
Experimental Specification Mining
for Enterprise Applications

Matthias Schur
∗

SAP Research
Darmstadt, Germany

matthias.schur@sap.com

ABSTRACT
Specification mining infers abstractions over a set of pro-
gram execution traces. Whereas inductive approaches to
specification mining rely on a given set of execution traces,
experimental approaches systematically generate and exe-
cute test cases to infer rich models including uncommon and
exceptional behavior. State-of-the-art experimental mining
approaches infer low-level models representing the behavior
of single classes. This paper proposes an approach for infer-
ring models of built-in processes in enterprise systems based
on systematic scenario test generation. The paper motivates
the approach, sketches the relevant concepts and challenges,
and discusses related work.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Algorithms, Documentation, Experimentation, Verification

Keywords
Specification Mining, Test Case Generation, Model-based
Testing, Enterprise Applications

1. INTRODUCTION
In recent years a multitude of software engineering tech-

niques based on explicit models such as formal verification
and model-based testing (MBT), have been developed. These
techniques can be used to verify certain properties of com-
plex software systems, but they rely on formal specifications
of the systems to verify. However, in software engineering
practice, specifications are often informal, outdated or en-
tirely missing, elevating the implementation to the single
source of truth. As large enterprise application vendors start

∗Advised by Andreas Zeller, Saarland University, Saar-
brücken, Germany, zeller@cs.uni-saarland.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

to address the mid-market segment with core business func-
tionality that can be extended by numerous partners, re-
liable system models become critical to ensure operational
reliability. In general, the success of model-based software
engineering (SE) techniques in industry largely depends on
the tradeoff between modeling effort (incl. the effort for
keeping the models up-to-date) and the expected benefit.
Modeling large industrial software systems is a complex and
time-consuming task, hampering broad adoption of model-
based SE techniques in industry. Automated techniques ac-
tively supporting the modeling process are an essential pre-
requisite for the success of model-based SE techniques. By
utilizing the advances in model-based testing, techniques for
automatically inferring models from implementations could
significantly decrease the modeling effort and thus make the
adoption of additional model-based SE techniques such as
formal verification more interesting for industry. Further-
more, inferred models could also be beneficial to documen-
tation, monitoring and change management activities. From
an industrial point of view, specification mining also can
support the integration of legacy systems that have been
adapted and modified over the years and come with out-
dated documentation.

This paper presents an approach for inferring models of
built-in processes in enterprise systems by utilizing MBT
methodology. It is organized as follows. Section 2 discusses
the problem to be solved in this research, as well as the
underlying research hypothesis. Section 3 sketches the pro-
posed approach and briefly discusses some challenges. Sec-
tion 4 presents the research plan and planned contributions.
Section 5 discusses the state of the art in mining specifica-
tions. Section 6 concludes the paper.

2. RESEARCH QUESTION
In state-of-the-art enterprise systems, most of the func-

tionality is implemented in so called business objects (BOs)
such as Sales Quote (SQ) and Sales Order (SO). BOs are
classes with a well defined interface and an internal model
describing the state of the object (e.g. submitted or ap-
proved) and the actions that are enabled in each state (e.g.
submit, approve or reject) [9]. State-of-the-art approaches to
specification mining can infer such models either based on a
given set of execution traces or by generating and executing
test cases. Especially the latter one, establishing a feedback
loop between specification mining and test case generation,
is a promising approach, where the quality of models can be
improved based on the results of generated test cases and
vice versa. (cf. [14])

388

Figure 1: Example. An executable scenario step Reject SQ is selected to extend an initial model of the
application behavior (b), which can optionally be inferred from a scenario test execution (a). Based on the
initial model, scenario tests are generated that execute the selected step in each state of the model; after
successful scenario test executions, state information is extracted (c). The initial model is enriched with the
observed behavior (d).

Another kind of model that is more common to enter-
prise systems are business process models. These models
represent common business processes implemented by the
enterprise system. Figure 1 (a) illustrates such a process:
a sales clerk creates a quote for a customer (step 1). The
system checks the quote for consistency (step 2). The sales
manager approves the quote (step 3). The customer ac-
cepts the quote and the sales clerk creates a sales order with
reference to the quote (step 3). Despite the importance of
process models in enterprise applications, in the majority of
enterprise systems, process models are used solely for docu-
mentation while there is no direct link to the implementa-
tion like in business process execution engines. Compared
to models inferred by state-of-the-art specification mining
approaches, business process models have a much higher ab-
straction level; due to the heavy involvement of frameworks
for persistency, access and life cycle control, a single process
step usually comprises hundreds of method calls on several
objects. The proposed research addresses the question how
to automatically enrich models of built-in processes in en-
terprise systems without relying on a given set of execution
traces. The underlying research hypothesis is that this goal
can be achieved by systematically generating and executing
high-level scenario tests for testing cross-unit functionality.
Not relying on a given set of execution traces has several ad-
vantages: (1) the approach is also useful for non-productive
systems, with no or only a small set of execution traces.
(2) The approach is not restricted to a given set of traces.
(3) Execution traces are produced in a controlled way. On
the other side, this implies a number of challenges that will
be discussed in the following section.

