
The Care and Feeding of Wild-Caught Mutants
David Bingham Brown

Univ. of Wisconsin–Madison, USA
bingham@cs.wisc.edu

Michael Vaughn
Univ. of Wisconsin–Madison, USA

mvaughn@cs.wisc.edu

Ben Liblit
Univ. of Wisconsin–Madison, USA

liblit@cs.wisc.edu

Thomas Reps
Univ. of Wisconsin–Madison and GrammaTech, Inc., USA

reps@cs.wisc.edu

ABSTRACT
Mutation testing of a test suite and a program provides a way to
measure the quality of the test suite. In essence, mutation testing is
a form of sensitivity testing: by running mutated versions of the
program against the test suite, mutation testing measures the suite’s
sensitivity for detecting bugs that a programmer might introduce
into the program. This paper introduces a technique to improve
mutation testing that we call wild-caught mutants; it provides a
method for creating potential faults that are more closely coupled
with changes made by actual programmers. This technique allows
the mutation tester to have more certainty that the test suite is
sensitive to the kind of changes that have been observed to have
been made by programmers in real-world cases.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Software testing
and debugging; Parsers;

KEYWORDS
mutation testing, repository mining, test suites
ACM Reference format:
David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps.
2017. The Care and Feeding of Wild-Caught Mutants. In Proceedings of
ESEC/FSE’17, Paderborn, Germany, September 4–8, 2017, 12 pages.
https://doi.org/10.1145/3106237.3106280

1 INTRODUCTION
Good test suites are among the most important tools available to
ensure the quality of software. However, bad test suites help no-
body, and evaluating test suites themselves is challenging. Mutation
testing of a test suite with respect to a program provides one way
to measure the test suite’s quality. In essence, mutation testing mea-
sures the sensitivity of the test suite, which is intended to provide an
estimate of the ability of the test suite to detect faults inserted into
the program in the future [7, 10]. Conventional mutation-testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106280

approaches make random (or effectively random) modifications to
the target program’s code according to some fixed set of substitu-
tion directives, such as replacing “>” with “>=”. Just et al. [12] have
shown that this strategy is a useful proxy for real faults.

However, the conventional approach to mutation testing has a
basic limitation: the ad hoc patterns used do not necessarily reflect
the types of changes made to source code by human programmers.
Consequently, the measured sensitivity does not necessarily reflect
how effective the test suite is at identifying the kinds of defects that
real programmers might introduce.

The objective of our research has been to reexamine mutation
testing by using mutation operators that more closely resemble
defects introduced by real programmers. Thus, the high-level goal
of our work is as follows:

Find a method for creating potential faults that are closely
coupled with defects created by actual programmers.

We have developed a method for identifying such mutation oper-
ators by using the revision histories of software projects. We call
such mutants wild-caught mutants.

When interpreting a revision history, it may be difficult to de-
termine precisely when a defect was introduced. For this reason,
we use instead the reversal of what is likely to be a correction in
the revision history. That is, the orientation of a mutation operator
that we recover is backward with respect to the direction of the
patch from which it was recovered in the revision history. From
a patch of the form “before-code → after-code,” we create a mu-
tation operator “patternA ⇒ replacementB ,” where patternA is a
pattern created from code fragment “after-code,” and replacementB
is a rewrite created from code fragment “before-code.”1

After we present the details of our method for extracting such
mutation operators, there are a number of natural research ques-
tions that we consider. For starters, we wish to know whether
wild-caught mutation operators subsume the manually curated
mutation operators widely used until now:

Research Question 1: Does the the operator-harvesting
method of the wild-caught-mutants technique find existing
mutation operators?

Conversely, perhaps wild-caught mutants exhibit useful qualities
that go beyond past work:
1 While a patch “before-code → after-code” could introduce a defect—and hence our
recovered mutation operator would represent a correction—our system confines itself
to small and typically single-line patches, which one might expect to be corrections
more often than defect introductions.

511

https://doi.org/10.1145/3106237.3106280
https://doi.org/10.1145/3106237.3106280

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

Language
Definition

Idiomization
(mutgen)

Idiomized
Language
Definition

Harvesting
(mutgen)

Mutation-
Operator Set

Insertion
(mutins)

Mutated
Code Base

Patch
Corpus

Target
Code Base(Optional)

Figure 1: Overview of mutation-operator extraction and insertion through the mutgen/mutins toolchain

ResearchQuestion 2: Does the operator-harvesting method
of the wild-caught-mutants technique find operators that are
not existing mutation operators?

