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ABSTRACT 
In this paper, we introduce a divide and conquer approach for the 
adaptation of distributed applications management by a 
potentially large number of interacting middleware instances. The 
method aims at a quick partitioning of the overall problem into 
smaller sub-problems that can be solved almost independently. 
The partitioning is found by symbolic reasoning and by applying 
expert knowledge that is encoded in explicit rules.  

Categories and Subject Descriptors 
D.4.7 [Operating Systems]: Organization and Design – 
distributed systems 

General Terms 
Algorithms, Performance, Design 

Keywords 
Adaptive middleware, hierarchical decomposition, symbolic 
reasoning 

1. INTRODUCTION 
In this work we consider the problem of adapting large-scale 
distributed applications in a mobile environment with multiple 
users and frequent context changes, to maintain a high utility to 
the user. We consider such problems within MUSIC [1], an 
initiative to develop a comprehensive open-source middleware 
that facilitates the development of self-adaptive software.  
MUSIC aims at a large-scale deployment of multiple middleware 
instances in parallel. Some of these instances interact, form 
clusters, and run (parts of) applications. Applications that run on 
such clusters are adapted together. Each such middleware cluster, 
or each set of related applications, is seen as an adaptation 
scenario. However, there is no one-to-one mapping between 
applications and middleware instances, i.e., applications can be 
spread out over several clusters and a cluster can host several 

applications. Furthermore, the topology of middleware clusters is 
transient and can change, merge, and split at any time. For such a 
collection of scenarios, i.e., large transient clusters of partially 
dependent, partially independent middleware instances, appli-
cations, devices, connections, and other artefacts related to 
adaptation, we assign the term theatre. 
Current solutions to the adaptation problem use a global 
approach: They consider all alternative configurations of all appli-
cations at once and choose the one that yields the best utility. For 
large theatres, this approach is not feasible due to the combi-
natorial explosion of the number of alternative configurations. As 
a consequence, we have to go beyond a global adaptation 
approach.  
Thus, we propose a Divide and Conquer (D&C) approach that 
provides both adaptation scalability and variability. The main 
goal is the immediate and quick breakdown of an overall theatre 
into smaller, logically and physically independent sub-problems 
that can be handled separately and in parallel. D&C works if the 
adaptation problems of the parts are small and independent 
enough to be solved, and if the combined solution to these parts is 
good enough to satisfy the users. In other words, D&C does not 
aim at finding a global optimal solution to the adaptation problem 
but at a scaling and variable one that is considered as good 
enough (or feasible).  
In the remainder of the paper we first present existing approaches 
to the adaptation problem and then describe the formal definition 
of this problem. We continue with introducing the divide and 
conquer approach and explain its realization. Before the 
concluding remarks we give some examples of its application. 

2. RELATED WORK 
Existing techniques to the adaptation of variation points usually 
use global approaches.  
Brute force algorithms systematically explore the adaptation 
space of a scenario and evaluate all the alternative configurations 
[2]. Such algorithms terminate when all the configurations have 
been evaluated. They are then able to provide the optimal 
configuration that solves the initial problem but do not support 
scalability in terms of configuration alternatives, because the 
number of alternative configurations directly influences the 
computation time. 
Dominating factors methods are concerned about improving the 
performance of adaptation heuristics [3]. These methods aim at 
reducing the adaptation space based on a ranking of alternative 
configurations. The ranking is determined by an evaluation of the 
dominating factors of each configuration. A dominating factor 
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represents a constant utility over context variations. The ranking 
acts as precompiled knowledge of configurations that are likely to 
solve the problem in an optimal manner. This knowledge allows 
discarding a part of the alternative configurations if their 
dominating factors are below the current best utility found by the 
heuristic. Thus, the efficiency of this method relies on the 
accuracy of the dominating factors identified. 
Arshad et. al. [4] present a work that uses an AI planning 
approach in pervasive computing to model tasks and a policy 
engine that generates the plan. While this work demonstrates the 
feasibility of the approach, its scalability is still an open issue. 

3. ADAPTATION OF LARGE THEATRES 
The formal definition of adaptation allows us to reason about its 
properties: optimality, scalability, variability, and locality. 

