
 Article Number 5

Divide and Conquer –
Scalability and Variability for Adaptive Middleware

Ulrich Scholz
European Media Lab GmbH

Schloss-Wolfsbrunnenweg 33
69118 Heidelberg, Germany

ulrich.scholz@eml-d.villa-bosch.de

Romain Rouvoy
University of Oslo

P.O. Box 1080 Blindern
0316 Oslo, Norway

rouvoy@ifi.uio.no

ABSTRACT
In this paper, we introduce a divide and conquer approach for the
adaptation of distributed applications management by a
potentially large number of interacting middleware instances. The
method aims at a quick partitioning of the overall problem into
smaller sub-problems that can be solved almost independently.
The partitioning is found by symbolic reasoning and by applying
expert knowledge that is encoded in explicit rules.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design –
distributed systems

General Terms
Algorithms, Performance, Design

Keywords
Adaptive middleware, hierarchical decomposition, symbolic
reasoning

1. INTRODUCTION
In this work we consider the problem of adapting large-scale
distributed applications in a mobile environment with multiple
users and frequent context changes, to maintain a high utility to
the user. We consider such problems within MUSIC [1], an
initiative to develop a comprehensive open-source middleware
that facilitates the development of self-adaptive software.
MUSIC aims at a large-scale deployment of multiple middleware
instances in parallel. Some of these instances interact, form
clusters, and run (parts of) applications. Applications that run on
such clusters are adapted together. Each such middleware cluster,
or each set of related applications, is seen as an adaptation
scenario. However, there is no one-to-one mapping between
applications and middleware instances, i.e., applications can be
spread out over several clusters and a cluster can host several

applications. Furthermore, the topology of middleware clusters is
transient and can change, merge, and split at any time. For such a
collection of scenarios, i.e., large transient clusters of partially
dependent, partially independent middleware instances, appli-
cations, devices, connections, and other artefacts related to
adaptation, we assign the term theatre.
Current solutions to the adaptation problem use a global
approach: They consider all alternative configurations of all appli-
cations at once and choose the one that yields the best utility. For
large theatres, this approach is not feasible due to the combi-
natorial explosion of the number of alternative configurations. As
a consequence, we have to go beyond a global adaptation
approach.
Thus, we propose a Divide and Conquer (D&C) approach that
provides both adaptation scalability and variability. The main
goal is the immediate and quick breakdown of an overall theatre
into smaller, logically and physically independent sub-problems
that can be handled separately and in parallel. D&C works if the
adaptation problems of the parts are small and independent
enough to be solved, and if the combined solution to these parts is
good enough to satisfy the users. In other words, D&C does not
aim at finding a global optimal solution to the adaptation problem
but at a scaling and variable one that is considered as good
enough (or feasible).
In the remainder of the paper we first present existing approaches
to the adaptation problem and then describe the formal definition
of this problem. We continue with introducing the divide and
conquer approach and explain its realization. Before the
concluding remarks we give some examples of its application.

2. RELATED WORK
Existing techniques to the adaptation of variation points usually
use global approaches.
Brute force algorithms systematically explore the adaptation
space of a scenario and evaluate all the alternative configurations
[2]. Such algorithms terminate when all the configurations have
been evaluated. They are then able to provide the optimal
configuration that solves the initial problem but do not support
scalability in terms of configuration alternatives, because the
number of alternative configurations directly influences the
computation time.
Dominating factors methods are concerned about improving the
performance of adaptation heuristics [3]. These methods aim at
reducing the adaptation space based on a ranking of alternative
configurations. The ranking is determined by an evaluation of the
dominating factors of each configuration. A dominating factor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESSPE’07, September, 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM ISBN 978-1-59593-798-8/07/09…$5.00.