We also want to know whether our approach leads to improved
mutation testing:

Research Question 3: Do wild-caught mutants exhibit be-
havior that is quantifiably different than existing mutation
operators—and, if so, in what ways?

While backward patches seem more likely to (re)introduce bugs,
which is good from the standpoint of mutation testing, forward
patches may also describe interesting human-generated changes.

Research Question 4: Does harvesting from forward patches
yield many additional mutation operators, and do the behaviors
of these new operators differ significantly from those harvested
from backward patches?

The contributions of our work can be summarized as follows:
We describe a technique to automatically create mutation op-

erators that others have identified as being missing from previous
mutation approaches (Just et al. [12]).

We created a toolchain for mutation-operator extraction that
implements the wild-caught-mutants technique. This toolchain
allows the user to harvest mutation operators from most common
programming languages (using mutgen) and then apply them to a
system (using mutins) to perform mutation testing of a test suite.

We report on experiments in which we extracted mutation
operators from a corpus consisting of the 50 most-forked C-based
projects on GitHub. We find that wild-caught mutants can capture
faults that traditional mutation operators are unable to reproduce.
Compared to existing mutation operators, the mutation operators
obtained by thewild-caught-mutants technique lead tomutants that
roughly as hard to “kill” as mutants from traditional mutation oper-
ators. However, they offer a richer variety of changes, and thereby
provide a more extensive way to evaluate the quality of a test suite.
Harvesting from forward patches provides a significant number

of operators not obtained from backward patches. There is some
support for the conjecture that, compared to forward-harvested
operators, backward-harvested operators can introduce defects that
more closely resemble defects introduced by real programmers.

Organization. The remainder of the paper is organized as fol-
lows: Section 2 offers an overview of our approach, then describes
mutation-operator extraction and mutant insertion in detail. Sec-
tion 3 presents our experimental setup, followed by experimental
results in Section 4. Section 5 considers threats to the validity of
our approach. Section 6 discusses related work. Section 7 describes
supporting materials that are intended to help others build on our
work. Section 8 concludes.

2 HARVESTING AND INSERTION
As shown in Figure 1, our system consists of two tools: mutgen, for
extracting reusable mutation operators, and mutins, for applying
these operators to the code of a system under test. The extraction
process—referred to as harvesting—generates a mutation-operator
set from a corpus of diff-formatted code patches. Our insertion
tool, mutins, can then apply these mutation operators to a new
code base distinct from that used during harvesting. The main input
to mutgen is a corpus of patches for harvesting; the main input to
mutins is a target code base to mutate. Both tools are parameterized
by a second input, a language definition, which specifies the syntac-
tic elements of the language on which they operate (see Section 2.1).
In other words, our implementation of the wild-caught-mutants
approach is really a framework that can be retargeted easily to
work on other languages.

Our toolchain operates in three phases: idiomization, harvesting,
and insertion. Idiomization augments the language definition to
conform more closely with the patch corpus or system under test.
This preprocessing step is performed by mutgen and is described
in Section 2.2. Harvesting extracts novel mutation operators from
the patch corpus. This process is also performed by mutgen and
is described in Sections 2.3, 2.4 and 2.6. The final insertion step
applies harvested mutation operators to the system under test. It is
implemented by mutins and described in Section 2.7.

512

The Care and Feeding of Wild-Caught Mutants ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

K auto break case char const continue default

K do double else enum extern float for goto

K if inline int long register restrict return

K short signed sizeof static struct switch

K typedef union unsigned void volatile while

O = += -= *= /= %= &= |= ^= <<= >>= ++ --

O + - * / % ~ & | ^ << >> ! && ||

O == != < > <= >= [] -> . () , ? :

Q ' "

C /* */

c //

Figure 2: Language-definition file for C. The first character
on each line specifies keywords (K), operators (O), quoted
string literals (Q), block comments (C), or single-line com-
ments (c).

