure 3:EditObj3 

informally. As we illustrate, these informal statements can 
be misleading. In addition, patterns are currently defined 
in terms of object-oriented designs, which narrows their ap- 
plicability. 

We first present our definitions in the context of object- 
oriented languages. Subsequently, we extend the definitions 
to apply to functional languages as well. This extension 
requires only one change, concerning the one definition that 
directly refers to the syntax of the underlying language. The 
remaining definitions carry over unchanged. This switch 
illustrates that our definitions are robust, i.e., they depend 
only minimally on the specifics of the language. 

The rest of this paper is organized as follows. Section 2 
illustrates the principle of extensibility through two series of 
programs produced by different design principles. Section 3 
introduces our formal definition of extensibility. Section 4 
applies the definitions from Section 3 to the examples in 
Section 2 and uses the results to define a new, more extensi- 
ble version of one of the programs and a corresponding new 
design pattern. Section 5 shows the robustness of the defini- 
tions by extending them to functional languages. Section 6 
discusses directions for future work. The last two sections 
describe related work and summarize the ideas in this paper. 

2 A Motivating Example 

We examine two contrasting approaches to software devel- 
opment through two sequences of programs: EditObj and 
Int. They implement two different representations of char- 
acters and actions in a fantasy game. 2 EditObj represents 
a "copy-and-paste" approach to program construction. Int 
uses the Interpreter pattern [15], which is claimed to per- 
mit programmers to add functionality without altering or 
duplicating existing code. 

Each element in the two sequences is a collection of class 
definitions, which we call a repertoire. Both sequences begin 
with a common initial repertoire, shown in Figures 1 and 4. 
The repertoire represents all characters as instances of con- 
crete subclasses of Subject, which contains one method: get- 
Name. 

The game is a moderate market success, so we decide 
to extend it with new types of characters. Specifically, we 
add wizards, a new class of subjects in our imaginary land. 
Both sequences are adapted in the same manner: by adding 

2The programs are written in Java [16] because it is a widely- 
understood object-oriented language with simple formal models [6, 
12], but the results apply equally to other, semantically-related 
languages. 
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a b s t r a c t  c lass  Subject { 
String name; 
String getName 0 { 

r e t u r n  name; } } 

class  Prince e x t e n d s  Subject { 
Prince (String name) { 

this.name = name; } } 

c lass  Princess e x t e n d s  Subject { 
Princess (String name) { 

this.name = name; } } 

class  Frog e x t e n d s  Subject { 
Frog (String name) { 

this.name = name; } } 

Figure 4: Intl 

c lass  Wizard e x t e n d s  Subject { 
Wizard (String name) { 

this.name = name; } } 

Figure 5: Int~ Extension 

c lass  Prince k e x t e n d s  Prince { 
Prince k (String s) { 

s u p e r  (s); } 
Subject kiss 0 { 

r e t u r n  th is ;  } } 

c lass  Princess k e x t e n d s  Princess { 
Princess k (String s) { 

s u p e r  (s); } 
Subject kiss 0 { 

r e t u r n  th is ;  } } 

c lass  Frog k e x t e n d s  Frog { 
Frog k (String s) { 

s u p e r  (s); } 
Subject kiss O { 

r e t u r n  n e w  Prince k (name); } } 

Figure 6: Inh Extension 

a new concrete subclass, Wizard, of Subject, and endowing 
it with the appropriate methods. Figures 2 and 5 illustrate 
this extension. 

This version is even more successful. To sustain player 
interest, we introduce the first behavioral change into the 
game: each subject must respond to being kissed. Most 
subjects ignore this advance, except frogs, who turn into 
princes. This change illustrates how the two sequences dif- 
fer. For the first, EditObj, the resulting repertoire is shown 
in Figure 3. z (The subscript 'k '  indicates that  the class has 
a kiss method.) For the second, Int, we use subclassing to 
add the new method, as shown in Figure 6. 

Based on the informal discussion in Section 1, we con- 
sider the elements of Int constructed through extension, 
which the elements of EditObj are not. We formalize this 
intuition in the next section. 

3The class names in EditObjs mirror those in Int3 so that they 
can support the same client expressions. This sti l l  forces changes in 
clients so that they can create instances of the right classes. This 
problem can be eliminated through the use of the Abstract Factory 
pattern [15] or a module system. 