35

 Article Number 5

represents a constant utility over context variations. The ranking
acts as precompiled knowledge of configurations that are likely to
solve the problem in an optimal manner. This knowledge allows
discarding a part of the alternative configurations if their
dominating factors are below the current best utility found by the
heuristic. Thus, the efficiency of this method relies on the
accuracy of the dominating factors identified.
Arshad et. al. [4] present a work that uses an AI planning
approach in pervasive computing to model tasks and a policy
engine that generates the plan. While this work demonstrates the
feasibility of the approach, its scalability is still an open issue.

3. ADAPTATION OF LARGE THEATRES
The formal definition of adaptation allows us to reason about its
properties: optimality, scalability, variability, and locality.

3.1 The Variation Point Problem
We define adaptation in the following way: A variation point is a
part of an application that can be realized in different ways, e.g.,
with different pieces of code; we say it can be assigned different
variants. Resolving all variation points, i.e., assigning variants to
all variation points of an application yields a configuration of that
application. Although many configurations deliver the same
required functionality to the user (e.g., the capability of video
streaming) they often differ in non-functional properties (e.g.,
power consumption). The perceived match of these non-
functional properties to the desires of the user is the utility of a
configuration (provided that the functional requirements are met).
One goal of the middleware is to maintain the behaviour of the
application such that the user requirements are satisfied: If the
context of the application, i.e., its environment, its resources, and
the user goals, changes then the application should be adapted in
such a way that the new configuration yields the best utility of all
feasible configurations. This task is called the variation point
problem.
Not all of the assignments to the variation points of an application
yield a valid configuration because variation points can depend on
each other: For example, an existential dependency between two
variation points holds if resolving one variable only makes sense
if a particular choice was made for the other, such as a variant that
introduces variation points itself. Another example is an
architectural dependency where two variants (of two different
variation points) are mutually exclusive or require each other.

3.2 Optimality vs. Scalability
Optimality and scalability are two properties of systems: The
former is its quality for a single user; the latter is its ability to
provide a basic service to an increasing number of users.
From the viewpoint of a user, the adaptation goal of a system is
independent of the size of the variation point problem: The user
wants an optimal adaptation of its applications to the context. As
discussed in Section 2, optimal solutions are found by considering
all variation points of a theatre and by finding and assigning the
solution that yields the best utility. Independently of the size of a
particular theatre these approaches to find optimal adaptations
remain the same.
However, for large theatres, finding an overall optimal solution is
not feasible. One reason is the combinatorial explosion of alter-
native configurations based on the number of variation points: If

every variation point has 5 variants then an application with 5
variation points has 3125 alternatives while an application with 10
variation points already has about 10 million. Although increasing
processing power, restrictions on valid choices of variants, and
heuristics allow solving large variation point problems, even
medium sized theatres are often infeasible for a global method.
Because an optimal solution does not scale, the best we can hope
for is a solution to the variation point problem that serves many
users quickly in a way that satisfies each user.

3.3 Variability and Locality
Among other reasons that prevent the use of global solutions for
the variation point problem is the irregular and transient topology
of theatres, the unreliability of connections, and the interest of
users to stay autonomous. In the case of global solutions, a small
change in one part of a theatre causes the whole theatre to be
adapted. An adaptation approach with local variability can keep
the changes local instead.
If, for example, all applications are local to a device (and the
device has enough resources) then there is no need to use an
external adaptation mechanism: Local adaptation means a
tolerance to connection failures, a reduced response time, an
increased privacy, and cheaper connection cost. In short: Users
like local decisions to be decided locally.
Nevertheless, if the resources of the device become insufficient,
and if applications use multiple devices and serve multiple users
then a combined adaptation of several applications and devices is
necessary. Therefore, the adaptation mechanism has to form
clusters of middleware instances and has to single out an
adaptation master for each cluster.
When the context changes, i.e., in case of failing connections,
changes in the device topology, and changing user preferences,
the decisions regarding clusters and their masters have to be
changed, too: Middleware clusters are merged and split, and
different masters need to be assigned, which means that the
adaptation mechanism itself has to adapt. With a D&C approach,
the changes caused by local context events can remain local to
some degree, and areas of the theatre with unchanged context can
remain unaffected.

