
A Framework for Defining the Dynamic Semantics of DSLs

Ulyana Tikhonova
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
u.tikhonova@tue.nl

ABSTRACT
In this research abstract we describe our project on a common
reference framework for defining domain specific languages
(DSLs). The framework is meant for defining the dynamic
semantics of DSLs and allows for mapping the DSL definition
to the various platforms, such as verification, validation and
simulation. The objectives of the project are to make a DSL
dynamic semantics definition explicit and to use this defini-
tion for bridging technological diversity of various platforms,
used in the DSLs development.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Languages; D.3.1 [Programming Languages]: Formal Def-
initions and Theory—Semantics

General Terms
Design, Languages

Keywords
Domain Specific Languages, dynamic semantics, model trans-
formations, validation and verification

1. RESEARCH PROBLEM
Domain-Specific Languages (DSLs) are considered to be

very effective in software development and are being widely
adopt-ed by industry nowadays. On one hand, a DSL cap-
tures domain knowledge and supports its reuse via domain
notions and notation. It raises the abstraction level of solving
problems in a domain. On the other hand, a DSL implemen-
tation captures software design solutions, which implement
domain concepts and their behavior. The latter supports
reuse of these design solutions and, thus, raises efficiency of
the software development process.

In the context of Model Driven Engineering (MDE), the
development of a DSL usually includes its design via meta-
modeling and its implementation via model transformations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2237-9/13/08 ...$15.00.

A DSL metamodel captures language concepts, their compo-
sitional hierarchy, classification and cross references between
them. Model transformations implement a semantics map-
ping of the DSL metamodel to its execution behavior(s). This
means that dynamic (behavioral) semantics of the language
is specified via a semantic mapping to a semantic domain.

In practice, a DSL implementation can include a number of
semantic mappings which target different semantic domains
in purpose to achieve diverse technological goals. These tar-
get semantic domains can be: source code for execution of
the DSL programs, various formalisms for validation and/or
verification of the DSL, graphical notations for visualization
and/or simulation of the DSL programs. This means that
several semantic mappings, which target different semantic
domains, are defined for a single DSL (as shown in Figure 1).
As a consequence, there is no guarantee that the different
mappings for execution, validation, verification, etc. imple-
ment the same semantics. This potential lack of consistency
causes maintenance problems and reduces the usefulness of
targeting different semantic domains. For example, there
is no confidence that a verified model is coherent to the
corresponding executed source code.

DSL
metamodel

DSL
model

Semantics domain 1 Semantics domain 2 Semantics domain 3

legend
model

transformation

Semantics
mapping 1 Semantics

mapping 2

Semantics
mapping 3

Figure 1: The semantics for a DSL comprised by
multiple transformations

A way to overcome these issues is to use an intermediate
step for the explicit definition of the dynamic semantics of a
DSL. The DSL semantics is defined via a semantic mapping
from the DSL metamodel to a common semantic domain,
which is then used as a source for all other (predefined, im-
plemented once and DSL independent) mappings (Figure 2).
Thus, the incoherence among different DSL implementations
is avoided, as the semantics is specified once and this specifi-
cation is used as a source artifact for execution, validation,
verification, simulation, etc. Another important advantage of
this approach is an explicit definition of the dynamic seman-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2492404

735

DSL
metamodel

DSL
model

Semantics domain 1 Semantics domain 2 Semantics domain 3

Semantics
mapping

DSL-independent
mappings

Common
semantics domain

Figure 2: The semantics for a DSL is specified in a
single transformation

tics of a DSL, which contributes to the design development,
understanding and maintenance of the DSL.

The research problems that we target in this project are
the following:

• investigation of the feasibility of defining a common
semantic domain;

• bridging the technological diversity of existing semantic
domains via this common semantic domain;

• development of a language and of supporting frame-
work, that implement the common semantic domain
and the bridging.

The scope of the project is restricted to the domain of
system engineering. The expected outcome and a scientific
contribution, that we aim at in this project, is a language,
that allows for creation of new DSLs within the area of
system engineering.

2. RELATED WORK
A lot of work has been done on specifying the dynamic

(operational) semantics of general purpose languages (GPLs).
There exist formalisms, e.g. Action Semantics [9], Structural
Operational Semantics (SOS) [10], and various frameworks
and tools, e.g. K-Maude,1 Topcased,2 Kermeta.3 To make
a DSL semantics definition executable using existing for-
malisms and tools, one need to manage a wide semantic gap
between the high-level DSL concepts and low-level concepts
of general purpose languages (GPLs). In our project we
aim for decreasing this gap by introducing an intermediate
language of common semantic domain.