3 ExtensibUity in Object-Oriented Languages 

In this section, we define extensibility in terms of a simple 
model of sequential object-oriented languages. 

To define extensibility, we must first agree on (the ab- 
s tract  syntax of) a minimal syntactic core language. Pro- 
grams consist of a tree of classes and a directed acyclic graph 
of interfaces. A class is defined incrementally through a 
sequence of class extensions. A class extension describes 
a collection of fields and methods relative to some super- 
class. The complete class is the aggregate of all these ezten- 
sions, s tar t ing from some universal base class (called Object 
in Java). Similarly, interfaces are specified incrementally 
through interface extensions, start ing with an empty inter- 
face. We assume the language has the s tandard collection 
of expressions (including, for example, conditionals and as- 
signment). 

D e f i n i t i o n  1 ( D e f i n i t i o n )  Each well-formed class or in- 
terface extension is a definition. 

D e f i n i t i o n  2 ( R e p e r t o i r e )  A repertoire is a well-formed 
set of definitions. 
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D e f i n i t i o n  3 ( P r o g r a m )  A program consis ts  o f  (1) a rep- 

ertoire r and  (2) an express ion  e (no ta ted  r . e)  such tha t  the 

result ing combina t ion  is closed (i.e.,  has no free variables) .  

Given a semantics for the programming language [6, 12], 
we can express when two programs have equivalent observ- 
able behavior in terms of termination. 

De f in i t i on  4 ( E q u i v a l e n c e )  

• For the programs p l  a n d p 2 ,  pl  is functionally equiv- 

alent to p2 (no ta ted  p l  -~ p2 ) i f  pl  hal ts  w i thou t  error 

i f f  p~ halts  wi thou t  error. 

• For repertoires rl and  r2, rl  is functionally equivalent 
to r~ (no ta ted  rt  ~ r2) i f  f o r  all express ions  e such  

that  r~. e and  r2 • e are programs, rt  • e -~ r2 • e. 

Next we define when one program conservatively extends 
the behavior of another. 

D e f i n i t i o n  5 ( C o n t a i n m e n t )  For the repertoires rl  and  

r2, r2 contains rl  (no ta ted  rl  C_ r2) i f  f o r  each de f in i t ion  d 

in r l ,  d is in r~. 

D e f i n i t i o n  6 ( A p p r o x i m a t i o n )  

• The program pl  approximates the program p2 (no ta ted  

pl  E p2 ) i f  p2 hal ts  wi thou t  error whenever  pl  halts  

wi thou t  error. 

• For repertoires rl and  r2, rl  approximates r2 (no ta ted  

rl f-- r2) i f  f o r  all express ions  e such tha t  rl  . e  and  

r2 • e are programs, r l  • e [ -  r 2 • e .  

D e f i n i t i o n  7 (Behav io ra l  E x t e n s i o n )  For repertoires rl  

and  r2, r2 behaviorally extends rt  ( n o t a t e d r l  <3r2) i / r1  C_ r2 

and  rl  E_ r2. 

This definition requires the extension to mimic the behavior 
of the extended program on inputs common to both; thus it 
allows only conservat ive  extensions. 4 

It suffices to use termination as a test for equality because 
equivalence and approximation are defined in terms of all 

expressions that are closed with respect to the repertoire. 
This includes expressions of the form 

if  ((e has the desired value)) 
(halt) 

else 
(loop forever) 

This expression reports, via termination, whether the ex- 
pression e reduces to the desired value. If e does not termi- 
nate, it will not test equal to any value through this process. 

With these definitions, we can define our key notion: rel- 
ative extensibility. 

4 W h e n  a p r o g r a m  is e x t e n d e d  in a n o n - c o n s e r v a t i v e  f a s h i o n ,  i t  

is i m p o s s i b l e  t o  d e t e r m i n e  h o w  t h e s e  c h a n g e s  in  b e h a v i o r  will  af-  

f ec t  c l i en t s .  T h e r e f o r e ,  o u r  d e f i n i t i o n s  d o  n o t  a c c o m m o d a t e  s u c h  

e x t e n s i o n s .  