2.1 Language Definition
We define a language as a set of operators, keywords, quote delim-
iters, and comments (both block comments and single-line com-
ments). Our language parser is essentially a lexical analyzer. How-
ever, our language-definition files are simpler than those required
by a full lexical-analyzer generator (e.g., flex), in part because we
do not need to feed tokens into a full compiler. Additional simpli-
fication is possible by leveraging commonalities seen in the basic
syntax of C and other C-influenced languages, such as C++, Java,
and C#. These commonalities allow us to recognize tokens with
high accuracy using the following strategy:

• Operators are consumed greedily from the input stream.
• Text from one quote delimiter to a matching quote delimiter
is parsed as a single string literal.2

• Text identified to be not part of an operator is read until
whitespace or an operator is encountered; once isolated in
this fashion, the text is classified as follows:
– If the text exists in the keyword list, it is classified as a
keyword.

– If the text begins with a digit, it is classified as a numeric
literal.

– Otherwise, it is classified as an identifier.
While simple, these rules are such that mutgen can effectively parse
most languages that lack semantic whitespace.3

Using such a simple language definition—and not, e.g., a context-
free grammar for the language used in the corpus—supports our
goal of using patch histories as a source of mutation-operator sets.
The patches processed by mutgen to harvest mutation-operator sets
have varying and unpredictable contexts: one may easily encounter
a patch that begins or ends mid-expression or mid-comment. There-
fore, we do not parse the input with respect to a context-free gram-
mar for the language of the corpus. Instead, we perform purely
lexical analysis, generating a stream of tokens as determined by

2Escaped quote delimiters are not handled, but would not be hard to add.
3Python’s semantically meaningful whitespace could be handled as well by materializ-
ing and later dissolving explicit indent/outdent tokens: a standard Python lexing/pars-
ing technique.

Table 1: Most frequent inferred idioms in our experimental
corpus

Idiom Incidence

0 1,350,306
0x00 984,949
dev 695,548
1 578,986
set 491,888

Idiom Incidence

2 489,152
u32 386,045
y 379,709
u8 311,762
file 310,500

Idiom Incidence

s 294,490
line 227,925
data 227,376
inode 216,908
o 215,515

rules in the language definition. This approach also allows our sys-
tem to be more flexible with regard to its inputs. The harvester need
not be able to compile any part of its input corpus; it can injest
incomplete or invalid code fragments as well as complete code.

Comments create a challenge during harvesting. The patches
we process can begin and/or end mid-comment. Thus, we cannot
guarantee that the tokens generated when analyzing a particular
patch correspond to actual code, as opposed to a natural-language
comment. We address this problem in both the extraction and in-
sertion phases. During extraction, we use heuristics to identify
(and discard) patches that are likely to be comments; Section 2.4
discusses these heuristics in more detail. During insertion, we have
the full system under test—and therefore the complete context for
any potential insertion—so we can identify comments precisely and
exclude them from mutant insertion.

2.2 Idiomization
The language-definition file covers all of a language’s keywords
and operators. However, some identifiers are used so often, and in
such standardized ways, as to effectively be additional keywords.
We call these identifiers idioms and the process of identifying them
idiomization. We collect identifiers that occur within the corpus
above a user-selected threshold. This threshold can be specified by
minimum incidence in the corpus, minimum frequency, or a “top-k”
limit of accepted idioms. Subsequent extraction passes treat these
identifiers as additional keywords.

For example, NULL is missing from the C language definition
given in Figure 2. This omission is correct: NULL is a standard C
macro but is not a C keyword per se. Adding NULL to this defini-
tion by hand would be easy, and would expand the pool of admis-
sible candidate mutation operators. Unfortunately, the arbitrary
choices required by this method do not necessarily scale. Auto-
mated idiomization provides a pragmatic method to augment a
base language definition with identifiers that are used idiomatically
in practice.

Depending on differences in the subject of the patch corpus and
the system under test, idiomization has the potential to identify
idiomatic keywords that appear rarely or never in the system under
test. Therefore, we make idiomization optional, and also allow the
system under test to be used as its own source of idiomization.

Table 1 lists some of the most commonly identified idioms de-
rived from our experimental corpus. The influence of the Linux
kernel is apparent in several entries.

513

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

- if (x)

+ if (x && y)

(a) Admissible candidate

- :if .($1 .)

+ :if .($1 .&& $_ .)

