
Gray Links in the Use of Requirements Traceability

Nan Niu
Department of EECS

University of Cincinnati
Cincinnati, OH, USA 45221

nan.niu@uc.edu

Wentao Wang
Department of EECS

University of Cincinnati
Cincinnati, OH, USA 45221
wang2wt@mail.uc.edu

Arushi Gupta
Department of EECS

University of Cincinnati
Cincinnati, OH, USA 45221
gupta2ai@mail.uc.edu

ABSTRACT
The value of traceability is in its use. How do different
software engineering tasks affect the tracing of the same re-
quirement? In this paper, we answer the question via an em-
pirical study where we explicitly assign the participants into
3 trace-usage groups of one requirement: finding its imple-
mentation for verification and validation purpose, changing
it within the original software system, and reusing it toward
another application. The results uncover what we call “gray
links”—around 20% of the total traces are voted to be true
links with respect to only one task but not the others. We
provide a mechanism to identify such gray links and dis-
cuss how they can be leveraged to advance the research and
practice of value-based requirements traceability.

CCS Concepts
•Software and its engineering → Requirements anal-
ysis; Traceability;

Keywords
Traceability, using traceability, software engineering task,
requirements change, requirements reuse, gray links

1. INTRODUCTION
Attaining and maintaining requirements traceability place

a significant burden on software engineers. Low adoption of
traceability in practice, since reported in Gotel and Finkel-
stein’s seminal work [24], has been notoriously persistent.
There are tools helping automate the generation of trace-
ability links, most notably via information retrieval (IR) al-
gorithms. However, these tools are far from outputting all
the correct links (100% recall [38]) and only the correct links
(100% precision [38]).

To improve recall and precision, various proposals are
made. Some combine IR’s textual cues with other sources
of information: structural [40], semantic [36], historical [1],

etc. Some manipulate the source and the target of traceabil-
ity, e.g., configuring query [43] and expanding corpora [10].
Some act on the retrieved link candidates: pruning them
to reduce irrelevance [27, 57], clustering them to arrange
for natural groupings [13, 46], and bundling them to exploit
partial knowledge [14, 21]. Yet, many more methods have
been proposed in the past decade [5].

What does a human analyst do when presented with the
output from the automated requirements tracing tool? The
seminal work by Hayes and Dekhtyar [26], together with
their series of studies [8, 11, 31, 32], showed that nobody
would take the tool output as their finally-approved, “certi-
fied” trace links. Such an invariably-overriding behavior by
the human analysts highlights that traceability “cannot live
without them” [26]. However, it “cannot live with them” ei-
ther, because the analysts’ overriding was often harmful [26].
Ironically, the most consistently and greatly degraded trace
links were the high-recall and high-precision ones produced
by the tool [9].

Thus, a tool that induces better analysts’ performance
in finalizing their trace links is considered to be valuable.
Such judging-the-tool-output is referred to as vetting, where
an analyst is asked to browse and verify the automatically
generated trace links [9]. However, without knowing how
the traceability would actually be used, analysts waste much
time and encounter much uncertainty during vetting [31].
Traceability is not an end in itself but a means to support
various software engineering tasks [6]. Surprisingly, little is
known about the impact of these tasks on analysts’ judgment
of the trace links.

In this paper, we shorten the gap by exploring the impact
of use tasks on traceability. For the same requirement, we
explicitly assign the human participants with three tasks:
vetting its traceability in a broad verification and valida-
tion (V&V) context, changing it within the original system,
or reusing it toward another system. While the V&V task
involves no direct use of the requirements trace links, the
other two tasks do in that the participants are asked to use
their chosen trace links to carry out the specific change or
reuse task being assigned to them a priori.

The results, to our surprise, do not support the conjecture
that analysts knowing how the trace links are to be used will
make better vetting decisions [31]. For requirements change
and reuse tasks, an in-depth analysis uncovers that around
20% of the total traces are voted as true links with respect
to one task but not to both. We call them “gray links” and
believe their existence directly shakes some contemporary
bases of traceability, such as assessing a tracing method per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950354

384

formance against a single answer set and predefining a fixed
information model for all traceability uses.

The contributions of this paper lie in the discovery of use-
task-induced gray links and in the analysis of how the gray
links can be exploited to better support the use tasks. In
what follows, we review related work in Section 2 and present
our empirical study design in Section 3. The experimental
results are analyzed in Section 4 where a mechanism of iden-
tifying the gray links is introduced. Section 5 examines the
use of the gray links. Section 6 discusses the threats to
validity as well as the implications of our work. Section 7
concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Traceability and Its Automation
The need to describe and follow the life of a requirement

from its origin to its realization gave rise to requirements
traceability [24], which can be generalized to other kinds of
artifacts like a design model, a piece of code, and a test case.
Traceability, then, is about “connecting the dots” among
software artifacts to answer questions of both the software
product and its development process [6].

Because it is tedious and error-prone to create and main-
tain the traceability information manually, automated sup-
port is developed and much is based on information retrieval
(IR). These methods facilitate the recovery of the candidate
traceability links1 by relying on the textual descriptions of
the query requirement and the target artifacts. Researchers
have applied many IR methods in automated tracing [2, 36,
37, 39, 56, 57]. Extensive empirical evaluation results show
that these methods have a comparable level of effective-
ness [52], where effectiveness is measured primarily based
on the two IR metrics: recall and precision [38].

The prerequisite for computing recall and precision is the
known “answer set”, as shown in Figure 1. For a given re-
quirement, its answer set specifies all the correct trace links
and only those links. Therefore, a high recall value indicates
a more complete coverage of the correct links by the trace
retrieval method, whereas a high precision value signals a
low proportion of noise contained in the candidate links.

IR-based requirements tracing methods typically return
the candidate links with high-recall but low-precision val-
ues [27]. In most cases, a recall of 90% is achievable at
precision levels of 5-30% [1, 5, 27, 36, 37, 39, 52, 57]. The
high recall value can be attributed to the size of the trac-
ing targets: A medium-sized code base, for example, may
contain hundreds and thousands of artifacts (e.g., classes or
methods) and an after-the-fact2 trace retrieval method that
returns all the code artifacts is guaranteed to have a 100%
recall. In contrast, some IR applications like Web search
must handle millions or billions of retrievables3, making a
high-recall performance practically infeasible.

A root cause of the trace retrieval methods’ low precision
is the length of the query requirement. Each trace query can

1The traceability links are “candidate” until an analyst vets
them; the “final” traceability links are the ones approved [8].
2After-the-fact tracing operates on a snapshot of the soft-
ware system by not considering the evolution of the tracing
source and the tracing target over time [12].
3As an example, the estimated size of Web pages in-
dexed by Google reached nearly 50 billion in February 2016
(http://www.worldwidewebsize.com).