An implementation of this idea is proposed in the work by
Chen et.al [7]. They introduce high-level semantic units as
an intermediate common language for defining the dynamic
semantics of DSMLs (domain-specific modeling languages).
To make it possible to use different semantic units for a defi-
nition, they explore a technique for composition of semantic
units [6]. Semantic units are mapped to the Abstract State
Machine (ASM) formalism4 and the specified behavior is ex-
ecuted by means of the AsmL simulator tool. This approach
is explored using the following case study: the semantics of
SEFSM (simplified Extended Finite State Machine) is de-
fined as the composition of two semantic units, FSM (Finite

1k-framework.org/index.php/Main_Page
2www.topcased.org
3www.kermeta.org
4research.microsoft.com/en-us/projects/asml

State Machine) and SDF (Synchronous Dataflow), which are
specified in ASM.

Other areas, which can be related to our project, are
aspect oriented programming and design patterns. Aspects
and design patterns are the constructs of an intermediate
common language used in software design. The techniques of
composition of these constructs can be reused in our work.

3. APPROACH
To manage the research problems introduced in Section 1

we take a bottom-up iterative approach. We iterate over real-
life (industrial) DSLs, define their dynamic semantics and
generalize these definitions in the form of an intermediate
common language. For each DSL, that we consider, we define
its semantics on top of its existing infrastructure, trying to
aim for the practical application of the definition in the
industrial use cases (bottom-up approach). The DSLs we
define in our case studies are provided by our industrial
partner.

An outcome of this process is the COREF language (Com-
mon Reference Framework for Executable DSLs), that allows
for definition of the dynamic semantics of DSLs in terms
of the common semantic domain. The tool support of the
COREF language is a framework, which implements map-
pings of the COREF language constructs to the various
verification, validation, simulation, etc. languages and tools.

In order to design and review the COREF language, in
every iteration (for each DSL case study) we perform the
following steps:

1. define the dynamic semantics of a DSL using COREF
language and/or some existing formalism;

2. while reuse of the COREF constructs review and adjust
them if necessary;

3. if COREF language is not enough to define the DSL,
extend it with the necessary constructs;

4. map the COREF constructs to the formalisms employed
for the semantics definition, so that the supporting tools
are applicable on the next iterations.

The core characteristic of this iterative process, that allows
to assess its convergence, is an amount of reuse of the COREF
constructs. Reuse of the COREF language implies reuse of
the tools bridged by COREF and possibility to reapply use
cases supported by these tools for different DSLs.

One of the challenges of the described approach is its start-
ing point (first iteration), when the COREF language does
not exist yet. Therefore, we employ an existing formalism
for defining the DSL semantics and use this experience to
generalize and design a prototype of COREF. There exists
quite a number of formalisms for specifying behavior and
tools for analyzing these specifications using different verifica-
tion and validation techniques, e.g.: Z, B, the Abstract State
Machines (ASM) language, Structural Operational Semantics
(SOS). We chose the Event-B formalism [1].

Event-B is a specification language which employs formal
mathematical notation for modeling software and/or hard-
ware. The main reason we have chosen Event-B is that the
Rodin platform [2] offers various supporting tools: editors,
generator of so-called proof obligations, automatic provers,
animators, etc. Using Rodin means that (1) we can easily

736

prove consistency of the DSL semantics specifications with
(interactive and automatic) provers, (2) we can find dead-
locks and termination problems using model checkers, (3)
we can use animators to validate the specified semantics
with the help of domain experts, and (4) we can provide
graphical visualization of the specification to help DSL users
to understand the execution of their programs. All these
tools are available in Rodin. Another benefit of Event-B is
that it has an active community of users and developers.5

There exist a number of studies in which Event-B has
been applied to define the semantics of a DSL. Ait-Sadoune
and Ait-Ameur have used Rodin to describe the semantics
of BPEL processes [4]. Hoang et al. have used Event-B
and Rodin to automate analysis of Shadow refinement [8].
The overview of our implementation of the first iteration by
applying Event-B and the results achieved and conclusions
made in this experiment are described in Section 4.