(b) Mutation operator extracted
from Figure 3a

- if (x && y)

+ if (x)

(c) Inadmissible candidate:
requires synthesizing “y”

- if (x > 0)

+ if (x > 1)

(d) Candidate made admissi-
ble by idiomization of “0”

Figure 3: Example candidate mutation operators.

2.3 Syntactic Mutation
Mutgen identifies candidate mutation operators by isolating small
changes (defined as having fewer than a configurable number of
lexical tokens) from the revision history it reads as input. For a
patch to be considered for extraction, it must contain a contiguous
section of removed and replaced code that we divide into a “before”
and “after” block. A single patch (that is, a single diff-formatted
file) can contain multiple blocks of modified code, and each indi-
vidual contiguous block is treated as a separate candidate mutation
operator.

Corresponding blocks of each identified section are broken into
a stream of tokens as described by the language definition (see
Section 2.1). Mutgenmakes no attempt to understand the underlying
semantics or grammar of a processed language.

Mutins does not attempt synthesis of identifiers or literals, so
mutgen requires that candidate mutation operators not require
the synthesis of new information. In particular, it must be possi-
ble to assemble the before state solely from identifiers and literals
matched in the after state, along with any keywords drawn from
the idiomization-enhanced language definition. Once the before
and after blocks are tokenized, mutgen then analyzes both to de-
termine whether this requirement is satisfied. A candidate mutant
that meets the requirement is called an admissible candidate. Fig-
ure 3a shows an admissible candidate mutation operator: building
the before text requires no new identifiers or literals beyond those
that appeared in the corresponding after text.

Conversely, an inadmissible candidate is one that would require
synthesis of new information to turn its after state back into its
before state. The candidate mutation operator in Figure 3c would
be discarded as inadmissible: its before state includes the identifier
“y,” which is not found anywhere in the after state.

The idiomization process discussed above allows for limited
synthesis of terms not present in the after state. Thus, idiomization
turns some otherwise-inadmissible candidates into admissible ones.
The candidate mutation operator in Figure 3d would be inadmissible
if we had to synthesize the “0” in the before state. However, “0” is
so common that it is always recognized as an idiomatic keyword
in practice. Thus, the before state of Figure 3d can be constructed
from the after state by replacing “1” with the idiomatic keyword
“0”.

Figure 3b shows the tokenized mutation operator extracted and
generalized from Figure 3a. In the mutation-operator language of
mutgen and mutins, “:” indicates a keyword, where the text that

- }

+ } else

(a)

- while (i < n);

+ while (i < n)

(b)

- TMPFILE

+ TMPFILE % 512

(c)

Figure 4: Examples of real candidate mutation operators
found within the experimental corpus.

follows identifies the keyword itself. Likewise, “.” indicates an
operator, where the text that follows specifies the operator text.
For identifiers and literals that appear in both the before and after
states, we number after identifiers and literals starting from 1. “$i”
represents the ith identifier or literal. This notation lets us represent
mutation operators that are polymorphic with respect to identifier
names and literal values. Thus, the generalized mutation operator
in Figure 3b can match a wide variety of “if” statements, not merely
those that test the value of “x && y,” as in Figure 3a. “$_” marks
identifiers and literals that do not appear in the before text.

As seen in Figure 3b, mutation operators are stored in a plain-text
format that humans can easily read and edit. This feature allows
a user to create hand-written mutation operators for use in our
mutation-testing system.

Figure 4 shows some candidate mutation operators identified by
mutgen. Figure 4a shows a patch that fixes a missing else keyword.
From this patch, we harvest a mutation operator that can remove
any else keyword immediately after a right curly bracket. The
patch in Figure 4b generalizes into a mutation operator that can
add a semi-colon to certain while statements. Figure 4c yields a
mutation operator that, when applied to C code, can strip a modulo
operation applied to a single identifier.

2.4 Filtering Heuristics
Our initial expectation that admissible candidate mutation oper-
ators would be rare proved to be untrue. On the contrary, our
initial run of mutgen over the patch corpus used in our experiments
yielded over twenty million mutation operators: more than it was
reasonably possible to evaluate. Manual inspection revealed that
many of these were not worth keeping. For example, some would
only mutate comments or were so complex as to be unlikely to
match token sequences from other code bases. We therefore ex-
tended mutgen with heuristic filters to detect and discard operators
with less-promising potential. Mutgen’s complete filtering sequence,
applied in the order given below, is as follows:

(1) Toomany tokens:Candidates that consist of large amounts
of code are so specific that they will probably not match in
any other code base. Therefore, we discard candidates that
affect eleven or more tokens.