 Answer Overlap Retrieved
Set (A) (C) Result (B)

Figure 1: Recall= |C|
|A| and Precision= |C|

|B| are set-

based measures relying on the known “answer set”.

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
re

ci
si

on
Recall

University A
University B

RTM size = 17
RTM size = 32

f2 = 0.60
f2 = 0.75

hot spot

Figure 2: “Hot spot” in the recall-precision space
where the analysts’ submitted trace links are ob-
served to concentrate (adopted from [8]).

be a sentence (e.g., a feature description) or several sentences
(e.g., a user story or a use case) written in natural language.
Compared to the short Web-search queries4, long queries can
cause irrelevant links to be retrieved, decreasing precision.

In short, IR-based methods automate the after-the-fact
recovery of candidate traceability links to a large extent. As-
sessed with the“answer set”, these methods cannot achieve a
high coverage of all the correct links without also returning
a great proportion of incorrect ones. Beyond recall and pre-
cision, additional metrics are proposed to take the human
factors into consideration. For example, the mean average
precision (MAP) provides a sense of the browsability of re-
trieved link candidates in the ranked list [57] and the F2

measure is commonly adopted to combine together recall
and precision because it is assumed that analysts are better
at removing incorrect links than finding missing links [27].

2.2 Human in the Traceability Loop
How does a human analyst actually behave when brows-

ing and verifying the candidate traceability links? Hayes and
Dekhtyar [26] began the research thrust on human factors
and repeatedly recognized analysts’ fallibility in the require-
ments tracing process [9]. Such fallibility, quite surprisingly,
was observed to be predictable [9]. In Figure 2, for example,
a“hot spot”of 26 student analysts’ finalized trace links could
be depicted by the F2 value and the size of the submitted
requirements traceability matrix (RTM) [8].

To understand the factors causing analysts’ predictably
fallible behavior, Dekhtyar et al. [11] examined 11 vetting

4An average length of 2.5 terms per query was used for re-
trieving the TREC HARD collection [30].

385

variables. Their examination revealed that only the accu-
racy of the initial candidate links and the analysts’ effort
expended in validating offered links had statistically signifi-
cant effects on the final trace links, while the other 9 factors
(e.g., tool used, software engineering experience, tracing ex-
perience, effort on searching for omitted links, etc.) did not
make a difference. Complementary to observational stud-
ies, we explored the theoretical underpinning of analysts’
requirements tracing behavior in light of the information
foraging principles [48].

In sum, human factors fundamentally shape the landscape
of automated traceability. As traceability decisions are hu-
man decisions in most situations, neglecting the analyst–tool
interaction will only widen the gap between requirements
tracing methods [27] and the analysts [8]. However, studies
so far [8, 11, 31, 32], including our own [48, 60], have paid at-
tention exclusively to analyst–tool reaction (i.e., vetting the
links in after-the-fact tracing) rather than the interaction
where analysts use the links to accomplish their tasks.

2.3 Value-based Traceability
The value of traceability is in its use. The key tenet of

value-based software engineering is to shift the practice and
research away from a value-neutral setting where every re-
quirement, use case, object, test case, and defect is treated
as equally important [28]. With value-based traceability,
this means that not all trace links are the same [15]. Their
values must be distinguished based on the use context.
“Who uses traceability” was answered by the early work

of Ramesh and Jarke [54]. They identified a wide range
of traceability practices with distinct low-end and high-end
users of traceability. While low-end users were interested
in solving specific tasks like allocating requirements to im-
plementation units, high-end users tended to capture traces
across product and process as a means of managing ratio-
nale. “When to use traceability” should not be constrained
by a static set of artifacts in an after-the-fact and retrospec-
tive manner only. Prospective traceability tools, such as
TRASE [2], ReCVisu+ [50], and TOOR [53], generate trace
links in situ during artifacts’ creation and modification over
the project life cycle.

The most important factor, compared to the “who” and
the “when”, is the “why”, i.e., the purpose of tracing [7].
Traceability is needed to meet various purposes, ranging
from being mandated by standards like CMMI level 3 to sup-
porting software engineering tasks like verification and vali-
dation (V&V) [27], software maintenance [34], product line
reuse [51], concept location [47], software exploration [49],
code foraging [45], hazard mitigation [35], etc. In fact, IR-
based methods have been successfully applied in more than
20 different tasks [43]. However, the value of traceability is
often assumed based on a purely technical perception rather
than measured directly.

An exception is the experiment recently conducted by
Mäder and Egyed [34] that studied the effect of requirements
traceability on participants’ software maintenance perfor-
mance. The results show that participants provided with
trace links performed on average 24% faster and created
50% more accurate solutions than the participants who per-
formed those tasks without the provided links. These en-
couraging results help quantify the expected benefits of us-
ing traceability in concrete tasks. Building on these, our
work tries to improve three aspects in the experimental de-

sign of [34]: having participants develop task solutions in
the programming environment instead of sketching the so-
lutions on paper, providing IR-based candidate links instead
of perfect traces with 100% recall and 100% precision, and,
most importantly, taking a value-based perspective instead
of treating every trace equivalently.

Egyed and his colleagues pioneered the research on value-
based traceability by introducing a language to capture the
trace with uncertainties (e.g., code c “implements at least”
requirement r) [14], adding to the language a set of con-
straints (e.g., c“cannot simultaneously be implementing and
not implementing” r) [20], developing a scalable reasoning
engine based on SAT solvers [21], and sharing the experi-
ences of empirical studies [15, 16, 17]. Another important
contribution is Lago et al.’s approach to customize trace-
ability for stakeholders’ activities at hand [33]. The key
idea is to scope down all possible trace links to the essential
ones codified in the core traceability paths. Although differ-
ent activities require different core paths to tackle different
traceability issues, the scoped approach is value-based: “By
knowing in advance the use we aim at, we can consciously
decide on which traceability links to document, and can ex-
clude those that are not necessary” [33].

In a nutshell, requirements traceability must be not only
measurably valuable [34] but also value-based [15]. Not all
trace links should be equally important. Their varying im-
portance hinges on their very purposes of existence, i.e., to
support the activities that stakeholders must carry out [33].
Do different uses lead to different trace links, even for the
same requirement? This is precisely the motivational ques-
tion that drives our exploration of “gray links”.

3. STUDY DESIGN

3.1 Terminology and Hypothesis
The term, “gray links”, is not new. Kong et al. [31] used

the term to refer to those trace links that analysts could not
definitely judge as true or false links. The literature suggests
two reasons for this phenomenon at an individual level.

• Unknown or implicit guidance on final links’ us-
age. When analysts were asked to vet the candidate
traceability links but unsure about how the links would
be used, they spent a significant amount of time delib-
erating whether certain links should be approved [31].
However, little is known about how many of these
troublesome, hard-to-decide links appear and how they
may affect the actual usage.