4. PRELIMINARY RESULTS
In our first case study we specified the dynamic semantics of

a mature real-life industrial DSL using the Event-B formalism.
We employed Event-B as a target language for the semantics
mapping and implemented this mapping using model-to-
model transformation. The execution of the DSL-to-EventB
transformation allows for automatic generation of Event-B
specifications of the DSL programs, and thereby for their
analysis using the broad spectrum of the tools provided by
the Rodin platform: proving semantics coherency, model
checking and animation. The goal of this case study was to
investigate the benefits of having a formal specification of
a DSL semantics and how these benefits can be practically
achieved, applied and reused in an industrial context. The
results and outcomes of this investigation are listed below.

4.1 Use Cases and User Roles
In respect to the use cases of the application of Event-B

specification there can be distinguished two different roles: a
DSL developer and a DSL user. These roles have different
expertise and different needs. An overview of the use cases,
that involve these two roles, is depicted in Figure 3 (on the
right).

A DSL developer defines the dynamic semantics of the DSL
to verify its design, to discover its properties and to validate
that the design achieves the required behavior. The definition
and its analysis are performed once for the language but
require knowledge of proving and model checking techniques.

DSL users usually have a vague understanding of the DSL
semantics and its implementation. They can get better
understanding of the behavior of the DSL constructs and
can get the insight in the DSL implementation via animation
of its semantics specification. This type of analysis can be
performed many times and should provide a user-friendly
notation, as DSL users usually do not know formal methods
techniques.

4.2 Compliance with the MOF Meta-levels
In the MDE context a DSL is defined via its metamodel,

that captures language concepts, their compositional hier-
archy, taxonomy and cross references between them. DSL
programs instantiate this metamodel (Figure 3, on the left).
These two standard MOF (Meta Object Facility) meta-levels

5www.event-b.org

can be implemented in Event-B using generic instantiation
technique [3, 11, 5]. This technique allows for reuse of an
Event-B specification by cloning a pattern (metamodel) spec-
ification and assigning concrete values to the abstract data
types.

From the practical point of view the implementation of
gener-ic instantiation poses a challenge to prove the con-
formance of a DSL program specification to the DSL se-

mantics specification (Figure 3, on the left). An average
DSL user is not expected to prove the conformance of her
program specifications to the DSL specification using Rodin
interactive provers, as it requires knowledge of propositional
calculus and understanding of proof strategies. Therefore,
this proof should be performed automatically. In practice the
automated provers of Rodin fail to discharge all correspond-
ing theorems due to the sizes of the programs. Therefore, we
designed and implemented a technique how to evaluate the
conformance using an Event-B animator, provided in Rodin.

4.3 Modularity of Semantics Definition
Capturing semantics of a DSL given in terms of its meta-

model is rather complicated within an Event-B specification
due to their different abstraction levels. To handle this com-
plexity we employ modularity of the DSL semantics. We
distinguish two types of semantics modularity: architectural
and configurational. The architectural modularity of a DSL
is determined by its implementation design: modules, com-
ponents, layers of the existing DSL infrastructure can be
specified separately in Event-B. These specifications are then
composed together into a whole system specification using
the (de)composition technique [3, 12]. Thus, the resulting
specification is easier to create, understand and maintain.

The configurational modularity of a DSL is induced by
different semantic features, that we distinguished in the DSL
semantics. The semantic features can be also specified (and
verified and validated) separately. The separate specifica-
tion of the semantic features and their composition into a
complete DSL specification were implemented in the trans-
formation modules. Thus, the configurational modularity
of the Event-B specification was achieved by applying the
MDE techniques.

4.4 User-Friendly Visualization
To make it convenient for a DSL user to work with Event-B

we developed a graphical visualization of the DSL specifi-
cation using BMotion Studio plug-in.6 This visualization
runs together with the ProB animator and provides a GUI
(graphical user interface) for a machine being animated. By
experimenting with a DSL program in this GUI a user can
get better understanding of the DSL design and improve
efficiency of her programs.

4.5 Implementation
The resulting DSL-to-EventB transformation was implement-

ed using the Operational QVT (Query/View/Transformation)
language in the Eclipse environment.7 The input for the
transformation is provided directly by the DSL implemen-
tation software, which is compatible with the EMF (Eclipse
Modeling Framework). As a target metamodel for the trans-

6www.stups.uni-duesseldorf.de/bmotionstudio/index.
php/BMotion_Studio
7wiki.eclipse.org/M2M/Operational_QVT_Language_
(QVTO)

737

DSL
metamodel

DSL
program

DSL semantics
specification

DSL program
specification

+

+

validate

simulate

verify

DSL
developer

DSL user

Event-B / Rodin

Animation

Visualization

Proving

Model checking

«extends»

«implements»

«implements»

«implements»