(2) Too few tokens:Conversely, single-token candidates would
match too frequently to be practical. Therefore, we require
that either the before or the after text contain at least two
tokens. Note that identifier shifts (Section 2.6) can still apply
to single-token before and after texts.

(3) ASCII art: Candidates that contain three or more repeated
operators are assumed to be comments and excluded. This
situation commonly arises in line-spanning ASCII art such
as “****,” “----,” or “////.”

514

The Care and Feeding of Wild-Caught Mutants ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

(4) Comment detected: Using the language definition (Sec-
tion 2.1), we can recognize candidates that include the start
or end of a comment. Mutating comments is not useful in
mutation testing, so we exclude such changes.

(5) Needs synthesis: Per Section 2.3, we discard candidates for
which the pattern contains identifiers or literals not present
in the replacement. Our current version of the toolchain does
not support the synthesis of identifiers (outside of the limited
identifier conversion in identifier shifts or through the use
of identifiers treated as keywords through idiomization) that
would be required to apply these mutation operators to a
target program.

(6) Too many identifiers: As for “Too many tokens,” a candi-
date involving too many identifiers is unlikely to be appli-
cable to new code. We discard candidates that affect more
than four identifiers.

(7) Too many adjacent identifiers: A candidate containing
three “identifiers” in a row is more likely to be natural-
language text than programming-language source code; we
assume that these candidates involve comments and exclude
them from harvesting.

(8) Identical tokenized strings: Generalizing a candidate into
a reusable mutation operator can make the before and after
token streams identical, yielding a “mutation” operator that
changes nothing. This situation can arise, for example, when
the candidate merely affects whitespace. We discard these
candidates.

(9) Unbalanced brackets: All mainstream languages include
bracketing tokens that must appear in matched pairs, such as
round parentheses, square brackets, and curly braces. Muta-
tion operators can introduce mismatches when our harvester
splits one commit into multiple separate changes, each of
which affects only one side of a matched-bracket pair. We dis-
card candidates that introduce mismatched counts of open-
ing and closing round parentheses, square brackets, or curly
braces. Introducing this filter increased the compilation rate
of mutants produced by the toolchain from about 8.7% to
about 14%.

(10) Duplicated mutation operator: Similar candidates can
yield identical generalized mutation operators. We discard
redundant copies.

Several of the above filters rely on configurable thresholds. Ad-
justing thresholds for total tokens or potential identifiers can dra-
matically change the total harvested mutation operators, while
also changing the probability that each mutation operator can
be matched with (and therefore inserted into) another code base.
Some tuning may be needed for specific languages or coding styles.
For example, function application can lead to multiple adjacent
identifiers in many functional languages: “sum x y z” in ML or
“(sum x y z)” in Lisp instead of “sum(x, y, z)” in C. In such lan-
guages, the “Too many adjacent identifiers” filter should only be
used with a high threshold.

The result of applying these culling heuristics was to reduce the
generated set from over twenty million mutation operators, most
of them unusable, to roughly forty four thousand, of which a larger

Potential mutation operators: 20,063,907

Too many tokens: 6,249,527 (31%)

Too few tokens: 9,203,131 (67%)

ASCII art: 10,800 (0.23%)
Comment detected: 36,003 (0.78%)

Needs synthesis: 3,469,826 (76%)

Too many identifiers: 465,178 (42%)
Too many adjacent identifiers: 246,056 (39%)

Identical tokenized strings: 102,424 (27%)
Unbalanced brackets: 53,823 (19%)

Duplicated mutation operator: 219,569 (97%)

Harvested mutation operators: 7,570

Figure 5: Potential mutation operators discarded and
retained at each filtering stage

proportion can be applied to other code bases. Section 2.5 discusses
the empirical behavior of these filters in greater detail.