D e f i n i t i o n  8 ( R e l a t i ve  E x t e n s i b i l i t y )  For reper to i resx ,  

r and  r ~, x is an extensible version of r with respect to r'  i f  

r ~ x and  there exis ts  a repertoire x '  such that  x <3 x ~ and  
X I _~ r I" 

Relative extensibility is a property of one repertoire x with 
respect to two others, r and r ' .  Suppose x and r have the 
same observable behavior. (They may even be the same 

program.) There are many possible programs r '  that can 
be produced starting from r. The de f in i t ion  places no con- 

s traints  on the re lat ionship  between r and  r~; r '  may have 
been obtained through extension, by manual editing (like 

the E d i t O b j  sequence of Section 2), or even by replacing r 
entirely. For some of these r ' ,  we can produce x '  as a be- 
havioral extension of x such that x '  and r '  have the same 
behavior. That  is, x'  is x with some additional definitions. 
Therefore we call it an extensible version of r with respect 
to r t. 

This definition has an important implication: extensi- 

bility is always defined with respect to specific propert ies .  

In our definition, the property is represented by the "dif- 
ference" between r and r ' .  We believe it is meaningless to 
speak about extensibility without mentioning the properties 
in question. 

4 Success and Failure of Patterns 

To illustrate the utility of our definitions, we apply them to 
the examples of Section 2. This reveals the strengths and 
weaknesses of the Interpreter pat tern in providing extensi- 
bility. 

4.1 The EditObj and Int Sequences 

Proposi t ion 1 In t l  <~ Int~ <~ Int3. 

Proof  Sketch  By construction, I n h  C_ Int2 C_ Ints .  None 
of the repertoire extensions overrides a method, or contains 
a method that is invoked, in the repertoire that it extends. 
Therefore, the observable behavior of existing programs is 
not affected by any of the extensions. O 

Proposition 1 shows that the I n t  sequence conforms to 
our definition of extensibility. Next we show that the first 
three repertoires in I n t  are equivalent to their Edi tOb j  coun- 
terparts. 

Proposi t ion 2 Edi tObj l  -~ In t t  and  EditObj2 ~- Int2. 

Proof  Sketch  This follows trivially since the repertoires 
are syntactically identical. O 

Proposi t ion 3 EditObj3 ~- In ts .  

Proof  Sketch  Any expression that forms a program with 
both EditObj3 and Int3 can create instances of only the 
Princek, Princess k or Frog k classes. The kiss method in 
Frog k also creates instances of Prince k. Thus, the objects 
created by each program have the same methods with the 
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a b s t r a c t  class Subject { 
String name; 
String getName 0 { 

r e t u r n  name; } 
a b s t r a c t  Subject kiss 0;  
a b s t r a c t  Subject spellCast (); } 

class Princek, s e x t e n d s  Subject { 
Princek, s (String name) { 

this.name = name; } 
Subject kiss () { 

return this; } 
Subject spelICast 0 { 

r e t u r n  this;  } } 

class Princessk, s e x t e n d s  Subject { 
Princessk, s (String name) { 

this.name = name; } 
Subject kiss () { 

r e t u r n  this;  } 
Subject spellCast 0 { 

r e t u r n  this;  } } 

class  Frogk, s e x t e n d s  Subject { 
Frogk, s (String name) { 

this.name = name; } 
Subject kiss () { 

r e t u r n  new  Princek, s (name); } 
Subject spellCast 0 { 

r e t u r n  this.kiss 0;  } } 

Figure 7:EditObj4 

class Princek, s e x t e n d s  Prince k { 
Princek, s (String s) { 

s u p e r  (s); } 
Subject spellCast 0 { 

r e t u r n  this;  } } 

class Princessk, s e x t e n d s  Princess k { 
Princessk, s (String s) { 

s u p e r  (s); } 
Subject spellCast 0 { 

r e t u r n  this;  } } 

class Frogk, s e x t e n d s  Frog k { 
Frogk, s (String s) { 

s u p e r  (s); } 
Subject spelICast 0 { 

r e t u r n  this.kiss 0;  } } 

Figure 8 : In t4  Extension 

same implementations. Therefore they have the same ob- 
servable behavior. [] 

To study the extensibility characteristics of the Inter- 
preter pattern in more depth, we add one more action to 
our game: characters can now cast spells on one another. 
The details of spells are unimportant for our exposition; 
hence, the spellCast method always returns th is  except for 
Frogs, which behave as if they have been kissed. As before, 
in EditObj4 we add the spellCast method directly to the 
existing source (Figure 7), while in Int4 we add it through 
class extension (Figure 8). (The 's' subscript indicates the 
presence of the spellCast method.) 