4. DIVIDE AND CONQUER
We now propose the D&C approach as a scalable, variable, and
local technique for the adaptation of large theatres. Below, a
solver denotes an entity that finds an acceptable solution of
adaptation problems. The overall principles of its design are as
follows: (1) Do independent tasks in parallel; (2) assign the solver
and the device that matches the problem (power of device,
problem complexity, required quality, ...); (3) decide on local
variation points locally; (4) adjust to changes of the topology, i.e.,
have the ability to revoke decisions; and (5) only change
decisions when it is necessary.
All but the fourth point address scalability, while the last three
deal with variability. Furthermore, the third point increases fault
tolerance by reducing the dependency on network connections.

4.1 The Divide and Conquer Approach
As we have seen, an overall optimal solution to the variation point
problem is not always feasible. And for large theatres even a
suboptimal overall solution is unlikely. Therefore, we propose a

36

 Article Number 5

two-step approach: First decompose the overall problem into
small, mostly independent subparts. Then solve the subparts, i.e.,
assign variants to its variation points.
We want to distinguish the mechanisms involved in the steps of
D&C: The second step is done by solvers. D&C can use a range
of available solvers (brute force, etc.) and we will not elaborate on
them in this work; some are described in the related works
section. The first step is achieved by controllers. They decide
about the decomposition and assign solvers, but they do not solve
variation points, i.e., assign variants.
Decomposition should be fast and yield good utility, which means
that it cannot be based on pure reasoning alone: It has to use
knowledge that is provided a priori. Instead of using a specialized
method with built-in knowledge, we propose to use a symbolic AI
reasoner and explicit knowledge. The latter is given to the system
via strategies, which are described in Section 5.2

4.2 Building the Decomposition Tree
Decomposition is done by forming sets of variation points and
partitioning them into subsets. The decomposition tree represents
complete information about all such decision made at all nodes
for a particular theatre. Each node of the decomposition tree is
(annotated with) a variation point set, its root is the initial set that
comprises all available variation points, and the children of a node
represent the decomposition set of their parent. (For simplicity we
identify the variation point set of a node with its node.) Decompo-
sition is hierarchical and proceeds recursively until leaf nodes are
reached.
All nodes of the decomposition tree have an associated controller.
When triggered, it decides upon how to deal with the variation
point set of its node. Among its options are choosing a solver and
applying it on the set (only for leaf nodes), further decomposing
the set, or triggering the adaptation of its parent node (i.e.,
triggering the controller of its parent node).
There are two kinds of leaf nodes, namely leaf partition nodes
and negotiation nodes. By inner nodes we refer to nodes that are
not leaf nodes. Leaf partition nodes partition the set of variation
points, i.e., every variation point of the overall problem is
assigned to exactly one leaf partition node. The idea of the D&C
method is that the variation point sets of leaf partition nodes are
solvable almost independently of other variation points.
Negotiation nodes encapsulate all necessary interactions between
partitions, for example when partitions compete for bandwidth
and memory resources. They contain variation points of two or
more leaf partition nodes. Variation points outside a particular
negotiation node should not (directly) depend on the resource
associated with this node, i.e., the negotiation group should only
cause their reassignment if it cannot be solved.
For the decomposition tree, adaptation means to reconsider earlier
decisions, starting at the leaf nodes and moving upwards towards
the root when satisfactory solutions cannot be found at lower
node levels and depending on controller logic.

4.3 Assigning Controllers to Devices
The device hosting the middleware instance that controls a node
is called the master of that node. (Usually, exactly one
middleware instance runs on each device. For simplicity we use
these terms interchangeably.) Most of the time, the master is

assigned by the controller of the parent node. In case the parent
node is not available (e.g., at system start or after a network
outage) the available middleware instances are found by a
discovery mechanism. The hosting instance is then assigned by a
simple negotiation (e.g., voting).
If a node contains variation points of applications that are only
deployed on a single device then this device is a candidate to be
the node’s master. If a node contains variation points of several
devices then the powerful ones among them are candidates. If all
devices of the cluster are too weak then the master has to be a
different server “close” to the node (connection wise).
Assigning controllers to different middleware instances causes the
decomposition tree to be distributed. Controllers only have
knowledge about their own decisions but not, e.g., about how its
children partition their assigned variation point sets further.
Therefore, no single middleware instance holds the complete
information about a decomposition tree at a certain time.