2.5 Effect of Filtering Heuristics
Figure 5 depicts the filtering process as applied to Space. Flow be-
gins at the top with 20,063,907 candidates and proceeds downward.
Each filter removes some candidates and allows others to proceed
to later stages. The width of each curved arrow represents the ab-
solute number of potential mutation operators discarded at each
stage; the actual count is reported immediately after the colon in
each stage’s description. For example, “Duplicated mutation op-
erator” discards 219,569 candidates. The diminishing width of the
straight flow descending along the right edge of the diagram is pro-
portional to the number of candidates retained after all preceding
steps. Numbers in parentheses are the fraction of surviving candi-
dates discarded, expressed as percentage of candidates considered
at each stage, not as a percentage of the 20,063,907 potential muta-
tion operators gathered at the start. For example, the “Duplicated
mutation operator” filter discards 97% of the mutation operators
that had not already been eliminated in any preceding stage.

In absolute terms, “Too few tokens” is the major gatekeeper,
accounting for nearly half of the initial candidates that do not make
it through to the end. “Too many tokens” and “Needs synthesis”
also discard large portions of the initial pool. The latter could po-
tentially be relaxed by deeper semantic analysis to allow more
ambitious synthesis beyond our idiomization technique. The other
filters seem minor relative to the large starting candidate pool, but
notice that each of these still discards tens or hundreds of thousands
of candidates. “ASCII-art” detection is highly selective and therefore

515

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

Table 2: Most frequent identifier shifts in our experimental
corpus

Before After Incidence

__init __devinit 12,967
module_exit module_platform_driver 12,897
DEVICE_PRT DBG_PRT 10,097
of_device platform_device 8,704
m y 6,912
CONFIG_PM CONFIG_PM_SLEEP 6,617
CONFIG_EMBEDDED CONFIG_EXPERT 6,148
mach plat 5,963
A_UINT8 u8 5,658
device platform_device 5,610

has the least impact, discarding just 0.23% of the potential muta-
tion operators it considers, but even this filter eliminates 10,800
candidates that would have been pointless to turn into mutation
operators. When operating at these large scales, even relatively
small contributors can be important.

2.6 Identifier Shifts
We call the second type of wild-caught mutant extracted by mutgen
an identifier shift. During the extraction process, it is common
for mutgen to identify a patch that consists solely of a change of
one identifier to another. While the syntactic-mutation technique
explicitly avoids synthesis during the insertion process (with the
exception of a limited form permitted through idiomization), we
capture these single-identifier changes, calling them identifier shifts,
to allow an additional, limited form of synthesis.

Any patch that is observed to replace solely one identifier with
another is marked as a candidate identifier shift. At the end of extrac-
tion, all candidate shifts with incidence above a configurable thresh-
old are encoded as identifier shifts within the mutation-operator set.
All identifier shifts extracted during the harvesting process are used
both “forwards” and “backwards.” That is, a single identifier-shift
mutation operator can replace either the “before” identifier with
the “after” or vice versa.

Table 2 shows example identifier shifts harvested from the corpus
used in our experiments.

2.7 Insertion
Once the harvesting process produces a mutation-operator set, our
mutant-insertion tool mutins can then apply mutation operators
to a code base.

Mutins works by tokenizing all source-code input files using
the same language-definition specification and rules discussed in
Section 2.1. It then selects a mutation operator from the mutation-
operator set. By default, the selection is done randomly, but the user
may specify either a particular mutation operator in the mutation-
operator set by index, or specify a seed for the random-number
generator.4

4Mutins uses the Mersenne Twister[17] random-number generator, both for the gen-
eration of high-quality random numbers, as well as to allow seeds to be used across
systems and allow faithful reproduction of random sequences.

Once the mutation operator is selected, mutins then attempts
to match the mutation operator’s pattern to any subset of the to-
ken stream generated from parsing the source code. All possible
matches are identified, and if any exist, one is chosen randomly
if the insertion index is not specified by the user. Mutins then re-
places the tokens in the source file—preserving whitespace—with
the tokens from the replacement in the mutation operator.

To avoid inserting mutants into non-executable portions of the
source code, mutins uses the comment rules defined in the language-
definition file—see Figure 2—to identify comments during the in-
sertion process, and does not apply mutation operators to token
sequences that lie within comments. In contrast to the harvesting
process, the mutation-insertion process has the entire source file
available for analysis, and so can more reliably identify comments
because the full context is visible.