• Partial knowledge analysts have about the trace-
ability. A developer, for example, may remember
that a given requirement is implemented in a subset
of classes but not exactly which subset. A trace cap-
ture tool is proposed to allow such uncertainty to be
expressed and exploited [14, 21].

Prior research thus revealed hard-to-judge links during
trace capturing or vetting, i.e., judging “Yes, this is a link”
or “No, this is not a link” [8, 9, 31] for the sake of creating
the trace links for later use. Our focus in this paper is not on
creating the traceability but on using it, or more accurately,
on the interdependency of the two when the use task is de-
fined explicitly and a priori. The hypothesis that we want
to test empirically is what was posited by Kong et al. [31]:

386

H: Knowing how the final trace links are to be
used will better equip the human to make the
vetting decisions, i.e., to better judge “Yes, it is
a link” or “No, it is not a link”.

Before detailing our experimental design in the next sub-
section, we clarify the terminology used in our work. A trace
link expresses a relationship between a source artifact and a
target artifact (e.g., “a method implements a requirement”).
For a given link, we say it is correct if the expressed relation-
ship agrees with some facts or reality. The answer set, typ-
ically defined by the original development team, documents
all and only the correct traceability links5. It is against the
correct links that an IR-based tracing tool’s output—and
for that matter analysts’ vetting result—is compared. We
regard a link as true if an analyst judges it to be correct. In
another word, the true link is relative to an analyst’s judg-
ment, whereas the correct link, intended to be authoritative,
is not6. Finally, a link is voted true if a group as a whole
favors the true judgment of the link. We present a mecha-
nism for determining voted true links in Section 4 where our
experimental results are analyzed.

3.2 Experimental Setup
We designed three conditions to test H, as illustrated in

Figure 3. The control group (G0) received the “no direct
use of the final trace links” treatment. Specifically, a V&V
instruction was given for the human participants of G0 to
find all and only the correct implementation elements of a
given requirement. For the same requirement, two experi-
mental groups received different“final-trace use”treatments:
We asked one group (G1) to change the requirement and the
other (G2) to reuse it.

We chose iTrust7 to be our subject system. iTrust is a
Java application aimed at providing patients with a means
to keep up with their medical records as well as to commu-
nicate with their doctors. Although originated as a course
project, iTrust has exhibited real-world relevance and serves
as a traceability testbed for understanding the importance
of security and privacy requirements in the healthcare do-
main [41]. iTrust has over 30 use cases (UCs) and 750
JSP/Java files. The answer set of correct requirements-to-
source-code traceability links is defined by the project team
in a spreadsheet, downloadable from the project’s Web site.

To test H, we selected one of iTrust’s requirements: UC11
(document office visit). This selection was informed by our
evolutionary analyses of 15 iTrust releases [59]. The descrip-
tion of this requirement, together with that of the 3 tasks,
is detailed in Table 1. Figure 4 provides further illustra-
tions. The change task requires the modification of UC11
subflow [S4] so that the health care professional (HCP) is
armed with the new capability to automatically check the
interactions between the to-be-prescribed medications and
the drugs currently taken by the patient (cf. Figure 4b).

For the requirements reuse task, we sketched an initial
Java implementation of a student degree management sys-

5Answer set may not be perfect (e.g., one contains outdated
information [59]), but if the development team defines it,
then it is intended to be authoritative in our opinion.
6We realize our labelings of “correct” and “true” links may
not be universally applicable (e.g., the “answer set” is some-
times called “ground truth”), but we believe the distinction
is critical when human factors are considered in traceability.
7http://agile.csc.ncsu.edu/iTrust

G0

G1

G2

use links

 use links

judge links

judge links

judge links
V&V Task:

Find all and only code
elements implementing R

Change Task:

Modify part-n of
R to part-n-new

Trace Links of
Requirements
Change Task

Trace Links of
Requirements

Reuse Task

Reuse Task:

Use R and its
implementation
in a new system

Requirement R

Description
containing

part-1, part-2,
part-3 … of R

Figure 3: Different tasks on the same requirement.

tem (SDMS), which contains two hardcoded JSPs: one for
identifying the student and the other for checking the de-
gree requirements (cf. Figure 4c). The code base also de-
fines 2 classes (Student.java and Course.java) without specify-
ing any of their attributes or methods. The main purpose of
our initial implementation is to provide some basic building
blocks [29] for the participants to better comprehend the re-
quirements reuse task. Only the hardcoded Figure 4c with-
out the “checking data format” annotation was shown
to the participants. Even though the data format check-
ing ([S2] of iTrust’s UC11) was a good reuse candidate, the
participants were instructed to reuse “iTrust’s UC11 and its
implementation” in any way they deemed appropriate.

We developed a prototype tool based on Eclipse plug-in
architecture. The tool development was built on our experi-
ence with the instrumentation of studying analysts’ informa-
tion foraging and tagging in requirements tracing [48, 60].
We wanted the traceability tool to be seamlessly integrated
with the programming environment because G1 and G2
participants would modify the code by using the trace links.
We also wanted to impose a “vetting-before-using-the-links”
order forG1 andG2 participants because otherwise the vet-
ting decisions might not be recorded. For these reasons, we
built the prototype tool instead of using the state-of-the-art
tools like TRASE [2] in our experiment.

Three tool variants were devised for each of the G0, G1,
and G2 groups. Figure 5 illustrates our tool with the G1
task. The requirements description and the task description
are displayed in Figure 5-A and Figure 5-B respectively. Fig-
ure 5-C shows the candidate traceability links in an ordered
list. Ranking from the top are the Java methods that have
the highest textual similarity with the to-be-traced require-
ment. All variants of our tool compute the textual similarity
by adopting the vector space model with TF-IDF weighting
as its performance is comparable to other IR-based require-
ments tracing methods [27, 52].

Our tool structures the operation process so that the can-
didate links must be vetted first before the actual require-
ments change can be made. To do so, our tool disables the
editing inside the code editor (Figure 5-D) until the partic-
ipant submits a non-empty set of true links (Figure 5-E).
Once the links are vetted, an ordered list of true links is
shown (Figure 5-F) and the code editor becomes editable
(Figure 5-G). The code editor stays editable even though the
participant may modify her collection of true links (Figure 5-
H), after which the ordered candidate links with her most
recent vetting decisions are shown (Figure 5-C). While the

387

Table 1: Description of the to-be-traced requirement and the three tasks.

Req. / Task Description
Requirement UC11 Document office visit

…
[S2] The HCP documents the following information related to an office visit:
 Prescribed Medications (NDC, see Data Format 6.6)
 Lab procedures that are ordered (LOINC code, see Data Format 6.11)
 …
[S4] The HCP has selected a medication prescribed from a pull down list.

…

V&V Task Find all and only methods implementing UC11.