4.4 Scalability and Variability
The main goal of the D&C approach is to reach scalability and
variability. D&C is scalable under the assumption that theatres are
composed of almost independent sets of variation points whose
size is nearly constant compared to the size of the theatre. This
assumption seems to be justified where users employ private
devices and applications across a large number of devices are rare
(see the Radio Ballet example in Section 6.1). Here, D&C allows
adaptation to remain local, independent of the overall number of
variation points.
D&C is variable because it can adapt to changes in the topology.
If connections fail and a cluster of devices become isolated then
their variation points form a decomposition tree of their own. If
instead two decomposition trees have to join because a new
application spans variation points of both then it is likely that only
those leave partition nodes have to be adapted that are involved or
related to that adaptation.

5. REALIZING DIVIDE AND CONQUER
The D&C approach to the variation point problem is an
application of symbolic reasoning, i.e., an approach where we
have a symbolic representation of the system state and explicit
knowledge on how to manipulate the system. To provide this
functionality, the D&C strategy requires the following: (1) A
model of the variation point problem that allows its
decomposition and enables us to reason about this decomposition.
(2) Decomposition strategies, i.e., a priori knowledge on how to
decompose the variation point set in given theatres. (3) A
machinery to support and administer the decomposition of
variation point sets, their solution, their reunion, and the
negotiating between them.

5.1 Modelling Hierarchical Decomposition
The D&C approach is based on a distributed symbolic model of
the problem, the context, and the intermediate steps and decisions
of arriving at a solution. The model allows expressing the state of
the problem and its solution at a certain time, i.e., what is true and
what is false at that time.
Relevant aspects are encoded as predicates. For example, the
possible assignment of variants to variation points could be
encoded by the predicate assignable and the fact that a variant v1

37

 Article Number 5

can be assigned to a variation point vp3 is expressed by the ground
predicate assignable(v1, vp3) being true. The constants v1 and vp3
are symbols referring to the actual variant and variation point in
the problem, hence the name symbolic model.
The model can also use real numbers and inequalities to model
(e.g., resources and utilities). For example, the predicate
available_mem(d3, mem) expresses the available memory of
device d3 and the inequality mem ≥ req_mem1+req_mem2 restricts
the combined required memory usage of applications 1 and 2
(used_mem1 and used_mem2, respectively) accordingly.
One part of the model describes the problem, i.e., the variation
points and their variants, to which application a variation point
belongs to, constraints on the assignments of variants, resources
and their usage by applications, and utilities. It also allows
expressing the context aspects relevant to D&C: The utility of
applications to the user, the device topology and the available
connections, and the current time, among others.
The model also describes the internal state of the D&C method,
such as the assignments of variants to variation points, the
assignments of variation points to a node, the distribution of
nodes onto devices, the assignment of controllers and solvers to
nodes, the assignment of nodes to middleware instances (devices),
and the parent and the children of a node.

