
Combining Bug Detection and Test Case Generation

Martin Kellogg
University of Washington, USA
kelloggm@cs.washington.edu

ABSTRACT
Detecting bugs in software is an important software engineering ac-
tivity. Static bug finding tools can assist in detecting bugs automat-
ically, but they suffer from high false positive rates. Automatic test
generation tools can generate test cases which can find bugs, but
they suffer from an oracle problem. We present N-Prog, a hybrid
of the two approaches. N-Prog iteratively presents the developer an
interesting, real input/output pair. The developer either classifies it
as a bug (when the output is incorrect) or adds it to the regression
test suite (when the output is correct). N-Prog selects input/output
pairs whose input produces different output on a mutated version
of the program which passes the test suite of the original. In initial
experiments, N-Prog detected bugs and rediscovered test cases that
had been removed from a test suite.

CCS Concepts
•Software and its engineering → Software testing and debug-
ging; Maintaining software;

Keywords
N-variant systems, mutational robustness, mutation, N-Prog

1. INTRODUCTION
Bugs are pervasive and expensive, and mature software projects

ship with both known and unknown defects [1, 10]. Before fixing
bugs, developers need evidence of their presence [23]—and acquir-
ing this evidence earlier in the software lifecycle reduces each bug’s
cost [25]. To prevent defects in software shipped to customers, de-
velopers often use some combination of manual inspection, static
analysis, and testing.

Each of these kinds of analysis has costs. Manual inspection is
expensive and in modern practice is primarily used not to find de-
fects, but rather for its other benefits [3]. Static analysis tools [2,4]
can detect many classes of defects but suffer from false positives—
their warnings may or may not correspond to real defects in the
code, and the outputs of such tools can be so large that they over-
whelm users and lead to tool abandonment [7]. Testing can in

Figure 1: N-Prog’s variant generation process. Mutation op-
erators are applied to the original program to create candidate
variants. The candidate variants are run against the existing
test suite (the double line in the figure). Neutral variants are
those that pass.

theory detect any bug, but in practice test suites are often incom-
plete; writing tests manually takes significant developer effort, and
automatic test generation tools [11, 19] suffer from an “oracle”
problem—checking that outputs are correct requires that the tool
know what the program under test should do [5].

We present an initial look at a technique, N-Prog, that bridges
the gap between static bug finding techniques and test suite gen-
eration by using the excess information and effort in each activity
to complement the other. N-Prog presents its user with alarms,
each of which either is a new test case, including the correct out-
put, or indicates a bug in the program, along with some information
that can be used to aid in fault localization. An alarm produced by
N-Prog must be one of these two things, and the tool, by construc-
tion, therefore produces no false positives—in a sense, N-Prog re-
places the “spurious warning” false positive of static analysis tools
with useful new regression tests, each of which kills a mutant that
the test suite could not differentiate from the original. As long as
both bug detection and the generation of test cases are valuable ac-
tivities, N-Prog provides value to its users with minimal overhead.

2. ALGORITHM
N-Prog combines random mutation (as in mutation testing [12]

or automated program repair [15,17,21]) and N-variant systems. A
traditional N-variant system implements several different variants
of the program—ideally with independent failure modes—and runs
them in parallel [8].

N-Prog replaces the semantics-preserving mutation operators of
traditional N-variant systems with statement-level mutation opera-
tors: N-Prog can delete an existing statement or insert a statement
it finds elsewhere in the program. Figure 1 shows N-Prog’s variant

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983970

1124

Figure 2: N-Prog’s workflow. Only inputs that diverge between
the original and at least one variant make it past N-Prog’s filter
to be seen by a human.

generation process. N-Prog first applies random mutations individ-
ually and tests them against the existing test suite. Those that fail a
test are discarded, while those that pass—called neutral1 mutants—
are kept. From this list of neutral mutants, N-Prog creates higher-
order mutants by combining individually neutral mutations. These
higher-order mutants—if they stay neutral—are the variants that
N-Prog deploys in its own internal N-variant system.