Change Task Change:
 [S4] The HCP has selected a medication prescribed from a pull down list.
To:
 [S4] The HCP has selected a medication prescribed from a pull down list. The medications desired to be
prescribed is checked for interactions between other drugs currently taken by the patient.

Reuse Task Reuse iTrust’s UC11 and its implementation to develop the following features in the SDMS system:

Before a student graduates, the system must check whether this student meets following criteria:
1. A student must take certain courses (Data Format SDMS 3.5.4) and earn certain credits;
2. An engineering undergraduate student must take 5 co-ops (Data Format SDMS 3.5.7);
3. A graduate student must have a thesis, which requires a passed oral thesis defense.

…

Figure 4: (a) UC11 in iTrust; (b) Changing UC11 in iTrust; (c) Reusing iTrust’s UC11 in SDMS.

code can be navigated within the package explorer (Figure 5-
I), double clicking a trace link in Figure 5-C or Figure 5-F
triggers the location and the display of the link content (i.e.,
method body) in the code editor.

For the reuse variant of our tool shown in Figure 6, the
vetting-enables-code-editing process is also enforced. Com-
pared with Figure 5, two main differences are highlighted in
Figure 6: Package explorer shows both the original project
and the new project to the left of the tool (Figure 6a), and
to-be-traced requirement and reuse-task description are dis-
played side-by-side to the right of the tool (Figure 6b). The
middle part of the requirements reuse tool shares the same
design as Figure 5: On the top is the one and the only one
code editor in which multiple source code files can be opened
and on the bottom is the switch between the two lists of the
candidate links and the selected ones.

We recruited 90 undergraduate students from our univer-
sity to participate in the controlled experiment. These stu-
dents majored in Computer Science, Computer Engineering,
or Electrical Engineering, and were recruited from a junior-
level software engineering class where traceability and Java
were taught. We sent e-mail invitations to all the 103 stu-
dents near the end of the course. Our voluntary participants
included 77 males and 13 females, had ages ranging from 19
to 28, and gained at least one 13-week semester of industrial
co-op experience due to their degree programs’ requirements.
None of the participants used any automated tracing tool or
knew iTrust before the experiment, but all of them reported
to be familiar with the healthcare domain. Because software
engineering experience does not affect analysts’ tracing per-
formance [11], we randomly assigned the 90 students into
the 3 groups. While the participants in G0 were asked to

388

(a) Judging candidate links with explicitly defined software engineering task (b) Using final links to solve the task

Figure 5: Screenshots of the prototype tool illustrated by the requirements change task.

(a) (b)

Figure 6: Requirements reuse tool screenshots.

judge and finalize their true links in a V&V context, G1
and G2 participants were asked to vet and use the links to
develop their solutions in Eclipse to fulfill the given task.

The experiment was performed in a research lab where
the participants worked independently. All the participants
were instructed to use only the provided variant of our tool
and not to use the Internet or any other resources during
the experiment. Each participant was given 30 minutes to
complete the assigned task. A researcher was present in all
the experiment sessions to run the tool tutorial in the begin-
ning, to time the session, to answer questions, to take notes,
and in the end of each session, to ensure every participant’s
interactions with the tool, along with their final links and
task solutions, were properly logged.

4. RESULTS AND ANALYSIS
4.1 Testing Hypothesis H

The hypothesis H (cf. Section 3.1) predicts a better link-
vetting performance for those analysts who know directly
how their final links will be used (G1 and G2 in our experi-

Figure 7: Number of vetted links. Number of cor-
rect links of UC11 is 20 according to the answer set
defined and released by the iTrust project team.

ment) than those who know the use in a rather general way
(G0). Figure 7 groups analyst-vetted trace links into dif-
ferent categories. The three leftmost box-plots of Figure 7
show the number of true links submitted by G0, G1, and
G2 participants.
Following the contemporary literature [8, 11, 26, 31, 32],

we use such IR metrics as recall, precision, and F2 to as-
sess the analyst-vetted true links. Table 2 shows the re-
sults. Descriptive statistics are given in terms of (mean ±
standard deviation). Inferential statistics are performed via
the non-parametric Wilcoxon paired difference test (α=0.05).
Table 2 provides evidence that the participants of G2 chose
more accurate traces thanG1, whose links in turn were more
accurate than G0’s. This indicates that to reuse, analysts
need a deeper understanding than when changing an exist-
ing piece of code. Both G1 and G2 tasks require deeper

389

Table 2: Statistical results of H testing.
G0 G1 G2

Recall 0.56±0.17 0.62±0.10 0.72±0.09
p – 0.11 0.09

Precision 0.57±0.21 0.71±0.10 0.57±0.10
p – 0.10 0.13
F2 0.55±0.18 0.62±0.10 0.69±0.09
p – 0.09 0.08

Figure 8: Average case link-vetting performance.

levels of understanding than doing the generic V&V. Nev-
ertheless, none of the vetting performance improvements is
statistically significant in that all the p values reported in
Table 2 are greater than 0.05. Our results fail to reject the
null hypothesis, i.e., H is not supported.

4.2 Intra-Group Agreement
To gain further insights into the link-vetting behavior, we

plot the average case performance in Figure 8. All our par-
ticipants started at the same point on the recall-precision
space, because the candidate trace links were retrieved and
ranked by the same IR algorithm. Figure 8 shows that, dur-
ing vetting, our participants threw out both correct and in-
correct links, enhancing precision while hurting recall8. The
dotted lines of Figure 8 depict the F2-defined boundaries of
what Cuddeback et al. [8] found to be a “hot spot” of ana-
lysts’ final links (cf. Figure 2). The prediction is amazingly
good: While G1 and G2 finished inside the“hot spot”, G0’s
finish was not far off at all.

We argue this predictable regularity is limited because re-
call and precision are set-based measures (cf. Figure 1). For
example, suppose l1 and l2 are correct and the only correct
traces of a given requirement. Let two analysts indepen-
dently evaluate l1 and l2. If one person marks l1 as a true
link and l2 as a false link, and the other person marks l1 as a
false link and l2 as a true link, then both analysts achieve the
same recall (50%) and the same precision (100%). Plotted
in the recall-precision space like Figure 8, the two analysts’
final traces will arrive at the same spot. However, they are
in stark disagreement with each other.

To better understand our participants’ final traces, we
use Fleiss’ κ [18] to directly measure the inter-rater agree-
ment within the same group. The intra-group κ value is

8Our prototype tool does not support addition of the trace
links that are not retrieved.

0.137, 0.437, and 0.445 for G0, G1, and G2, respectively.
Although no generally agreed-upon measure of significance
exists, a Fleiss’ κ value greater than 0.4 indicates a “good”
agreement among raters [25].

The κ analysis thus reveals that knowing how the final
traces are used leads G1 and G2 to greater intra-group
consensus on what count as true links. But do different
link-usage tasks lead to the same true-link consensus? The
answer, as we show next, is “No”, which gives rise to the
“gray links”of our interest: trace links that one group judges
to be correct for their task but the other group does not.