Now it is not true that EditObj4 -~ Int4. The kiss method 
in Int4 is inherited from Int3, and any object created by that 
method will only create instances of Princek, not Princek, s. 
Hence, the two repertoires are not equivalent. 

P r o p o s i t i o n  4 EditObj4 ~ Int4. 

P r o o f  Ske tch  It suffices to present an expression e such 
that EditObj4 terminates without an error while the program 
Int4. e raises an error. Consider 

(new Frogk, s ("Kermit")).kiss 0 • 

EditObj4 creates an instance of Princek, s that  contains the 
spellCast method. In contrast, lnt4 invokes the kiss method 
inherited from Frog k. This method creates an instance of 
Prince k that does not contain a spellCast method. There- 
fore, the expression 

( (new Frogk, s ("Kermit")).kissO).spellCast(...) 

results in an error in repertoire Int4, but not in EditObj4. [] 
Our propositions show that lntl is an extensible version 

of EditObjl with respect to each of EditObj2 and EditObj3. 
However, Irtt3 is not an extensible version of EditObja with 
respect to EditObj4. The proof's counter-example shows 
that any extension of Int3 that  is equivalent to EditObj4 
must ensure that the kiss method creates instances of the 
most recent subclass of Prince k. The next section describes 
a combination of patterns that increases the reuse potential 
of program components based on the Interpreter pattern. 
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class Prince k e x t e n d s  Prince { 
Prince k (String s) { 

s u p e r  (s); } 
Subject kiss 0 { 

r e t u r n  this;  } } 

class Princess k e x t e n d s  Princess { 
Princess k (String s) { 

s u p e r  (s); } 
Subject kiss 0 { 

r e t u r n  this;  } } 

class  Frog k e x t e n d s  Frog { 
Frog k (String s) { 

s u p e r  (s); } 
Subject makePrince (String s) { 

r e t u r n  n e w  Prince k (s); } 
Subject kiss 0 { 

r e t u r n  makePrince (name); } } 

Figure 9 :ExtInt3  Extension 

class Princek, s e x t e n d s  Prince k { 
Princek, s (String s) { 

s u p e r  (s); } 
Subject spellCast 0 { 

r e t u r n  this;  } } 

class Princessk, s e x t e n d s  Princess k { 
Princessk, s (String s) { 

s u p e r  (s); } 
Subject spelICast 0 { 

r e t u r n  this;  } } 

class  Frogk, s e x t e n d s  Frog k { 
Frogk, s (String s) { 

s u p e r  (s); } 
Subject makePrince (String s) { 

r e t u r n  n e w  Princek, s (s); } 
Subject spellCast 0 { 

r e t u r n  this.kiss 0; } } 

Figure 10:ExtInt4 Extension 

4.2 A More Extensible Interpreter Pattern 

Instead of hard-coding the object instantiation in the kiss 
method of Frogk, we should decouple object creation from 
other processing done by the method. We can encode this 
idea by introducing a virtual constructor (sometimes called a 
Factory Method [15]) to perform the creation, and overriding 
the constructor to reflect extensions to Prince k. A new series 
of repertoires, ExtInt, illustrates this pattern.  The first two 
repertoires in the series are the same as those in EditObj 
and Int. In the third repertoire, we add the kiss method 
(Figure 9) and introduce the virtual constructor. The fourth 
implements spellCast and overrides the virtual constructor 
(Figure 10). 

P r o p o s i t i o n  5 EditObji ~- ExtIntl for i E 1, 2, 3, 4. 

P r o o f  Ske tch  The proof exploits the fact that  the virtual 
constructor is always overridden to create instances of the 
most recent extension. Other than this, it resembles the 
proof for the equivalences of EditObj and Int. rn 

From these results, we can conclude the following. 

C o r o l l a r y  1 

• Ext[nh is an extensible version of EditObjl with re- 
spect to EditObj2, EditObj3 and EditObfi. 