3.1 The Variation Point Problem 
We define adaptation in the following way: A variation point is a 
part of an application that can be realized in different ways, e.g., 
with different pieces of code; we say it can be assigned different 
variants. Resolving all variation points, i.e., assigning variants to 
all variation points of an application yields a configuration of that 
application. Although many configurations deliver the same 
required functionality to the user (e.g., the capability of video 
streaming) they often differ in non-functional properties (e.g., 
power consumption). The perceived match of these non-
functional properties to the desires of the user is the utility of a 
configuration (provided that the functional requirements are met).  
One goal of the middleware is to maintain the behaviour of the 
application such that the user requirements are satisfied: If the 
context of the application, i.e., its environment, its resources, and 
the user goals, changes then the application should be adapted in 
such a way that the new configuration yields the best utility of all 
feasible configurations. This task is called the variation point 
problem. 
Not all of the assignments to the variation points of an application 
yield a valid configuration because variation points can depend on 
each other: For example, an existential dependency between two 
variation points holds if resolving one variable only makes sense 
if a particular choice was made for the other, such as a variant that 
introduces variation points itself. Another example is an 
architectural dependency where two variants (of two different 
variation points) are mutually exclusive or require each other. 

3.2 Optimality vs. Scalability 
Optimality and scalability are two properties of systems: The 
former is its quality for a single user; the latter is its ability to 
provide a basic service to an increasing number of users.  
From the viewpoint of a user, the adaptation goal of a system is 
independent of the size of the variation point problem: The user 
wants an optimal adaptation of its applications to the context. As 
discussed in Section 2, optimal solutions are found by considering 
all variation points of a theatre and by finding and assigning the 
solution that yields the best utility. Independently of the size of a 
particular theatre these approaches to find optimal adaptations 
remain the same.  
However, for large theatres, finding an overall optimal solution is 
not feasible. One reason is the combinatorial explosion of alter-
native configurations based on the number of variation points: If 

every variation point has 5 variants then an application with 5 
variation points has 3125 alternatives while an application with 10 
variation points already has about 10 million. Although increasing 
processing power, restrictions on valid choices of variants, and 
heuristics allow solving large variation point problems, even 
medium sized theatres are often infeasible for a global method.  
Because an optimal solution does not scale, the best we can hope 
for is a solution to the variation point problem that serves many 
users quickly in a way that satisfies each user.  

3.3 Variability and Locality 
Among other reasons that prevent the use of global solutions for 
the variation point problem is the irregular and transient topology 
of theatres, the unreliability of connections, and the interest of 
users to stay autonomous. In the case of global solutions, a small 
change in one part of a theatre causes the whole theatre to be 
adapted. An adaptation approach with local variability can keep 
the changes local instead. 
If, for example, all applications are local to a device (and the 
device has enough resources) then there is no need to use an 
external adaptation mechanism: Local adaptation means a 
tolerance to connection failures, a reduced response time, an 
increased privacy, and cheaper connection cost. In short: Users 
like local decisions to be decided locally. 
Nevertheless, if the resources of the device become insufficient, 
and if applications use multiple devices and serve multiple users 
then a combined adaptation of several applications and devices is 
necessary. Therefore, the adaptation mechanism has to form 
clusters of middleware instances and has to single out an 
adaptation master for each cluster. 
When the context changes, i.e., in case of failing connections, 
changes in the device topology, and changing user preferences, 
the decisions regarding clusters and their masters have to be 
changed, too: Middleware clusters are merged and split, and 
different masters need to be assigned, which means that the 
adaptation mechanism itself has to adapt. With a D&C approach, 
the changes caused by local context events can remain local to 
some degree, and areas of the theatre with unchanged context can 
remain unaffected. 

4. DIVIDE AND CONQUER 
We now propose the D&C approach as a scalable, variable, and 
local technique for the adaptation of large theatres. Below, a 
solver denotes an entity that finds an acceptable solution of 
adaptation problems. The overall principles of its design are as 
follows: (1) Do independent tasks in parallel; (2) assign the solver 
and the device that matches the problem (power of device, 
problem complexity, required quality, ...); (3) decide on local 
variation points locally; (4) adjust to changes of the topology, i.e., 
have the ability to revoke decisions; and (5) only change 
decisions when it is necessary. 
All but the fourth point address scalability, while the last three 
deal with variability. Furthermore, the third point increases fault 
tolerance by reducing the dependency on network connections. 

4.1 The Divide and Conquer Approach 
As we have seen, an overall optimal solution to the variation point 
problem is not always feasible. And for large theatres even a 
suboptimal overall solution is unlikely. Therefore, we propose a 
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two-step approach: First decompose the overall problem into 
small, mostly independent subparts. Then solve the subparts, i.e., 
assign variants to its variation points. 
We want to distinguish the mechanisms involved in the steps of 
D&C: The second step is done by solvers. D&C can use a range 
of available solvers (brute force, etc.) and we will not elaborate on 
them in this work; some are described in the related works 
section. The first step is achieved by controllers. They decide 
about the decomposition and assign solvers, but they do not solve 
variation points, i.e., assign variants.  
Decomposition should be fast and yield good utility, which means 
that it cannot be based on pure reasoning alone: It has to use 
knowledge that is provided a priori. Instead of using a specialized 
method with built-in knowledge, we propose to use a symbolic AI 
reasoner and explicit knowledge. The latter is given to the system 
via strategies, which are described in Section 5.2 