5.2 The Decomposition Strategies
Decomposition strategies aim at establishing the decomposition
tree of a theatre by defining how variation point sets are
partitioned and which controllers are assigned to nodes. A
strategy consists of a collection of rules that are triggered by the
occurrence of a scenario in a theatre and describes how this
scenario can be resolved and exploited by D&C. In other words,
the strategies determine when and how theatres can be
decomposed.
It is important to note that strategies are defined independent of
specific scenarios; they are more like a screenplay and define the
general ways in which decomposition takes place. Instead of
saying that a specific device should be adapted by an algorithm X
the strategy only says that it should be controlled by an algorithm
with specific properties. This makes it possible to use only few
decomposition strategies to support a large set of possible
decompositions which can all occur and change at runtime.
Strategies are explicit knowledge, i.e., stated in a format usable by
a general problem solving method. Therefore, they are easily
changeable, which allows to adjust D&C without changing the
underlying reasoners and the underlying partitioning machinery.
Different strategies allow the same configuration of the
middleware to exhibit different behaviours, e.g., to apply different
solvers or to distribute variation points over devices in a different
way. The same flexibility is not available if the strategies are
implemented implicitly as part of an algorithm. Here, changing
any part of the strategies would require exchanging some part of
the application containing the algorithm, so small adjustments
would result in large changes.
Strategies depend on insights into the workings of the
middleware, the adaptation, the devices, and the applications.
They are created by middleware experts and possibly by the
designers of the applications running on the middleware, based on
their knowledge of theatres, scenarios, and users.

One source of strategies is the dependency between variants and
between variation points: If an existential dependency holds
between two variation points (e.g., architectural constraints) then
they are likely in the same leaf partition node. If two variants of
two leaf partition nodes are mutual exclusive then they are in a
common negotiation node. Strategies will likely separate different
devices, applications, and users. In other words, if two variation
points belong to the same application, they are likely to be in the
same leaf partition node. The same is true for two variation points
of two applications that are deployed onto the same device, of the
same application, and of two applications used by the same user.

5.3 The Underlying Mechanics
The middleware has to provide several components and services
for the D&C approach to be realized: An encoder transforms the
current situation of the system into a world model and a D&C
problem. If the system changes, it changes the world model and
the problem accordingly. The controller of a node applies a
reasoner to its local problem. The reasoner solves the
decomposition problem by matching strategies against the current
world model. The solution of a local D&C problem has to be
transformed back into actions of the middleware: For example,
applying a solver to a variation point set, handing over parts of a
problem to other middleware instances, and combining several
parts of a problem to a larger one. Further services include the
detection and management of context changes (e.g., device dis-
covery), and the communication between middleware instances.
We see several options to realize a reasoner, for example rule
based systems and constraint programming. Currently, we favour
its realization by Hierarchical Task Network (HTN) planning [5],
a form of AI planning. In short, AI planning is concerned with
changing a world from its current state into a state with desired
properties by applying a sequence of actions, i.e., transformations
that change the world. HTN planners are AI planning systems that
are based on tasks and their decomposition into subtasks, and
hence are suitable for the divide and conquer approach.

6. EXAMPLE SCENARIOS
We exemplify divide and conquer by three scenarios.

6.1 Radio Ballet
Imagine a music festival with many users using mobile devices,
e.g., smart phones, computing infrastructure provided by the
organisers, and companies with promotion stalls. One company
provides a fascinating new entertainment: radio ballet.
Radio ballet is a group activity in which visitors can participate
by running a “radio” application on their device. Sometimes,
when enough participants are near the company’s stall, the servers
initiate a radio ballet: The devices hand over the control to one of
the companies’ servers, which adapt them such that they can be
used as channel to instruct the user to participate in a ballet-like
choreography. Participating is a lot of fun and demonstrative,
which gives the stall much visibility. At the end of the ballet, the
servers release the control over the mobile devices, not after
handing out tokens for free gifts as gratitude and incentive.
The adaptation mechanism also has the option to not participate:
For example, in the case of low battery power, the middleware
might decide in favour of extended operating time.

38

 Article Number 5

Figure 1: Decomposition tree before the adaptation.

Figure 1 shows the decomposition tree before the adaptation. The
theatre comprises many mobile devices (three are shown) and two
servers. On each device, a leaf partition node holds all variation
points on that device and the middleware instance on that device
is the master of that node (depicted by underlining). After the
adaptation, depicted in Figure 2, the servers control leaf partition
nodes that comprise several mobile devices. The middleware of
device 2 does not take part in the radio ballet, so it has its own
leaf partition node.
How does D&C find this hierarchy? Initially, the decisions were
made locally and in parallel, according to the first and the third
principle. After the context change, i.e., after the servers initiated
the radio ballet, the best solution is to associate the participating
mobile devices with the most powerful servers and to hand over
the control (principles two, four, and five).