• ExtInt3 is an extensible version of EditObj3 with re- 
spect to EditObj4. 

Our a t tempt  to prove the relative extensibility of the Int 
sequence thus yields three results. First, it proves that  some 
members of lnt are indeed extensible (with respect to the 
EditObj sequence), validating the intuition behind the In- 
terpreter pat tern [15, pages 246-247]. Second, it identifies 
where the extensibility of the Interpreter pat tern fails. Fi- 
nally, it corrects this failure and suggests a new composite 
design pattern.  

5 Extensibility in Functional Languages 

In a typical functional programming language such as ML, 
Haskell or Scheme, a program consists of a sequence of func- 
tion and data definitions followed by an expression over the 
definitions which initiates evaluation. This structure differs 
only slightly from our defmitions in Section 3, when a deft- 
nition was either a class or interface extension. Now we also 
allow function and data (or type) definitions. 

De f in i t i on  9 (Def in i t i on )  Each function and data or type 
description is a defirfition. 

The remainder of our definitions of extensibility can stay 
unchanged since they are effectively independent of the con- 
structs in the ambient programming language. 
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;; Exp = 0 ;; interp-1 : Exp ----+ Num 
(def ine  ( interp-1 expr) 

(error 'interp "no semantics for ~s" expr)) 

Figure 11: EditFunl 

;; Exp = n u m  (val) [plus (lhs rhs) 

( define-struct num (pal)) 
( define-struct plus ( lhs rhs ) ) 

;; interp-2 : Exp - - 4  Num 

(def ine  ( interp-2 expr) 
( cond  

((n~m? expr) (num-,al e~pr)) 
((plus? expr) (+ (interp-2 (plus-lhs expr)) 

(interp-e (plus-rhs expr)))) 
(else (error 'interp "no semantics for "s" expr)))) 

Figure 12:EditFun2 

;; Exp ----- num (val) I plus (lhs rhs) I minus (lhs rhs) 

( define-struct hum (pal)) 
( define-struct plus (lhs rhs)) 
( deline-struct minus ( lhs rhs) ) 

;; interp-3 : Exp ~ Num 
(def ine  ( interp-3 expr) 

(cond  
((hum? expr) (num-~al expr)) 
((plus? expr) (+ ( interp-3 (plus-lhs expr) ) 

( interp-3 (plus-rhs expr ) ) ) ) 
((minus? expr) (- (interp-3 (minus-lhs expr)) 

( interp-3 ( minus-rhs expr ) ) ) ) 
(else (error 'interp "no semantics for -s" expr)))) 

Figure 13:EditFun3 

Let us illustrate the meaning of the revised definitions 
with a series of interpreters for an arithmetic language. Each 
member of the series adds new terms to the language and de- 
fines their meaning. Our examples are written in Scheme [1], 
extended with a mechanism called d e f i n e - s t r u e t  for defin- 
ing structures. 

The first sequence is called EditFun. These interpreters 
are built in the same spirit as the EditObj sequence of Sec- 
tion 2. The language of EditFunl (Figure 11), the first in- 
terpreter, is empty. Therefore, it raises an error for all in- 
puts. The second interpreter, EditFun~, shown in Figure 12, 
understands numbers and an addition operation. Finally, 
EditFun3 (Figure 13) also processes subtraction. 

The EditFun sequence does not reuse code, even though 
much of it is repeated from one stage to the next. To rem- 
edy this we create a second sequence, MidFun, which reuses 
existing interpreters and only adds the implementation of 
new operations. The first interpreter (which is identical to 
EditFunl) is shown in Figure 14. Figures 15 and 16 present 
extensions which handle the added language features. In 
each extension, the outer function--make-interp-2 in Fig- 
ure 15 and make-interp-3 in Figure 16--accepts an argu- 
ment that represents the next interpreter to invoke for un- 
recognized terms. The inner function defines the interpreter 

proper. 

Unfortunately, though the MidFun sequence of inter- 
preters is better  from the perspective of reuse, it is not 
equivalent to EditFun. Specifically, the term 

( interp-3 (make-plus (make-minus (make-hum 1) 
(make-hum 2)) 

(make-n~m 3))) 
results in an error in MidFun3 but  not in EditFun3 because 
the recursive calls which evaluate the arguments to the ad- 
dition operator in MidFun2 invoke interp-2, which cannot 
handle subtraction. Therefore, MidFun2 is not an extensible 
version of EditFun2 with respect to EditFun3. 