4.2 Building the Decomposition Tree 
Decomposition is done by forming sets of variation points and 
partitioning them into subsets. The decomposition tree represents 
complete information about all such decision made at all nodes 
for a particular theatre. Each node of the decomposition tree is 
(annotated with) a variation point set, its root is the initial set that 
comprises all available variation points, and the children of a node 
represent the decomposition set of their parent. (For simplicity we 
identify the variation point set of a node with its node.) Decompo-
sition is hierarchical and proceeds recursively until leaf nodes are 
reached.  
All nodes of the decomposition tree have an associated controller. 
When triggered, it decides upon how to deal with the variation 
point set of its node. Among its options are choosing a solver and 
applying it on the set (only for leaf nodes), further decomposing 
the set, or triggering the adaptation of its parent node (i.e., 
triggering the controller of its parent node).  
There are two kinds of leaf nodes, namely leaf partition nodes 
and negotiation nodes. By inner nodes we refer to nodes that are 
not leaf nodes. Leaf partition nodes partition the set of variation 
points, i.e., every variation point of the overall problem is 
assigned to exactly one leaf partition node. The idea of the D&C 
method is that the variation point sets of leaf partition nodes are 
solvable almost independently of other variation points.  
Negotiation nodes encapsulate all necessary interactions between 
partitions, for example when partitions compete for bandwidth 
and memory resources. They contain variation points of two or 
more leaf partition nodes. Variation points outside a particular 
negotiation node should not (directly) depend on the resource 
associated with this node, i.e., the negotiation group should only 
cause their reassignment if it cannot be solved. 
For the decomposition tree, adaptation means to reconsider earlier 
decisions, starting at the leaf nodes and moving upwards towards 
the root when satisfactory solutions cannot be found at lower 
node levels and depending on controller logic. 

4.3 Assigning Controllers to Devices 
The device hosting the middleware instance that controls a node 
is called the master of that node. (Usually, exactly one 
middleware instance runs on each device. For simplicity we use 
these terms interchangeably.) Most of the time, the master is 

assigned by the controller of the parent node. In case the parent 
node is not available (e.g., at system start or after a network 
outage) the available middleware instances are found by a 
discovery mechanism. The hosting instance is then assigned by a 
simple negotiation (e.g., voting). 
If a node contains variation points of applications that are only 
deployed on a single device then this device is a candidate to be 
the node’s master. If a node contains variation points of several 
devices then the powerful ones among them are candidates. If all 
devices of the cluster are too weak then the master has to be a 
different server “close” to the node (connection wise).  
Assigning controllers to different middleware instances causes the 
decomposition tree to be distributed. Controllers only have 
knowledge about their own decisions but not, e.g., about how its 
children partition their assigned variation point sets further. 
Therefore, no single middleware instance holds the complete 
information about a decomposition tree at a certain time. 

4.4 Scalability and Variability 
The main goal of the D&C approach is to reach scalability and 
variability. D&C is scalable under the assumption that theatres are 
composed of almost independent sets of variation points whose 
size is nearly constant compared to the size of the theatre. This 
assumption seems to be justified where users employ private 
devices and applications across a large number of devices are rare 
(see the Radio Ballet example in Section 6.1). Here, D&C allows 
adaptation to remain local, independent of the overall number of 
variation points. 
D&C is variable because it can adapt to changes in the topology. 
If connections fail and a cluster of devices become isolated then 
their variation points form a decomposition tree of their own. If 
instead two decomposition trees have to join because a new 
application spans variation points of both then it is likely that only 
those leave partition nodes have to be adapted that are involved or 
related to that adaptation. 

5. REALIZING DIVIDE AND CONQUER 
The D&C approach to the variation point problem is an 
application of symbolic reasoning, i.e., an approach where we 
have a symbolic representation of the system state and explicit 
knowledge on how to manipulate the system. To provide this 
functionality, the D&C strategy requires the following: (1) A 
model of the variation point problem that allows its 
decomposition and enables us to reason about this decomposition. 
(2) Decomposition strategies, i.e., a priori knowledge on how to 
decompose the variation point set in given theatres. (3) A 
machinery to support and administer the decomposition of 
variation point sets, their solution, their reunion, and the 
negotiating between them. 