4.3 Inter-Group Agreement and Gray Links
To determine what the true links are for the group as

a whole, we adapt the two-proportion z test [58]. For a
group of 30 participants rating on a link l, for example, the
unanimous, 30-out-of-30“true link”votes serve as our anchor
proportion. We then test the other proportion by system-
atically decreasing the number of the “true link” votes: 29,
28, 27, etc. Each time this proportion changes, we run a z
test to assess its difference from the anchor proportion. If
the difference is statistically significant (α=0.05 in our anal-
yses), then a threshold is identified to signal l is no longer a
group-wide “true link”. We call the true links surviving our
z test voted true links, which are to be distinguished from
the true links judged on an individual basis9. We apply the
same z test procedure to determine the voted false links. For
a given group, the traces that are voted neither as true links
nor as false links are called “dissensus links”, implying the
group-wide difference of opinions. Figure 7 compares the
number of trace links voted by different groups.

Table 3 shows the pairwise comparisons of our three task
groups. In each of the three comparisons, the top-left cell
shows the proportion of the true links voted by both groups,
e.g., only 2 of the 84 links (2.38%) are true links shared be-
tween G0 and G2 (“white links”). Similarly, 3 links (3.57%)
appearing in the bottom-right cell of Table 3b are false links
voted by these two groups (“black links”). The two compar-
isons involved G0 result in very small proportions of white
links and black links, mainly due to the low intra-group
agreement of G0 (κ=0.137). Between G1 and G2, 30.23%
of the links are white links meaning that both groups voted
them as true links with respect to their own tasks. These
groups also share 48.84% voted false links, indicating that
both groups agreed that about half of the links were not
relevant to either of their tasks.

The grayed cells of Table 3c represent what we call gray
links. For G1, the requirements-change-task-induced gray
links include 4 traces (9.30%) that G2 could not agree on
(dissensus) and 1 false trace (2.33%) voted byG2 as a group.
Similarly, the gray links of the requirements reuse task con-
sist of the 4 (9.30%) G1-dissensus links. Altogether, about
20% of all the links rated by the two direct-link-use groups
receive favorable “Yes, this is a link” votes from one group
but not from the other.

We emphasize that the identification of gray links is very
dependent on the condition that there is a reasonably large
proportion of white and black links. Failing to satisfy this
condition pushes many links into the hard-to-decide, “gray”
set. If every link is gray, no one is. Therefore, it is not
sensible to define gray links in Table 3a and Table 3b.

9The individually-judged true links are simply called “true
links” in this paper; see Section 3.1 for definition.

390

Table 3: Pairwise comparison of group-wide trace links (N is the number of links shared by the two groups).

(a) G0 versus G1 (N=82) (b) G0 versus G2 (N=84) (c) G1 versus G2 (N=43)

G1
G0

Voted
True Dissensus Voted

False
Voted
True 1.22% 1.22% 0%

Dissensus 13.41% 2.44% 70.73%

Voted
False 7.32% 1.22% 2.44%

G2
G0

Voted
True Dissensus Voted

False
Voted
True 2.38% 0% 0%

Dissensus 10.71% 3.57% 71.43%

Voted
False 7.14% 1.19% 3.57%

G2
G1

Voted
True Dissensus Voted

False
Voted
True 30.23% 9.30% 2.33%

Dissensus 9.30% 0% 0%

Voted
False 0% 0% 48.84%

2 4 6 8 10

0
2

4
6

8

Number of votes

Th
re

sh
ol

d
(n

um
be

r o
f v

ot
es

)

Voted true link threshold
Voted false link threshold

Figure 9: The z test requires at least 6 votes.

Our identification mechanism based on the z test should
be treated as a method, not the method. A limitation of this
method is that it requires a sufficient number of votes to sen-
sibly distinguish the group-wide true links from false ones.
Figure 9 plots two thresholds. A trace link must receive more
“Yes”votes than the threshold defined by the solid line to be
voted true. The opposite holds for the dotted-line-threshold
of the voted false links. Before the two thresholds meet in
Figure 9, a link can be voted to be both true and false—a
clear contradiction. The lower bound for our gray-link iden-
tification method, therefore, is 6 votes. The method, mean-
while, has a practical upper bound, too. Figure 10 presents
our analysis. As the total number of votes increases to 40,
over 90% of the group opinions must be“Yes” for a link to be
voted true. This threshold is too aggressive to be achieved in
practice. Based on the above analyses, our z test is expected
to sensibly detect gray links when the number of votes is be-
tween 6 and 40. The 30 participants (votes) in each of our
three task groups fall into the desired [6, 40] range.

5. USES OF THE GRAY LINKS
Our results presented so far concern only the existence of

gray links. This section analyzes how the trace links were
actually used in fulfilling the tasks. Figure 11 shows the task
completion time of the three task groups. For G1 and G2,
we also distinguish the time used by the participants who
submitted correct and incorrect solutions in Figure 11. The
correctness of solutions was judged by the research team ac-
cording to the task descriptions given in Table 1. G0 used
less time than G1, which used less time than G2. Partici-

20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

Number of votes

Th
re

sh
ol

d
(v

ot
ed

 tr
ue

)

Figure 10: Practical upper bound is around 40 votes.

pants who were successful in developing their solutions spent
less time than those whose task solutions were not correct.

We observed that the development of correct solutions
was affected by the 30-minute time limit, as well as other
factors, such as the participants’ (Java) programming skills
and even their familiarity with Eclipse. As shown in Fig-
ure 11, these factors seem to negatively impact the reuse
task (22/30=73.3% unsuccessful rate) more than the change
task (17/30=56.7% unsuccessful rate).

The main factor in which we are interested is the actual
use of the gray links, together with other types of trace links
analyzed in the previous section. A trace link is edited means
that the participant modified the Java method in the exper-
iment. Although editing is only one kind of traceability use,
we believe it is a crucial kind due to the concrete expected
outcome of the change and reuse tasks.

Table 4 provides an overview of the link editing results.
For both tasks, the white links received the most proportions
of edits, regardless of the solution being correct or incorrect,
which shows that a certain set of links is core to the given
requirement. The gray links identified in our analysis also
seem to be directly contributing to the task solutions. For
the correct solutions, 75% and 60% of task-dependent gray
links were edited. Moreover, these correct solutions did not
touch the gray links belonging to the other task.

The black links were not completely unused, which is not
surprising as black links still received some individual-level
“Yes” votes. Interestingly, the combination of white, gray,
and black links did not guarantee that a correct solution
in the given time could be developed for either task. Dur-
ing UC11 reuse, for example, 11 trace links were edited but

391

Figure 11: Task completion time.

Table 4: Number of edited trace links.