3. APPROACH
In enterprise application development, scenario tests are

one of the major quality assurance techniques. Software
vendors maintain large repositories of scenario tests, usually
constructed with the same degree of abstraction as busi-
ness process models. Scenario tests comprise multiple steps,
where each step is an abstract test script that can be equipped
with test data and executed on the system under test (SUT).
Each step may provide arguments for following steps.

The general idea of the presented approach is to lever-
age scenario tests to infer models of built-in processes in

enterprise systems. In a nutshell, the approach works as
follows (see Figure 1). A domain expert selects an exe-
cutable scenario step e.g. Reject Sales Quote (SQ) to ex-
tend an initial model of the application behavior (b). Since
executable process models are often missing in industrial
practice, the initial model can optionally be inferred from a
given scenario test (a), which consists of several steps such
as creating a sales quote, checking the quote for consistency,
approving the quote and creating a sales order (SO) with
reference to the quote. Therefore the scenario test is exe-
cuted and after each step the state of the core objects af-
fected by the current step is extracted from the SUT us-
ing the tracing functionality provided by modern enterprise
systems. States in the initial model represent the state of
the main objects the scenario steps operate on such as Sa-
lesQuote(submitted|approved|rejected) and transitions are la-
beled with scenario step names such as Approve SQ. Based
on the initial model, additional scenario tests are generated
that execute the selected step in each state of the model;
after successful scenario test executions, state information
is extracted (c). The observations made from the execution
of the generated scenario tests are used to enrich the initial
model (d). Note that step (c) and (d) are executed itera-
tively, i.e. that for each new legal state discovered by the
generated scenario tests, further tests are generated that ex-
ecute the selected step in the new state, until no new states
are discovered by the generated tests. If each of the selected
scenario steps has been executed in each state of the inferred
model or a predefined timeout has been reached, the mining
process stops. The inferred model can then be used to com-
pare the implemented system behavior with the intended
behavior.

There are a number of challenges that will be briefly dis-
cussed in following.

Combinatorial explosion: a näıve approach that gener-
ates and executes all combinations of a set S of selected
scenario steps has to execute |S|! scenario tests. For
the small example in Figure 1 with |S| = 5 this means
a total of 120 tests comprising of 600 scenario steps
to execute. This is only feasible for scenarios with a
small number of selected steps and a short average step
runtime.

389

Figure 2: Influence of test data. Executing the same
steps may lead to different states (1, 2), or even
fail (3, 4), which results in nondeterministic models.

Long running test scripts: unlike existing approaches that
leverage test case generation to infer models, this ap-
proach generates and executes scenario tests instead
of unit tests. A scenario test consists of several steps
that typically comprise a multitude of operations. This
allows abstracting from single operations, but also in-
creases the runtime of the approach compared to ap-
proaches that mine models with transitions represent-
ing single method calls.

Test data provisioning: scenario tests comprise multiple
steps, i.e. parameterized test cases that have to be
provided with concrete arguments to execute them.
Figure 2 illustrates the influence of test data on experi-
mental specification mining approaches. Depending on
the selected test data for the scenario step parameters,
executing the same steps may lead to different states -
consistent (1) or inconsistent (2), or even fail (3). An-
other, more business related example where test data
influences test execution is the approval step in sce-
nario test (4); depending on the order value provided
as an argument for the Create SQ step, an approval
may become unnecessary and the execution of the Ap-
prove SQ step may even fail. If test data is not fixed
and data dependencies are not inferred, this results in
nondeterministic models. However, inferring relations
over arguments requires executing each scenario test
multiple times with different test data. For a scenario
with s parameterized steps and n argument lists for
each step, testing all data combinations results in ns

executions for a single scenario test.