5.1 Modelling Hierarchical Decomposition 
The D&C approach is based on a distributed symbolic model of 
the problem, the context, and the intermediate steps and decisions 
of arriving at a solution. The model allows expressing the state of 
the problem and its solution at a certain time, i.e., what is true and 
what is false at that time. 
Relevant aspects are encoded as predicates. For example, the 
possible assignment of variants to variation points could be 
encoded by the predicate assignable and the fact that a variant v1 
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can be assigned to a variation point vp3 is expressed by the ground 
predicate assignable(v1, vp3) being true. The constants v1 and vp3 
are symbols referring to the actual variant and variation point in 
the problem, hence the name symbolic model.  
The model can also use real numbers and inequalities to model 
(e.g., resources and utilities). For example, the predicate 
available_mem(d3, mem) expresses the available memory of 
device d3 and the inequality mem ≥ req_mem1+req_mem2 restricts 
the combined required memory usage of applications 1 and 2 
(used_mem1 and used_mem2, respectively) accordingly. 
One part of the model describes the problem, i.e., the variation 
points and their variants, to which application a variation point 
belongs to, constraints on the assignments of variants, resources 
and their usage by applications, and utilities. It also allows 
expressing the context aspects relevant to D&C: The utility of 
applications to the user, the device topology and the available 
connections, and the current time, among others. 
The model also describes the internal state of the D&C method, 
such as the assignments of variants to variation points, the 
assignments of variation points to a node, the distribution of 
nodes onto devices, the assignment of controllers and solvers to 
nodes, the assignment of nodes to middleware instances (devices), 
and the parent and the children of a node. 

5.2 The Decomposition Strategies 
Decomposition strategies aim at establishing the decomposition 
tree of a theatre by defining how variation point sets are 
partitioned and which controllers are assigned to nodes. A 
strategy consists of a collection of rules that are triggered by the 
occurrence of a scenario in a theatre and describes how this 
scenario can be resolved and exploited by D&C. In other words, 
the strategies determine when and how theatres can be 
decomposed. 
It is important to note that strategies are defined independent of 
specific scenarios; they are more like a screenplay and define the 
general ways in which decomposition takes place. Instead of 
saying that a specific device should be adapted by an algorithm X 
the strategy only says that it should be controlled by an algorithm 
with specific properties. This makes it possible to use only few 
decomposition strategies to support a large set of possible 
decompositions which can all occur and change at runtime. 
Strategies are explicit knowledge, i.e., stated in a format usable by 
a general problem solving method. Therefore, they are easily 
changeable, which allows to adjust D&C without changing the 
underlying reasoners and the underlying partitioning machinery. 
Different strategies allow the same configuration of the 
middleware to exhibit different behaviours, e.g., to apply different 
solvers or to distribute variation points over devices in a different 
way. The same flexibility is not available if the strategies are 
implemented implicitly as part of an algorithm. Here, changing 
any part of the strategies would require exchanging some part of 
the application containing the algorithm, so small adjustments 
would result in large changes. 
Strategies depend on insights into the workings of the 
middleware, the adaptation, the devices, and the applications. 
They are created by middleware experts and possibly by the 
designers of the applications running on the middleware, based on 
their knowledge of theatres, scenarios, and users. 

One source of strategies is the dependency between variants and 
between variation points: If an existential dependency holds 
between two variation points (e.g., architectural constraints) then 
they are likely in the same leaf partition node. If two variants of 
two leaf partition nodes are mutual exclusive then they are in a 
common negotiation node. Strategies will likely separate different 
devices, applications, and users. In other words, if two variation 
points belong to the same application, they are likely to be in the 
same leaf partition node. The same is true for two variation points 
of two applications that are deployed onto the same device, of the 
same application, and of two applications used by the same user. 

5.3 The Underlying Mechanics 
The middleware has to provide several components and services 
for the D&C approach to be realized: An encoder transforms the 
current situation of the system into a world model and a D&C 
problem. If the system changes, it changes the world model and 
the problem accordingly. The controller of a node applies a 
reasoner to its local problem. The reasoner solves the 
decomposition problem by matching strategies against the current 
world model. The solution of a local D&C problem has to be 
transformed back into actions of the middleware: For example, 
applying a solver to a variation point set, handing over parts of a 
problem to other middleware instances, and combining several 
parts of a problem to a larger one. Further services include the 
detection and management of context changes (e.g., device dis-
covery), and the communication between middleware instances. 
We see several options to realize a reasoner, for example rule 
based systems and constraint programming. Currently, we favour 
its realization by Hierarchical Task Network (HTN) planning [5], 
a form of AI planning. In short, AI planning is concerned with 
changing a world from its current state into a state with desired 
properties by applying a sequence of actions, i.e., transformations 
that change the world. HTN planners are AI planning systems that 
are based on tasks and their decomposition into subtasks, and 
hence are suitable for the divide and conquer approach.  