N-Prog then uses this N-variant system as a filter on an input
source; Figure 2 shows a high–level view of how N-Prog is used.
Any input source can work—random input from a tool like Ran-
doop [19], data collected from users, or any other well-formed
input source. If every variant exhibits the same behavior for a
given input as the original program, then N-Prog ignores that input
and moves onto the next; if there is at least one diverging variant,
N-Prog will issue an alarm.

Once an alarm has been issued, there are two possible cases:
either the original program is correct or the original program is in-
correct. When it is incorrect, then N-Prog has exposed a bug in
the implementation, and the developers have a candidate patch that
causes the program to exhibit different behavior (the mutated vari-
ant). The existence of a patch, even if it is incorrect, has been
shown to aid in debugging [24]. When the original program was
correct, then N-Prog has generated a test case, and the original pro-
gram serves as its own oracle. Once this test case is added to the
suite being used to validate N-Prog’s mutants, subsequent N-Prog
variants will not alarm on that input. Notably, there is evidence
that the generated test is of interest to the developers: in order to
trigger an N-Prog alarm, it must kill a mutant that the original test
suite could not kill—forcing that variant, originally uncovered by
the test suite, to be covered.

For each alarm, the only thing the developers must do is exam-
ine the input/output pair (i.e., the given input and the original pro-
gram’s output) and determine whether the original program is be-
having correctly. Usually, this requires much less effort than either
writing a new test case from scratch or reproducing a bug—since
either of those activities requires developers to examine input/out-
put pairs, anyway.

3. EARLY RESULTS
To show that N-Prog can detect bugs, we ran N-Prog on pro-

grams with known defects, using as input the known (to the ex-
perimenter) buggy input. If N-Prog produces an alarm, we con-
sider that a success; if N-Prog does not, a failure. We tested on
the IntroClass suite of student-written programs [16]. It contains
six small programs, each with real mistakes made by CS1 students.

1We follow Shulte et al. and use the biologically-inspired term
neutral [22], but test-equivalent [13] and sosie [6] also appear in
the literature.

Program Scenarios Alarms Alarm%

checksum 61 48 79%
digits 199 170 85%
grade 252 219 87%
median 170 149 88%
smallest 117 113 97%
syllables 128 115 90%

Table 1: A demonstration of N-Prog’s ability to detect bugs.
Each scenario contains a held-out bug. The “alarms” column
indicates in how many of the scenarios for a given program
N-Prog can detect the bug.

Table 1 shows that N-Prog detected most of the bugs, usually within
a few minutes of starting the run; the computational cost of running
N-Prog is dominated by the cost of running the test suite of the sys-
tem under test (since many variants need to be tested for neutrality).

We carried out several other experiments using N-Prog. These
experiments are detailed in a technical report [14] and include a
case study of N-Prog as it builds a test suite for a webserver—from
about 140,000 test inputs, N-Prog selected a test suite of 25—as
well as an evaluation of N-Prog’s ability to find bugs on a collection
of more realistic programs than those presented here.

4. RELATED WORK
Function. N-Prog combines bug detection and test case genera-

tion. Traditional bug detection tools, like FindBugs [2] or Cover-
ity [7], use static analyses to detect bugs at compile time. A key
weakness of these techniques is false positives; Coverity—a com-
mercial tool—struggles to keep its false positive rates below 20–
30%. While N-Prog may not be as effective at finding bugs as
these specialized tools, it can in principle detect any bug that its
mutation operators can touch, and does not suffer from false posi-
tives. N-Prog shares some goals with test case generation tools like
Randoop [19] or EvoSuite [11], and can use such tools for input
generation. EvoSuite uses mutation to generate oracles, but nor-
mally assumes that the program under test is correct.

Form. Mutation testing researchers use mutation to evaluate and
augment test suites [12]. Mutation is also used in fault localiza-
tion: tools like MUSE [18] or Metallaxis [20] use it to find the
source code responsible for already-reproducible bugs. By con-
trast, N-Prog is used to find previously unknown bugs. Mutation-
based generate-and-validate program repair tools, including Gen-
Prog [15], RSRepair [21], and Prophet [17] repair known defects.
Schulte et al. [22] also used mutation to attempt to proactively re-
pair defects before they had been detected. N-variant systems are
used to provably defeat certain types of security vulnerabilities [9].