Change task solutions Reuse task solutions
Correct Incorrect Correct Incorrect

White (13) 12 (92%) 9 (69%) 10 (77%) 5 (38%)
Gray of G1 (4) 3 (75%) 2 (50%) 0 (0%) 1 (25%)
Gray of G2 (5) 0 (0%) 0 (0%) 3 (60%) 1 (20%)

Black (21) 1 (5%) 4 (19%) 2 (10%) 6 (29%)
Not judged

6 (86%) 4 (57%) – –
in G1 (7)
Not judged

– – 7 (64%) 5 (45%)
in G2 (11)

never judged to be correct by any participant from G2. The
main reason, according to our observations, was that none
of the participants went back to revise their judgment once
they submitted their vetting results. Those 11 links were
uncovered and edited during the actual requirements reuse.
Finally, no participant ever edited any link not retrieved by
our TF-IDF algorithm, which implies that if the participants
want to go back and revise their link-vetting results, they
would find their edited links inside the candidate list. This
result also shows that even though the TF-IDF algorithm
did not retrieve all the correct links defined in the answer
set, the 90%-recall performance (cf. Figure 8) was practi-
cally adequate for solving both G1 and G2 tasks.

In summary, the gray links identified in our earlier anal-
ysis were both viewed and edited to a great extent dur-
ing the performance of the specific tasks. Not only were
the gray links task-dependent, so were their inter-relations.
We observed that method calls were particularly helpful for
supporting the requirements change task, whereas method
encapsulations were useful for supporting the requirements
reuse task. The call relations have recently been leveraged to
automatically uncover a more complete set of requirements-
to-code traces [19]. We believe the encapsulation relations
can facilitate further automation, especially for those tasks
requiring a relatively higher-level grasp of the software struc-
ture, such as reuse, reserve engineering, and refactoring.

6. DISCUSSIONS
6.1 Threats to Validity

As is the case for most controlled experiments, our inves-
tigation into trace-use-task-induced gray links is performed
in a restricted and synthetic context. We discuss some of
the most important factors that must be considered when
interpreting the results.

Study of only a single iTrust requirement. We chose
UC11 because of its representativeness in the evolution of
iTrust. Based on the 15 iTrust releases from 2007 to 2015 [59],
the number of changes of all the 34 UCs is 7.62±3.67 whereas
that of UC11 is 8. The number of changed trace links (Java
methods) of all the UCs is 9.24±3.24 and that of UC11 is
8.62±2.13. In addition to change frequency and size, the rep-
resentativeness of UC11 is reflected in the number of trace
links defined in the answer set: 17.82±10.69 for all the UCs
and 20 for UC11. However, UC11 may not be representative
in many other respects: change complexity, priority, error-
proneness, etc. Examining only one requirement of only one
software system limits the generalizability of our study.

Selection of the three tasks. Our choice of the three
tasks was motivated by the directness of traceability use.
We considered V&V a de facto way of “vetting-links-for-the-
sake-of-vetting-links” as appeared in many previous stud-
ies [8, 31, 32, 48, 60]. Recent work by Mäder and Egyed [34]
made more direct use of requirements traceability to support
software change tasks. Extending [34], we examined the soft-
ware change not only within the original system but toward
the reuse in a different system. While our work indicates
that different levels of understanding are needed for different
tasks, our findings may not generalize to other tasks. Inves-
tigating more task types like refactoring [44], creativity [3],
collaboration [4], and maybe even a participant-group with-
out any task will gain insights into how related tasks affect
the gray-link judgment.

Participants having no project knowledge. Because
the traceability answer set is accessible from iTrust Web site,
we required that the participants had no project knowledge
before the experiment. For the same reason, we restricted
each participant to use only our prototype tool during the
experiment. The settings are not representative of docu-
menting traceability information in industry, especially in
safety-critical projects [35]. Our hypothesis is that gray links
would still be present (e.g., when a regulatory requirement
is assured or updated), but the identification of the gray
links might require different tools and occur at different time
scales. Even for controlled settings like a lab experiment, the
threat can be addressed by having the participants acquir-
ing project familiarity first and then documenting the traces
they consider important for the task.

Impact of the 30-minute time limit. The time con-
straint we imposed on each task, though informed by Mäder
and Egyed’s study [34], was artificial. In [34], a 30-minute
limit was set for every software change task and most of the
participants completed a task within 10-15 minutes. How-
ever, the participants of [34] needed to only sketch the task
solutions on paper, whereas our G1 and G2 participants
tried to make their solutions work in Eclipse. In addition,
neither V&V nor reuse tasks were investigated in [34]. Ac-
cording to Figure 11, V&V took the least time while reuse
took the most. The 30-minute limit may have led us to
observe participants’ initial trace-link vetting and using be-
haviors. The time limit is also a potential confounding vari-
able for the observed higher number of trace links submitted
by G0 shown in Figure 7. Future (quasi)replications should
consider relaxing or completely removing the task time-to-
completion constraint.

392

6.2 Implications
Our study, to the best of our knowledge, is the first to

bring concrete evidence on the importance of the task at
end when it comes to traceability recovery. We discuss how
our findings of trace-use-task-induced gray links influence
the contemporary literature.

Evaluating trace retrieval methods. Standard IR met-
rics like precision and recall are used to evaluate IR at the
output level [55]. As shown in Figure 1, the output-level
evaluation requires a predefined answer set. In automated
traceability, an authoritative and updated answer set rarely
exists [59]. Our discovery of gray links offers a new, flexi-
ble, and pragmatic way to evaluate IR-based trace retrieval
methods. Figure 12 illustrates the idea. Rather than having
a unique answer set, the trace links can be organized into
white links that may be central to understanding the imple-
mentation of the given requirement, and gray links that are
valuable for solving specific tasks (or sets of related tasks)
involving the requirement. In this way, the evaluation can
be conducted toward the use and user level [55].

From vetting the links to using the links. The work
on analysts’ link-vetting behavior [8, 11, 26, 31, 32] led us
to consider explicitly the human-side of tracing. In these
studies, however, the links were never directly used beyond
the analysts’ final approval. We suggest a direct trace use
process to further tighten the analyst–tool interaction in
automated traceability. As our results show, certain trace
links were edited during use but were not re-vetted to re-
flect analysts’ judgment. Our prototype tool, in this regard,
needs improvement. For example, by actively monitoring
development environments [2], more accurate and more com-
plete traces could be built on-the-fly instead of after-the-fact
through vetting. Although students participating in prior
traceability research are common [8, 11, 16, 31, 32, 48, 60],
we realize that they fit more into the profile of low-end users,
according to Ramesh and Jarke’s classification [54]. While
low-end users need training and experience to become high-
end users, we stress that the students in our study are users,
instead of just vetters, of traceability.