The solution to this problem is presented in the Fun 
sequence (Figures 17, 18 and 19). The repertoires in this 
sequence are similar to those in MidFun but  with a key 
difference: each inner interpreter accepts two arguments. 
The first argument is the expression, as before. The sec- 
ond argument is the interpreter that should be used for all 
recursive calls. The latter interpreter is also passed to the in- 
terpreter invoked for unrecognized terms, pre-interp-2 and 
pre-interp-3 are the values corresponding to the inner func- 
tion declarations. 5 

This programming pattern emulates two properties: 

SThe successful extensibility of Emacs [32], which is one of the 
most widely used extensible products, uses "hooks" to enable exten- 
sions. One can understand hooks as a weak form of the next protocol 
in our functional pattern. 
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;; Exp = 0 ;; interp-1 : Exp ~ Num 
(de f ine  (interp-1 expr) 

(error ' interp "no semantics for -s" expr)) 

Figure 14: MidFunl 

;; Exp . . . .  [num (val) [plus  (lhs rhs) 

( define-struct hum (pal)) 
( define-struct plus ( lhs rhs ) ) 

;; interp-2 : Exp - - +  Num 
(def ine  ( interp-2 e) 

( ( make-interp-2 interp-1) e ) ) 

;; Interp = Exp -----4 Num 

;; make-interp-2 : Interp ---+ Interp 
(de f ine  (make-interp-2 next) 

;; the-interp-2 : Interp 
(de f ine  ( the-interp-2 expr) 

( c o n d  
((hum? expr) (hum-pal expr)) 
((plus? expr) (+ (interp-2 (plus-lhs expr)) 

( interp-2 (plus-rhs expr) ) ) ) 
(else (next expr)))) 

the-interp-2 ) 

Figure 15:MidFun2 Extension 

;; Exp . . . .  I minus (lhs rhs) 

( define-struct minus ( lhs rhs ) ) 

;; interp-3 : Exp -----+ Num 
(define ( interp-3 e) 

( ( make-interp-s interp-2 ) e) ) 

;; Interp = Exp ---+ Num 

;; make-interp-3 : Interp ~ Interp 
(de f ine  ( make-interp-3 next) 

;; the-interp-3 : Interp 
(de f ine  ( the-interp-3 expr ) 

( cond  
((minus? expr) (-- (interp-3 (minus-lhs expr)) 

( interp-3 ( minus-rhs expr) ) ) ) 
(else  (next expr)))) 

the-interp-3 ) 

Figure 16:MidFun3 Extension 

i n h e r i t a n c e  The next argument of each interpreter dic- 
tates which interpreter 's  behavior it inherits. Tech- 
nically, this construction implements an "extensible 
conditional", which object-oriented languages provide 
automatically by means of inheritance and dispatch- 
ing. 

m o d u l a r i t y  The interpreter  provided as a second argument 
to each interpreter is expected to handle the entire 
language. Thus, interpreters do not need to be aware 
of the rest of the language, so long as they are given 
an extended interpreter  and pass it appropriately when 
they make calls. This pa t te rn  has the same effect as 
the virtual constructor described in Section 4.2. 

We can now show that  the Fun sequence is extensible 
with respect to the members of EditFun. This validates our 
design pat tern  for extensible functional interpreters. More 
importantly, it illustrates the robustness of our definitions, 
which have a minimal dependence on the language's syntax. 

6 Directions for Future Work 

Ideally, we would fike to characterize whole groups of pro- 
grams, not just  individual ones. Design pat terns  are a useful 
start ing point, since they provide a convenient classification 
of programs and program fragments. Unfortunately, current 
formalisms for pat terns  [4, 8, 30] are based largely on their 
syntactic shape, not on their semantic properties. Since 
these descriptions do not account for the behavior of pro- 
grams, they are probably incompatible with our defufitions. 
In addition, the syntactic nature of these formalisms also 
commits them to certain language models, typically object- 
oriented ones. We intend to re-classify pat terns  based on 
semantic properties, such as those outlined above. Then we 
can formalize the extensibility of pat terns  with respect to 
certain properties. 