5. CONCLUSION
This paper presented N-Prog, a tool that combines bug detec-

tion with test case generation. N-Prog exploits weaknesses in each
technique to augment the other: false positives become regression
tests, and every time a human interacts with N-Prog, there is a pos-
itive outcome: either a bug is found or a useful, mutant killing test
case—complete with oracle—is written.

6. ACKNOWLEDGMENTS
A special thanks to other project members Jamie Floyd, Stephanie

Forrest, and Westley Weimer; and to Michael Ernst.

1125

7. REFERENCES
[1] J. Anvik, L. Hiew, and G. Murphy. Coping with an open bug

repository. In OOPSLA workshop on Eclipse technology
eXchange, pages 35–39. ACM, 2005.

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh. Using static analysis to find bugs. IEEE Software,
25(5):22–29, 2008.

[3] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In International
Conference on Software Engineering (ICSE), pages
712–721. IEEE Press, 2013.

[4] T. Ball and S. K. Rajamani. The SLAM project: debugging
system software via static analysis. In Principles of
Programming Languages, pages 1–3, 2002.

[5] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo.
The oracle problem in software testing: A survey.
Transactions on Software Engineering (TSE),
41(5):507–525, 2015.

[6] B. Baudry, S. Allier, and M. Monperrus. Tailored source
code transformations to synthesize computationally diverse
program variants. CoRR, abs/1401.7635, 2014.

[7] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D. R.
Engler. A few billion lines of code later: Using static
analysis to find bugs in the real world. Communications of
the ACM, 53(2):66–75, 2010.

[8] L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software operation.
In International Conference on Fault Tolerant Computing,
pages 3–9, 1978.

[9] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser.
N-variant systems: a secretless framework for security
through diversity. In USENIX Security Symposium, 2006.

[10] S. M. Donadelli, Y. C. Zhu, and P. C. Rigby. Organizational
volatility and post-release defects: A replication case study
using data from google chrome. In Mining Software
Repositories, pages 391–395, May 2015.

[11] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. Transactions on Software Engineering,
38(2):278–292, 2012.

[12] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Transactions on Software
Engineering, 37(5):649–678, 2011.

[13] R. Just, M. D. Ernst, and G. Fraser. Efficient mutation
analysis by propagating and partitioning infected execution
states. In International Symposium on Software Testing and
Analysis (ISSTA), pages 315–326. ACM, 2014.

[14] M. Kellogg, B. Floyd, S. Forrest, and W. Weimer. Combining
bug detection and test case generation. Technical report,
University of Washington, September 2016.

[15] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: Fixing 55 out
of 105 bugs for $8 each. In International Conference on
Software Engineering, 2012.

[16] C. Le Goues, N. Holtshulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer. The ManyBugs and
IntroClass benchmarks for automated repair of C programs.
In IEEE Transactions on Software Engineering, 2015.

[17] F. Long and M. Rinard. Automatic patch generation by
learning correct code. In Principles of Programming
Languages, pages 298–312. ACM, 2016.

[18] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants:
Mutating faulty programs for fault localization. In Software
Testing, Verification and Validation (ICST), pages 153–162.
IEEE, 2014.

[19] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In International
Conference on Software Engineering, pages 75–84. IEEE,
2007.

[20] M. Papadakis and Y. Le Traon. Metallaxis-fl: mutation-based
fault localization. Software Testing, Verification and
Reliability, 25(5-7):605–628, 2015.

[21] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In International
Conference on Software Engineering, 2014.

[22] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest.
Software mutational robustness. Genetic Programming and
Evolvable Machines, pages 1–32, 2013.

[23] Y. Tian, D. Lo, X. Xia, and C. Sun. Automated prediction of
bug report priority using multi-factor analysis. Empirical
Software Engineering, 20(5):1354–1383, 2015.

[24] W. Weimer. Patches as better bug reports. In Generative
Programming and Component Engineering, pages 181–190,
2006.

[25] L. Williamson. IBM Rational software analyzer: Beyond
source code. In Rational Software Developer Conference,

June 2008.

1126