Treating trace use as a first-class citizen. The trace-
ability life cycle is typically described as creating, maintain-
ing, and using trace links while planning and managing a
traceability strategy [6, 23]. We believe that listing “us-
ing” after “creating and maintaining” is accidental. In fact,
having purposed traceability is identified as the number one
grand challenge facing the community [6, 22]. Our work on
using the traceability to solve different tasks on the same re-
quirement illuminates that purposed traceability must treat
usage tasks and scenarios early in the traceability life cy-
cle. In our opinion, if the trace creator and maintainer are
not the same as the trace users, then traceability is likely
to stay as one of the most elusive qualities of the software
development in practice [6]. Having a constant or even an
enforced trace-use mentality will not only help create trace
links fitting better a specific purpose, but also challenge
some advocated best practices. Take predefining a traceabil-
ity information model (TIM) [53] for example, our results
show that, for different trace-use tasks, specifying a single
TIM at a fixed granularity level (e.g., “UC-to-method”) may
be counterproductive. Instead, a TIM of “subflow-of-UC-

Gray links for
reuse (5)

Gray links for
change (4)

5

2

)

2

8

3

2

Not retrieved

2

White
links (13)

Answer
set (20)

Figure 12: Evaluating IR-based trace retrieval at
the trace use and user level.

to-method” can be more suitable for requirements change
whereas a TIM of “UC-to-class” may be more appropriate
for requirements reuse.

7. CONCLUSIONS
“Not all trace links are equally important” is the vision of

value-based software traceability [15]. To realize this vision,
we investigated in this paper the impact of different software
engineering tasks on tracing the same requirement. Our
results show that analysts who know how their final links will
be used tend to reach consensus on what count as true links.
However, the consensus is not shared between groups with
different tasks, giving rise to gray links dependent on tasks.
We further contribute a mechanism to identify gray links
and discuss how to exploit them to better support specific
requirements change and reuse tasks.

Substantial limitations exist in our study, which we plan
to address as part of the future work. Replicating the exper-
iment without task-completion time constraint and carrying
out more in-depth empirical studies—with other iTrust re-
quirements than UC11, with other systems than iTrust, and
with other traceability users than students having no project
knowledge—are in order. Our future work also includes im-
proving the gray-link identification method a priori or by
leveraging evidence and “votes” from multiple sources, such
as version control logs [44], potentially monitored develop-
ment environments [2], or even outdated trace links [59].
Finally, we are interested in extending, expanding, and en-
hancing the gray links toward developers’ daily tasks (e.g.,
refactoring and code review), which are not only commonly
assigned to them but are also integral to their own percep-
tions of productivity [42].

8. ACKNOWLEDGMENTS
We thank all the participants of our study. We also thank

the anonymous reviewers for the valuable and constructive
feedback. The work is funded in part by the U.S. NSF (Na-
tional Science Foundation) Grants CCF-1350487 and CCF-
1623089.

9. REFERENCES
[1] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol. Trustrace:

mining software repositories to improve the accuracy
of requirement traceability links. IEEE Transactions
on Software Engineering, 39(5):725–741, May 2013.

393

[2] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In ICSE,
pages 95–104, Cape Town, South Africa, May 2010.

[3] T. Bhowmik, N. Niu, A. Mahmoud, and J. Savolainen.
Automated support for combinational creativity in
requirements engineering. In RE, pages 243–252,
Karlskrona, Sweden, August 2014.

[4] T. Bhowmik, N. Niu, W. Wang, J.-R. C. Cheng, L. Li,
and X. Cao. Optimal group size for software change
tasks: a social information foraging perspective. IEEE
Transactions on Cybernetics, 46(8):1784–1795, August
2016.

[5] M. Borg, P. Runeson, and A. Ardö. Recovering from a
decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical Software
Engineering, 19(6):1565–1616, December 2014.

[6] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder,
and A. Zisman. Software traceability: trends and
future directions. In FOSE, pages 55–69, Hyderabad,
India, May-June 2014.

[7] J. Cleland-Huang, G. Zemont, and W. Lukasik. A
heterogeneous solution for improving the return on
investment of requirements traceability. In RE, pages
230–239, Kyoto, Japan, September 2004.

[8] D. Cuddeback, A. Dekhtyar, and J. H. Hayes.
Automated requirements traceability: the study of
human analysts. In RE, pages 231–240, Sydney,
Australia, September-October 2010.

[9] D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden,
and W.-K. Kong. Towards overcoming human analyst
fallibility in the requirements tracing proces. In ICSE,
pages 860–863, Honolulu, HI, USA, May 2011.

[10] T. Dasgupta, M. Grechanik, E. Moritz, B. Dit, and
D. Poshyvanyk. Enhancing software traceability by
automatically expanding corpora with relevant
documentation. In ICSM, pages 320–329, Eindhoven,
The Netherlands, September 2013.

[11] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes,
D. Cuddeback, and W.-K. Kong. On human analyst
performance in assisted requirements tracing:
statistical analysis. In RE, pages 111–120, Trento,
Italy, August-September 2011.

[12] A. Dekhtyar, J. H. Hayes, and J. Larsen. Make the
most of your time: how should the analyst work with
automated traceability tools? In PROMISE,
Minneapolis, MN, USA, May 2007.

[13] C. Duan and J. Cleland-Huang. Clustering support for
automated tracing. In ASE, pages 244–253, Atlanta,
GA, USA, November 2007.

[14] A. Egyed. Resolving uncertainties during trace
analysis. In FSE, pages 3–12, Newport Beach, CA,
USA, October-November 2004.

[15] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. A
value-based approach for understanding cost-benefit
trade-offs during automated software traceability. In
TEFSE, pages 2–7, Long Beach, CA, USA, November
2005.

[16] A. Egyed, F. Graf, and P. Grünbacher. Effort and
quality of recovering requirements-to-code traces: two
exploratory experiments. In RE, pages 211–230,
Sydney, Australia, September-October 2010.

[17] A. Egyed, P. Grünbacher, M. Heindl, and S. Biffl.

Value-based requirements traceability: lessons learned.
In RE, pages 115–118, New Delhi, India, October
2007.

[18] J. L. Fleiss and J. Cohen. The equivalence of weighted
kappa and the intraclass correlation coefficient as
measures of reliability. Educational and Psychological
Measurement, 33(3):613–619, October 1973.

[19] A. Ghabi and A. Egyed. Code patterns for
automatically validating requirements-to-code traces.
In ASE, pages 200–209, Essen, Germany, September
2012.

[20] A. Ghabi and A. Egyed. Exploiting traceability
uncertainty between architectural models and code. In
WICSA/ECSA, pages 171–180, Helsinki, Finland,
August 2012.

[21] A. Ghabi and A. Egyed. Exploiting traceability
uncertainty among artifacts and code. Journal of
Systems and Software, 108:178–192, October 2015.

[22] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol,
and J. I. Maletic. The grand challenge of traceability
(v1.0). In J. Cleland-Huang, O. Gotel, and A. Zisman,
editors, Software and Systems Traceability, pages
343–409. Springer, 2012.