It is fruitful to identify the facets of programs or pat terns  
that  designers might want to keep extensible. For instance, 
the Interpreter  pa t te rn  defines a datatype (an abstract  class 
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;; Exp = 0 ;; Interp -= Exp x Interp ~ Num 

;; interp-1 : Exp ) Num 
(def ine  (interp-1 e) 

(pre-interp-1 e pre-interp-1)) 

;; pre-interp-1 : Interp 
(de f ine  (pre-interp-1 expr in t )  

(error ' interp "no semantics for "s" expr)) 

Figure 17: FUnl 

;; Exp . . . .  I num (val) [plus  (lhs rhs) 

( define-struct hum (pal)) 
( deflne-struct plus (lhs rhs)) 

;; pre-interp-2 : Interp 
(de f ine  pre-interp-2 

( make-interp- 2 pre-interp-1 )) 

;; interp-2 : Exp ----4 Num 
(def ine  ( interp-2 e) 

(pre-interp-2 e pre-interp-2)) 

;; Interp = Exp x Interp - - +  Num 

;; make-interp-2 : Interp ---+ Interp 
(de f ine  (make-interp-2 next) 

;; the-interp-2 : Interp 
(de f ine  ( the-interp-2 expr in t )  

( e o n d  
((~um? expr) (n~m-val expr)) 
((plus? expr) (+  ( in t  (plus-lhs expr) in t )  

( in t  (plus-rhs expr) in t ) ) )  
(e lse  (next expr in t ) ) ) )  

the-interp-~ ) 

Figure 18: Funs Extension 

;; Exp . . . .  I minus (lhs rhs) 

( define-struct minus ( lhs rhs) ) 

;; pre-interp-3 : Interp 
(de f ine  pre-interp-3 

( make-interp-3 pre-interp-~ ) ) 

;; interp-3 : Exp ---+ Num 
(def ine  ( interp-3 e) 

(pre-interp-3 e pre-interp-3 ) ) 

;; Interp = Exp × Interp ~ Num 

;; make-interp-3 : Interp ~ Interp 
(de f ine  ( make-interp-3 next) 

;; the-interp-3 : Interp 
(de f ine  (the-interp-3 expr in t )  

( c o n d  
((minus? expr) ( -  ( in t  (minus-lhs expr) in t )  

( i n t  (minus-rhs expr) in t ) ) )  
(e lse  (next expr in t ) ) ) )  

the-interp-3 ) 

Figure 19:Fun3 Extension 

like Subject) with a set of variants (the concrete subclasses 
like Prince). (Datatypes and variants are well-understood, 
formal entities in functional languages such as Haskell [17] 
or ML [24].) For each datatype,  the pa t te rn  provides a set of 
tools (the methods in an object-oriented language, or func- 
tions in a functional one). It is clearly useful to keep the 
collection of variants and tools extensible. 

We can then verify whether programs incorporate these 
properties in an extensible manner. For example, we conjec- 
ture that  our version of the Interpreter  pa t te rn  can support  
both da ta type  and tool addition in an extensible fashion. 
The proof highlights the steps that  an implementation of 
the pa t te rn  must observe, such as delegating construction 
of variants to virtual constructors and updat ing them in 
concert with class extension. 

Once we have identified a set of extensible properties,  
we can design programming constructs that  automatically 

endows the program with these properties and maintain 
code dependencies automatically. The design of such con- 
structs should be guided by identifying properties, as dis- 
cussed above. The approach is outlined by Krishnamurthi,  
et al. [18]. We have prototyped this idea, and will present 
the details in a forthcoming publication. 

7 Related Work 

One of the earliest expositions of the idea of reusable soft- 
ware components is due to McIlroy. In his influential pa- 
per  [22], McIlroy anticipated off-the-shelf software compo- 
nents that  programmers could combine to produce complete 
programs. 

Design pat terns  [15] are a modern variation on McIlroy's 
idea of software components. They are designs that  pro- 
grammers can combine to produce implementations (of sys- 
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tems). There are now numerous efforts to collate such pat-  
terns. These efforts, however, do not provide formal speci- 
fications of the properties of patterns,  so users of pat terns  
must convince themselves of the extensibility of individual 
patterns. Though there have been a few efforts to formalize 
pat terns [4, 8, 30], these formalisms are effectively syntac- 
tic. Software architectures [31] are a more formal approach 
to the problem of categorizing software designs, and some- 
times offer tool support  [2]. However, they are concerned 
with general problems of software structure, not the specific 
domain of extensibility. 