3 EXPERIMENTS
3.1 Repository Mining
We obtained mutation operators by mining public GitHub repos-
itories that contain C code. We wanted to target the repositories
with the largest number of commits; however, the GitHub API does
not provide a way to search based on the number of commits. As
a proxy for number of commits, we opted instead to select those
repositories with the most forks, which is accessible via GitHub’s
API. The number of forks would seem to be a reasonable heuristic
for projects with significant activity—and thus a higher rate of de-
velopment, and commits from more developers. Qualitatively, the
assumption appears to be warranted: the top 20 project reposito-
ries under this metric include the Linux kernel [27], memcached
[18], and Redis [25]. For our experiments, we used the full revision
histories of the top 50 project repositories, which consisted of ap-
proximately 600 thousand commits containing roughly 20 million
individual diff blocks spanning 850 million lines of text.

3.2 Target Program
We used the 50 project histories to rerun (part of) an experiment
reported by Andrews et al. [1], substituting the wild-caught muta-
tion operators obtained from the 50 GitHub project histories for
the set of mutation operators used by Andrews et al.

Andrews et al. experimented on programs from the SIR reposi-
tory [8]. For each program, Andrews et al. generated a number of
test suites by randomly choosing a subset of the tests in the pro-
gram’s full test suite. They then measured the mutation adequacy of
each randomly chosen test suite by running each test suite over the
set of all mutants of the program created by applying a single mu-
tation operator at a single site in the program. By collecting these
measurements, Andrews et al. constructed a model of the statistical
distribution of the mutant-detection rate over arbitrary test suites,
which they compared to a similarly constructed approximation of
the distribution of hand-seeded faults.

To test the effectiveness of mutation testing, Andrews et al.
worked with a wide variety of programs from SIR, including the
Siemens suite. Among these, Space [28, 29] was the only program
that they tested for which real faults were available instead of hand-
introduced ones. Because we were interested in understanding how
wild-caught mutants fare against a test suite’s detection rates for

516

The Care and Feeding of Wild-Caught Mutants ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

real faults, we worked only with Space. As distributed by SIR, Space
has 38 buggy variants and one “gold” version with no known faults.
Andrews et al. used the bug-free gold version; we did the same to
allow direct comparison with Andrews et al.’s findings.

3.3 Procedure
Following the method of Andrews et al., we generated 5,000 100-
case test-suite subsets from Space’s set of 13,496 total test cases.
Next, we ran mutins on Space, to identify each possible point at
which a wild-caught mutation operator can be applied. We recorded
each possible insertion in a list that could be fed to our test-suite-
execution framework at a later time. We then divided the space of
mutation insertion points into batches to be run in parallel on a
large-scale computing platform capable of serving over 300 million
hours of compute time annually.

We inserted each mutation and compiled the result; if compila-
tion succeeded, we ran each of the 5,000 100-case test-suite subsets.
The data was gathered in parallel because there are no interdepen-
dences among any of the runs of a test-suite subset.

Once all test batches completed, we recorded the number of
mutants that successfully compiled.We also computed themutation-
detection ratio, Am(S), for each compiled mutant and each test suite,
defined as follows:

Definition 3.1. Let S be a test suite. Then the mutation-detection
ratio Am(S) is defined as follows:

Am(S) =
of mutants detected by S

of mutants not equivalent to the original program
.

The denominator of Am(S) requires determining whether each
mutant is equivalent to the original program, which is undecidable
in general [3, 7, 22]. Therefore, Andrews et al. [1] adopt, and we
reuse here, a decidable approximation:

Am(S) =
of mutants detected by S

of mutants detected by program’s complete test suite
.

In other words, any mutant that triggers no failure in Space’s ex-
tensive 13,496-case complete test suite is assumed to be equivalent.

4 RESULTS
4.1 Research Question 1: Do Wild-Caught

Mutation Operators Cover Existing
Mutation Operators?

Just et al. [12] describe a set of mutation operators provided by the
Major mutation framework [11]:

• Replace constants. Mutgen can extract mutation operators
that replace constants in the system under test both through
the idiomization technique (effectively turning literal con-
stants into language keywords, which can then be extracted
in the form of a syntactic mutation operator) or identifier
shifts. If specific conversions are not found within the corpus
from which mutation operators are harvested, a mutins user
can manually add mutation operators that replace specific
constants.

• Replace operators. All operators seen in the language-
definition file used as an input to mutgen are capable of being

extracted as syntactic mutation operator. Operator replace-
ments can also be added manually to the mutation-operator
set.