[23] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol,
J. I. Maletic, and P. Mäder. Traceability
fundamentals. In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability,
pages 3–22. Springer, 2012.

[24] O. Gotel and A. Finkelstein. An analysis of the
requirements traceability problem. In ICRE, pages
94–101, Colorado Springs, CO, USA, April 1994.

[25] K. L. Gwet. Handbook of Inter-Rater Reliability.
Advanced Analytics, 2014.

[26] J. H. Hayes and A. Dekhtyar. Humans in the
traceability loop: can’t live with ’em, can’t live
without ’em. In TEFSE, pages 20–23, Long Beach,
CA, USA, November 2005.

[27] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram.
Advancing candidate link generation for requirements
tracing: the study of methods. IEEE Transactions on
Software Engineering, 32(1):4–19, January 2006.

[28] A. Jain and B. Boehm. Developing a theory of
value-based software engineering. ACM SIGSOFT
Software Engineering Notes, 30(4):1–5, July 2005.

[29] X. Jin, C. Khatwani, N. Niu, M. Wagner, and
J. Savolainen. Pragmatic software reuse in
bioinformatics: how can social network information
help? In ICSR, pages 247–264, Limassol, Cyprus,
June 2016.

[30] D. Kelly and X. Fu. Elicitation of term relevance
feedback: an investigation of term source and context.
In SIGIR, pages 453–460, Seattle, WA, USA, August
2006.

[31] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and
O. Dekhtyar. Process improvement for traceability: a
study of human fallibility. In RE, pages 31–40,
Chicago, IL, USA, September 2012.

[32] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden.
How do we trace requirements? an initial study of
analyst behavior in trace validation tasks. In CHASE,

394

pages 32–39, Honolulu, HI, USA, May 2011.

[33] P. Lago, H. Muccini, and H. van Vliet. A scoped
approach to traceability management. Journal of
Systems and Software, 82(1):168–182, January 2009.

[34] P. Mäder and A. Egyed. Do developers benefit from
requirements traceability when evolving and
maintaining a software system? Empirical Software
Engineering, 20(2):413–441, April 2015.

[35] P. Mäder, P. L. Jones, Y. Zhang, and
J. Cleland-Huang. Strategic traceability for
safety-critical projects. IEEE Software, 30(3):58–66,
May/June 2013.

[36] A. Mahmoud and N. Niu. On the role of semantics in
automated requirements tracing. Requirements
Engineering, 20(3):281–300, September 2015.

[37] A. Mahmoud, N. Niu, and S. Xu. A semantic
relatedness approach for traceability link recovery. In
ICPC, pages 183–192, Passau, Germany, June 2012.

[38] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[39] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In ICSE, pages 125–137,
Portland, OR, USA, May 2003.

[40] C. McMillan, D. Poshyvanyk, and M. Revelle.
Combining textual and structural analysis of software
artifacts for traceability link recovery. In TEFSE,
pages 41–48, Vancouver, Canada, May 2009.

[41] A. Meneely, B. Smith, and L. Williams. iTrust
electronic health care system case study. In
J. Cleland-Huang, O. Gotel, and A. Zisman, editors,
Software and Systems Traceability, pages 425–438.
Springer, 2012.

[42] A. N. Meyer, T. Fritz, G. C. Murphy, and
T. Zimmermann. Software developers’ perceptions of
productivity. In FSE, pages 19–29, Hong Kong, China,
November 2014.

[43] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta,
R. Oliveto, B. Russo, and A. Marcus. Query-based
configuration of text retrieval solutions for software
engineering tasks. In FSE, pages 567–578, Bergamo,
Italy, August-September 2015.

[44] N. Niu, T. Bhowmik, H. Liu, and Z. Niu.
Traceability-enabled refactoring for managing
just-in-time requirements. In RE, pages 133–142,
Karlskrona, Sweden, August 2014.

[45] N. Niu, X. Jin, Z. Niu, J.-R. C. Cheng, L. Li, and
M. Y. Kataev. A clustering-based approach to
enriching code foraging environment. IEEE
Transactions on Cybernetics, (to appear).

[46] N. Niu and A. Mahmoud. Enhancing candidate link
generation for requirements tracing: the cluster

hypothesis revisited. In RE, pages 81–90, Chicago, IL,
USA, September 2012.

[47] N. Niu, A. Mahmoud, and G. Bradshaw. Information
foraging as a foundation for code navigation. In ICSE,
pages 816–819, Honolulu, HI, USA, May 2011.

[48] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw.
Departures from optimality: understanding human
analyst’s information foraging in assisted requirements
tracing. In ICSE, pages 572–581, San Francisco, CA,
USA, May 2013.

[49] N. Niu, A. Mahmoud, and X. Yang. Faceted
navigation for software exploration. In ICPC, pages
193–196, Kingston, Canada, June 2011.

[50] N. Niu, S. Reddivari, and Z. Chen. Keeping
requirements on track via visual analytics. In RE,
pages 205–214, Rio de Janeiro, Brazil, July 2013.

[51] N. Niu, J. Savolainen, Z. Niu, M. Jin, and J.-R. C.
Cheng. A systems approach to product line
requirements reuse. IEEE Systems Journal,
8(3):827–836, September 2014.

[52] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
ICPC, pages 68–71, Braga, Portugal, June 2010.

[53] F. A. C. Pinheiro and J. A. Goguen. An
object-oriented tool for tracing requirements. IEEE
Software, 13(2):52–64, March 1996.

[54] B. Ramesh and M. Jarke. Toward reference models of
requirements traceability. IEEE Transactions on
Software Engineering, 27(1):58–93, January 2001.

[55] T. Saracevic. Evaluation of evaluation in information
retrieval. In SIGIR, pages 138–146, Seattle, WA, USA,
July 1995.

[56] A. Sardinha, Y. Yu, N. Niu, and A. Rashid. Ea-tracer:
identifying traceability links between code aspects and
early aspects. In SAC, pages 1035–1042, Trento, Italy,
March 2012.

[57] H. Sultanov, J. H. Hayes, and W.-K. Kong.
Application of swarm techniques to requirements
tracing. Requirements Engineering, 16(3):209–226,
September 2011.

[58] R. E. Walpole, R. H. Myers, S. L. Myers, and K. E.
Ye. Probability and Statistics for Engineers and
Scientists. Pearson, 2011.

[59] W. Wang, A. Gupta, and Y. Wu. Continuously
delivered? periodically updated? never changed?
studying an open source project’s releases of code,
requirements, and trace matrix. In JITRE, pages
13–16, Ottawa, Canada, August 2015.

[60] W. Wang, N. Niu, H. Liu, and Y. Wu. Tagging in
assisted tracing. In SST, pages 8–14, Florence, Italy,
May 2015.

395