Many authors [19] have informally defined "black-box" 
reuse, which is the foundation for our notion of extensibil- 
ity. O'Malley and Batory [3] define a formal semantics of 
program components in terms of their exported types, and 
use this to study principles like composition and reuse. In 
particular, they define two kinds of reuse: algorithmic and 
class-based. The la t ter  captures the same essence as black- 
box reuse, but  is still defined in terms of the syntactic struc- 
ture of the system. We do not directly address algorithmic 
reuse. 

Two groups of authors have a t tempted  to provide formal 
specifications of extensibility that  are comparable to ours. 
Frappier, Mili and Ben Ayed [14] use relational calculi to 
specify programs. They then compile the specifications into 
a conventional programming language. They compare the 
specifications for syntactic and semantic similarity, which 
are similar to our notions of containment and approxima- 
tion, as well as proximity. However, they do not discuss 
relative extensibility. In addition, their approach requires 
the designer to write specifications in a specialized language, 
and their calculi do not include language features for con- 
trol and program organization such as those found in most 
major contemporary languages. Nierstrasz, Schneider and 
Lumpe [26] a t tempt  to use programming language seman- 
tics to formalize software compositions. The language they 
use is a variant on the It-calculus. They also mention the 
benefits of formalizing design patterns,  but  do not present 
concrete examples of formalisms. 

In contrast to both these works, our underlying formal- 
ism [12], which uses a class-typed model [27] covers con- 
structs such as classes, interfaces and mixins, and is closely 
related to calculi for control and state [10]. We also believe 
it is simpler and more tractable. 

Our functional language example (Section 5) was imple- 
mented in Scheme, which does not have a static typing dis- 
cipline. In typed functional languages such as as ML or 
Haskell, the solution is complicated because these languages 
do not directly offer user-definable extensible data types  to 
implement the expression datatype.  The solution can be 
encoded using ML's exceptions [11] or proposed mixin mod- 
ules [7], or with Haskell's type classes [21]. 

Our work was inspired by studies of the expressive power 
of programming languages. Those works provide frame- 
works and proofs for classifying which language constructs 

can be expressed in terms of others. Felleisen [9] defines 
expressive language features to be those which cannot be 
expressed by local macro transformations. Mitchell's char- 
acterization [25] uses the types of terms to arrive at  a differ- 
ent characterization of expressiveness. Both works employ 
the underlying language's observational equivalence relation 
as we do in Section 3, and both use contexts, which are im- 
plicit (and constrained to disallow definitions) in our work. 
Our notion of extension is closely related to Felleisen's con- 
servative extension and Mitchell 's language extension. 

Krishnamurthi,  Felleisen and Friedman [18] noticed the 
problem with the extensibility of the Interpreter  pattern.  
The Extensible Interpreter presented in Section 4 is a varia- 
tion on their Extensible Visitor. The Fun sequence in section 
Section 5 is based on the protocol presented by Cartwright 

and Felleisen [5]. 

8 Summary 

We have described a notion of program reuse called exten- 
sibility. Extensible systems are important  for two major 
reasons. First ,  they provide commercial software produc- 
ers a way to distribute systems that  can be customized by 
clients without access to source. Second, since extensibility 
is usually achieved only through careful design, satisfying 
our notion of extensibility forces programmers to embrace 
and exploit key software engineering principles such as ab- 
straction and delegation. For example, programs are usually 
made more extensible by using inheritance, overriding and 
late-binding in object-oriented languages and by the use of 
parameterizat ion and higher-order procedures in functional 
languages. It also compels both producers and clients to 
advertise and adhere to interfaces, instead of exploiting in- 
ternal knowledge about the system. 

Our  definition characterizes relative extensibility. It de- 
termines whether a program can be extended to emulate 
the behavior of another. We briefly show how the theory 
can be used to drive the design of a new and useful design 
pat tern.  We also demonstrate that  our definition is robust 
in that  it  applies with little modification to both functional 
and object-oriented languages. 
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