«implements»

input

input

input

Figure 3: Use cases of the application of Event-B specification

formation we use Event-B Ecore implementation provided
by the EMF framework for Event-B.8

4.6 Conclusion
We have shown (1) that generic instantiation allows to

put Event-B specifications in compliance with the Meta
Object Facility (MOF) meta-levels, (2) that modularity of
dynamic semantics supports simple and clear model-to-model
transformations and allows for the reuse of already verified
specification parts by means of the composition approach,
and (3) that automated proving can be enhanced with gen-
eration and evaluation of auxiliary Event-B components. As
a result, model-to-model transformation makes Event-B and
its supporting tools applicable in the industrial use cases for
two very different roles: a DSL developer and a DSL user.
All listed above observations and implemented techniques
are described in detail in the forthcoming paper [13].

We have observed, that the abstraction level provided by
Event-B is not enough for the COREF language. As a next
step we plan to generalize the DSL-to-EventB transformation
by distinguishing reusable patterns in the Event-B specifica-
tions of the DSL. The patterns found in generalization will
form a prototype of the COREF language. This will allow
both for reuse of the developed techniques and for reuse of
already verified and visualized pieces of specification.

5. ACKNOWLEDGEMENTS
I am very grateful to my supervisor Mark van den Brand

(Eindhoven University of Technology) for the guidance and
support he provides to me.

6. REFERENCES
[1] J.-R. Abrial. Modeling in Event-B: system and software

engineering, volume 1. Cambridge Univ Pr, 2010.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang,
F. Mehta, and L. Voisin. Rodin: An Open Toolset for
Modelling and Reasoning in Event-B. International
Journal on Software Tools for Technology Transfer
(STTT), 12(6):447–466, 2010.

[3] J.-R. Abrial and S. Hallerstede. Refinement,
Decomposition, and Instantiation of Discrete Models:
Application to Event-B. Fundam. Inform., 77(1-2):1–28,
2007.

[4] I. Ait-Sadoune and Y. Ait-Ameur. Stepwise Design of
BPEL Web Services Compositions: An Event-B

8wiki.event-b.org/index.php/EMF_framework_for_
Event-B

Refinement Based Approach. In R. Lee,
O. Ormandjieva, A. Abran, and C. Constantinides,
editors, Software Engineering Research, Management
and Applications 2010, pages 51–68. Springer Berlin /
Heidelberg, 2010.

[5] D. A. Basin, A. Fürst, T. S. Hoang, K. Miyazaki, and
N. Sato. Abstract Data Types in Event-B – An
Application of Generic Instantiation. In Workshop on
the experience of and advances in developing dependable
systems in Event-B, CoRR, 2012.

[6] K. Chen, J. Porter, J. Sztipanovits, and S. Neema.
Compositional Specification Of Behavioral Semantics
For Domain-Specific Modeling Languages. Int. J.
Semantic Computing, 3:31–56, 2009.

[7] K. Chen, J. Sztipanovits, S. Abdelwalhed, and
E. Jackson. Semantic Anchoring with Model
Transformations. European Conference on Model
Driven Architecture - Foundations and Applications,
pages 115–129, 2005.

[8] T. Hoang, A. McIver, L. Meinicke, C. Morgan,
A. Sloane, and E. Susatyo. Abstractions of
non-interference security: probabilistic versus
possibilistic. Formal Aspects of Computing, pages 1–26,
2012.

[9] P. Mosses. Theory and practice of action semantics. In
W. Penczek and A. Szalas, editors, Mathematical
Foundations of Computer Science 1996, volume 1113 of
Lecture Notes in Computer Science, pages 37–61.
Springer Berlin / Heidelberg, 1996.

[10] G. D. Plotkin. A Structural Approach to Operational
Semantics. The Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[11] R. Silva and M. Butler. Supporting Reuse of Event-B
Developments through Generic Instantiation. In
K. Breitman and A. Cavalcanti, editors, 11th
International Conference on Formal Engineering
Methods, ICFEM, volume 5885 of Lecture Notes in
Computer Science, pages 466–484. Springer, 2009.

[12] R. Silva and M. Butler. Shared Event
Composition/Decomposition in Event-B. In B. K.
Aichernig, F. S. de Boer, and M. M. Bonsangue,
editors, Formal Methods for Components and Objects
(FMCO), pages 122–141. Springer, 2010.

[13] U. Tikhonova, M. Manders, M. G. J. van den Brand,
S. Andova, and T. Verhoeff. Applying Model
Transformation and Event-B for Specifying an
Industrial DSL. 2013.

738