6. EXAMPLE SCENARIOS 
We exemplify divide and conquer by three scenarios.  

6.1 Radio Ballet 
Imagine a music festival with many users using mobile devices, 
e.g., smart phones, computing infrastructure provided by the 
organisers, and companies with promotion stalls. One company 
provides a fascinating new entertainment: radio ballet. 
Radio ballet is a group activity in which visitors can participate 
by running a “radio” application on their device. Sometimes, 
when enough participants are near the company’s stall, the servers 
initiate a radio ballet: The devices hand over the control to one of 
the companies’ servers, which adapt them such that they can be 
used as channel to instruct the user to participate in a ballet-like 
choreography. Participating is a lot of fun and demonstrative, 
which gives the stall much visibility. At the end of the ballet, the 
servers release the control over the mobile devices, not after 
handing out tokens for free gifts as gratitude and incentive. 
The adaptation mechanism also has the option to not participate: 
For example, in the case of low battery power, the middleware 
might decide in favour of extended operating time. 
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Figure 1: Decomposition tree before the adaptation. 

 
 
 
 
 
 
 
 
Figure 1 shows the decomposition tree before the adaptation. The 
theatre comprises many mobile devices (three are shown) and two 
servers. On each device, a leaf partition node holds all variation 
points on that device and the middleware instance on that device 
is the master of that node (depicted by underlining). After the 
adaptation, depicted in Figure 2, the servers control leaf partition 
nodes that comprise several mobile devices. The middleware of 
device 2 does not take part in the radio ballet, so it has its own 
leaf partition node. 
How does D&C find this hierarchy? Initially, the decisions were 
made locally and in parallel, according to the first and the third 
principle. After the context change, i.e., after the servers initiated 
the radio ballet, the best solution is to associate the participating 
mobile devices with the most powerful servers and to hand over 
the control (principles two, four, and five). 

6.2 Further Example Scenarios 
In the second scenario, a single user works with a single mobile 
device and all the applications are local to this device. Network 
connection is available but unused; the adaptation between the 
applications on the mobile device is done locally. After a context 
change, one of the applications needs more computing power, 
which exceeds the capabilities of the device. 
According to the third principle the decisions were made locally 
before the context change: The variation points of the applications 
running on the local device form one leaf partition node. After the 
context change, the local controller decides “cannot adapt” and 
hands over the control to its parent (principles four and five). The 
controller of the parent node creates a new partitioning of its 
variation points and the new leaf partition node includes the 
variation points of the mobile device and those of some servers. 
The solver of this new leaf partition node decides to migrate code 
from the mobile device to the server (principle two).  
In the third scenario, two users share an application. Their devices 
are connected via WLAN and UMTS and the entire application is 
adapted as a whole by a middleware instance on one of the 
devices. Now, the common application is terminated and the users 
are suddenly independent of each other: They do not share any 
application, device, and resource. 
Principles one and three suggest to separate both users and to 
adapt the applications of each user by the middleware instance 
running on the device local to its respective user. Before the 
adaptation, each user has its own leaf partition node. The network 
and the common application are adapted via negotiation nodes. 
After terminating the common application, the control is handed 
over to the parent node, which recreates the same leaf partitions 
(including local controller and solver) but this time without 
negotiation nodes.  

 
 
 
 
 
 
 

7. CONCLUSIONS 
In this paper, we propose the application of the Divide and 
Conquer (D&C) approach to solve the adaptation of large-scale 
systems (theatres) over context changes. This approach aims at 
distributing a given variant point problem by decomposing the 
theatre into independent subparts. Dedicated solvers, which act on 
problems of a smaller size, then adapt these parts separately. The 
composition of adapted parts is controlled by this approach to 
resolve possible conflicts. To implement this D&C approach, we 
propose to use symbolic reasoning to encode the decomposition 
knowledge as modular rules that can be easily extended. These 
rules select also the best solver for each subpart of the theatre. 

The work on D&C is in a preliminary stage and many problems 
are still open. For example, the current design assumes that the 
overall utility of the adaptation is maximized by a fair adaptation 
of the variation points of each user. We plan to investigate how 
theatres that include players having selfish goals can be handled. 
Another open question is how reasonable is the assumption that 
theatres consist of clusters of variation points whose size is 
independent of the size of the theatre. Also the design of the 
symbolic model and the strategies is not finalized. 

We plan our next step to be a first model of a theatre together 
with the corresponding strategies to demonstrate the viability of 
the approach.  
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