Parameter mapping: another challenge that is an exacer-
bated version of the previous one is to find arguments
for steps that are not represented in the initial model
such as Reject SQ in Figure 1 (b), and therefore are
missing a parameter mapping; this means it is not clear
which arguments are generated by preceding steps (e.g.
SQ Id), and which arguments are independent from
previous steps (e.g. rejection comments). Searching
for script usage in existing scenario tests and compar-
ing parameter naming and types could help but may
not solve the problem in all cases. Therefore user inter-
action might be necessary where automated techniques
do not provide good results.

Anonymous vs. labeled states: a number of specifica-
tion mining approaches [3, 1] define states solely by

their outgoing transitions, i.e. states are anonymous
and provide no information except for their outgoing
transitions. Approaches with anonymous states do not
need to extract state information from the SUT, but
the algorithm for building the FSM and merging states
is more complex [2]. For the approach presented in this
paper, inferring FSMs with anonymous states increases
the number of scenario steps to execute in order to dis-
tinguish states, whereas an approach based on explicit
state information requires extracting the system state
after each scenario test execution.

State abstraction: considering an approach based on ex-
plicit state information leads to the question of finding
the right level of abstraction for the system state. Due
to the enormous state space of business application
systems, it is hardly possible to extract and represent
the full system state. Apart from that the inferred
models would be too detailed to be useful.

4. RESEARCH PLAN
Being at the beginning of my research, I did some first

experiments with SAP enterprise systems. I achieved to ex-
tract selected state information from the system; the afore-
mentioned long runtime of single scenario steps turned out
to be a major challenge.

I plan to proceed by implementing a tool in the domain of
enterprise systems. In the first iteration I will exclude the
test data aspect by fixing the data. In order to evaluate the
proposed approach, I plan to analyze a number of processes
in SAP enterprise systems, using the tool and comparing the
results with manually created models.

The expected contributions of this research are: (1) a tech-
nique to mine high-level models of built-in processes from
enterprise systems. (2) A tool implementing the mining
technique for SAP enterprise systems. (3) An evaluation
of the technique based on experiments with the tool.

5. RELATED WORK
The first approach that infers finite-state machines (FSMs)

from process event traces was published by Cook and Wolf [3];
the Ktail algorithm, which builds upon the work of Bier-
mann and Feldman [2], mines FSMs with anonymous states
and transitions labeled with process events. States reached
by process events are defined by the future behavior that can
occur from it, i.e. events whose successor events are equal
belong to the same equivalence class and therefore lead to
the same state in the FSM. Ammons et al. [1] mine nonde-
terministic finite automata (NFAs) with anonymous states
capturing temporal and data dependencies of API call. They
use a variation on the classic k-tails algorithm [2] to mine
probabilistic finite state automata (PFSAs) from execution
traces annotated with flow dependencies; each edge in the
PFSA is labeled with an interaction and weighted by how
often it is used. The PFSA is then transformed into an
NFA by removing rarely-used edges, unreachable states and
the weights. The GK-Tail algorithm by Lorenzoli et al. [10]
mines extended FSMs from execution traces that capture the
relations between data values and component interactions.
The algorithm uses k-tails [2] to mine interaction patterns
and extends the inferred FSMs with invariants over data
values extracted with the Daikon tool by Ernst et al. [6].

390

The ProM framework [12] provides an extensible envi-
ronment for analyzing process event logs and comes with
a multitude of plug-ins for process model inference: the α-
algorithm by van der Aalst et al. [11] mines Petri nets. The
fuzzy miner [8] infers abstractions over less structured pro-
cesses by aggregating and abstracting less significant behav-
ior based on several metrics. The flexible heuristics miner [13]
infers dependency graphs with the most frequent dependen-
cies between events in the log and annotates less frequent
dependencies in form of causal nets, making the algorithm
robust to noise.

The specification mining approaches [3, 1, 10, 11, 8, 13]
can be classified as inductive approaches (cf. [16]), i.e. they
build abstractions over a given set of program executions.
In contrast, the proposed approach systematically generates
and executes scenario tests and therefore does not rely on a
given set of execution traces. The idea of building a feedback
loop between specification inference and test generation was
first published by Xie and Notkin [14]. The Obstra tool [15]
implements this idea by executing a given test case to infer
an initial specification. This specification is used to auto-
matically generate new test cases, which are executed in a
subsequent iteration to extend the specification. The Tau-
toko tool by Dallmeier et al. [4] mines typestate automata
based on systematic test case generation. Typestates are
FSMs with anonymous states and transitions labeled with
method names that encode the legal usage of a class under
test. The approach builds on their previous work [5] for in-
ferring object behavior models (OBMs), which have a lower
level of state abstraction than typestates. Given a Java pro-
gram and a concrete test case, Tautoko infers an initial OBM
by executing the test case; the initial OBM is enriched by
observing the execution of additional test cases generated by
mutating the given test case such that each method in the
test case is called in each state of the OBM. The enriched
OBM is then transformed into a typestate automaton by re-
placing each state label, except for start and exception, with
a unique number. The proposed approach as well as [14, 15,
4] control program executions by generating test cases and
therefore can be considered as experimental techniques to
program analysis (cf. [16]). However, the proposed approach
infers models with a higher level of abstraction granularity.