6.2 Further Example Scenarios
In the second scenario, a single user works with a single mobile
device and all the applications are local to this device. Network
connection is available but unused; the adaptation between the
applications on the mobile device is done locally. After a context
change, one of the applications needs more computing power,
which exceeds the capabilities of the device.
According to the third principle the decisions were made locally
before the context change: The variation points of the applications
running on the local device form one leaf partition node. After the
context change, the local controller decides “cannot adapt” and
hands over the control to its parent (principles four and five). The
controller of the parent node creates a new partitioning of its
variation points and the new leaf partition node includes the
variation points of the mobile device and those of some servers.
The solver of this new leaf partition node decides to migrate code
from the mobile device to the server (principle two).
In the third scenario, two users share an application. Their devices
are connected via WLAN and UMTS and the entire application is
adapted as a whole by a middleware instance on one of the
devices. Now, the common application is terminated and the users
are suddenly independent of each other: They do not share any
application, device, and resource.
Principles one and three suggest to separate both users and to
adapt the applications of each user by the middleware instance
running on the device local to its respective user. Before the
adaptation, each user has its own leaf partition node. The network
and the common application are adapted via negotiation nodes.
After terminating the common application, the control is handed
over to the parent node, which recreates the same leaf partitions
(including local controller and solver) but this time without
negotiation nodes.

7. CONCLUSIONS
In this paper, we propose the application of the Divide and
Conquer (D&C) approach to solve the adaptation of large-scale
systems (theatres) over context changes. This approach aims at
distributing a given variant point problem by decomposing the
theatre into independent subparts. Dedicated solvers, which act on
problems of a smaller size, then adapt these parts separately. The
composition of adapted parts is controlled by this approach to
resolve possible conflicts. To implement this D&C approach, we
propose to use symbolic reasoning to encode the decomposition
knowledge as modular rules that can be easily extended. These
rules select also the best solver for each subpart of the theatre.

The work on D&C is in a preliminary stage and many problems
are still open. For example, the current design assumes that the
overall utility of the adaptation is maximized by a fair adaptation
of the variation points of each user. We plan to investigate how
theatres that include players having selfish goals can be handled.
Another open question is how reasonable is the assumption that
theatres consist of clusters of variation points whose size is
independent of the size of the theatre. Also the design of the
symbolic model and the strategies is not finalized.

We plan our next step to be a first model of a theatre together
with the corresponding strategies to demonstrate the viability of
the approach.

8. ACKNOWLEDGMENTS
The work is funded by the Klaus Tschira Foundation and by the
European Commission under the contract number 035166 for the
MUSIC project. We would like to thank Frank Eliassen, Svein
Hallsteinsen, Gunnar Brataas, Eli Gjørven, Yun Ding, and the
ESSPE’07 reviewers for their helpful comments.

9. REFERENCES
[1] IST MUSIC project. www.ist-music.eu
[2] IST MADAM project. “Theory of Adaptation”. Deliverable

2.2. December 2006. p. 44–49. www.ist-madam.org
[3] Sousa, J.P. et. al. “Task-Based Adaptation for Ubiquitous

Computing”. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews 36(3), 2006.

[4] Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and
dynamic reconfiguration planning for distributed software
systems. In: proceedings of the 15th IEEE International
Conference on Tools with Artificial Intelligence,
Washington, DC, USA, IEEE Computer Society (2003) 39.

[5] Ghallab, M., Nau, D., and Traverso, D., “Automated
Planning – Theory and Praxis”. Morgan Kaufmann. San
Francisco, CA, 2004.

server1
device3

root

server2
device1

device2
server1

device3 device2 …

server2 device1

root

Figure 2: Decomposition tree after the adaptation.

… …

39