Another field related to the proposed approach is model-
based robustness testing [7], which mutates an initial system
specification to produce test cases violating the initial speci-
fication. While the purpose of robustness testing is checking
that certain behavior is inhibited by the system e.g. a high
volume sales quote may not be released without manager
approval, the proposed approach observes the test case exe-
cution and extends the specification accordingly.

6. CONCLUSION
To the best of my knowledge, the proposed approach is

the first one that infers models of built-in processes in enter-
prise systems based on systematic scenario test generation
and therefore does not rely on a given set of process execu-
tion logs. The approach builds on research in specification
mining and model-based testing and will be implemented
and evaluated in the domain of enterprise systems.

Acknowledgments. I would like to thank Andreas Zeller,
Andreas Roth, Sebastian Wieczorek, Wei Wei and the anony-
mous reviewers for their valuable comments.

7. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

Specifications. ACM Sigplan Notices, 37(1):4–16, 2002.

[2] A. W. Biermann and J. A. Feldman. On the Synthesis
of Finite-State Machines from Samples of Their
Behavior. IEEE Transactions on Computers,
C-21(6):592–597, 1972.

[3] J. E. Cook and A. L. Wolf. Discovering Models of
Software Processes from Event-based Data. ACM
Transactions on Software Engineering and
Methodology, 7(3):215–249, July 1998.

[4] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and
A. Zeller. Generating Test Cases for Specification
Mining. In Proc. of the 19th International Symposium
on Software Testing and Analysis, ISSTA ’10, pages
85–96, New York, NY, USA, 2010. ACM.

[5] V. Dallmeier, C. Lindig, A. Wasylkowski, and
A. Zeller. Mining Object Behavior with Adabu. In
Proc. of the 2006 International Workshop on Dynamic
Systems Analysis, WODA ’06, pages 17–24, New York,
NY, USA, 2006. ACM.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically Discovering Likely Program
Invariants to Support Program Evolution. IEEE
Trans. on Software Engineering, 27(2):99–123, 2001.

[7] J.-C. Fernandez, L. Mounier, and C. Pachon. A
Model-based Approach for Robustness Testing. In
TestCom, pages 333–348, 2005.

[8] C. W. Günther and W. M. P. van der Aalst. Fuzzy
Mining - Adaptive Process Simplification Based on
Multi-perspective Metrics. In Proc. of BPM, pages
328–343, 2007.

[9] S. Kätker and S. Patig. Model-driven Development of
Serviceoriented Business Application Systems. In
Wirtschaftsinformatik (1), pages 171–180, 2009.

[10] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
Generation of Software Behavioral Models. In Proc. of
the 30th International Conference on Software
Engineering, ICSE’08, pages 501–510, Leipzig,
Germany, 2008.

[11] W. M. P. van der Aalst, T. Weijters, and L. Maruster.
Workflow Mining: Discovering Process Models from
Event Logs. IEEE Trans. Knowl. Data Eng.,
16(9):1128–1142, 2004.

[12] B. F. Van Dongen, A. K. A. De Medeiros, H. M. W.
Verbeek, A. J. M. M. Weijters, and W. M. P. Van Der
Aalst. The ProM Framework. Lecture Notes in
Computer Science, 3536/2005:1105–1116, 2005.

[13] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible
Heuristics Miner. 2011. Accepted for the SSCI2011.

[14] T. Xie and D. Notkin. Mutually Enhancing Test
Generation and Specification Inference. In Proc. 3rd
International Workshop on Formal Approaches to
Testing of Software, FATES 03, volume 2931 of LNCS,
pages 60–69, October 2003.

[15] T. Xie and D. Notkin. Automatic Extraction of
Object-oriented Observer Abstractions from Unit-Test
Executions. In Proc. 6th International Conference on
Formal Engineering Methods, ICFEM 2004, pages
290–305, November 2004.

[16] A. Zeller. Program Analysis: A Hierarchy. In Proc.
Workshop on Dynamic Analysis, May 2003.

391