• Modify branch conditions. Operators to modify branch
conditions can be extracted as syntactic mutation operators.
(Section 2.3).

• Delete statements. Mutgen does not yet support the har-
vesting of statement deletions, but there is no impediment
to doing so. In the terminology of Section 1, from a patch of
the form

ϵ → after-code,

we can create a statement-deletion operator of the form

patternA ⇒ ϵ .

Our framework allows for the replication of all four classes of
mutation operators, although mutgen does not currently harvest
statement-deletion operators. Future work will support the har-
vesting of these mutation operators; mutins already supports such
mutation operators if mutgen were capable of producing them.

The PIT Mutation Testing suite[5] supports a set of eleven non-
experimental mutation operators, many of which duplicate muta-
tion operators provided by the Major mutation framework:

• Conditionals Boundary Mutator, Conditionals Muta-
tor, Invert Negatives Mutator, Math Mutator, Negate
Increments Mutator. Mutins can replicate these mutation
operators in the same manner as Major’s Replace opera-
tors mutation operators, as all of these mutation operators
consist of replacing individual operators (or omit a unary
minus from a larger expression, in the case of Invert Nega-
tives).

• Return Values Mutator. Mutins can duplicate this muta-
tion operator via idiomization (to harvest common literal
numeric values 0 and 1) or via syntactic mutation operators
for the language-specific keywords true, false, and null5.

• Void Method Calls Mutator Mutins does not currently
support statement deletion, of which this mutation operator
is an instance.

• Inline Constant Mutator. Mutins can replicate this muta-
tion operator through idiomization as in Major’s Replace
constants mutation operator.

• Remove Conditionals Mutator, Constructor Calls Mu-
tator, Non Void Method Calls Mutator. Mutins can uti-
lize harvested mutation operators of these types, so long as
an example of a change of the type exists within the input
corpus.

Our framework allows for the replication of ten out of the eleven
non-experimental mutation operators supplied by PIT, again failing
to directly reproduce statement deletion.

5The PIT framework operates on Java; while these keywords do not exist in the
C language definition used in the experimentation in this paper, a Java language
definition for mutgen properly identifies them as keywords and treats them as such
during the harvesting process without idiomization.

517

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

4.2 Research Question 2: Do Wild-Caught
Mutation Operators Extend Existing
Mutation Operators?

In their study of whether real faults are coupled to mutants, Just
et al. [12] found that for 27% of the real faults in their study, none of
the triggering tests detected any additional mutants. They manually
reviewed those faults, and classified them as follows: (i) cases where
a mutation operator should be strengthened; (ii) cases where a new
mutation operator should be introduced; and (iii) cases where no
obvious mutation operator can generate mutants that are coupled
to the real fault

In our experiments, we found that several of the mutation opera-
tors identified by Just et al. appeared among the mutation operators
harvested by mutgen. Specifically, we are able to harvest mutation
operators that are consistent with the classifications of Just et al.:
Stronger mutation operators

• Argument swapping. Mutgen is capable of harvesting patches
that rearrange function arguments, which become mutation
operators that perform the inverse rearrangement.

• Argument omission. Mutgen is capable of harvesting patches
that contain a function call modified to have additional ar-
guments, which become mutation operators that match a
function call and replace it with one that has fewer argu-
ments.

• Similar library method called. The identifier-shift technique
(Section 2.6) allows mutgen to harvest mutation operators
of this category by identifying patches in which a single
identifier is replaced by another.
Just et al. specifically mention a Java fault caused by a call
to indexOf, where a call to lastIndexOf should have been
performed. Our experiments, which used a C corpus, found
multiple occurrences of the analogous C transformation: a
strchr ⇒ strrchr identifier shift.

New mutation operators

• Omit chaining method call. Mutgen was able to identify mu-
tation operators of this type, where the fault is a missing call
to a one-argument function whose return type is equal to
(or a subtype of) its argument’s type. Specifically, it found
patches in which a missing call to an SQL string-sanitization
function was inserted.

• Direct access of field.While we were unable to find this mu-
tation operator among the harvested operators—most likely
because we were using only C patches—this mutation cate-
gory could be generated by a combination of an identifier
shift and a syntactic mutation operator.

Other mutation operators

• Specific literal replacements. The idiomization technique (Sec-
tion 2.2) allows mutgen to identify specific literals to be used
in mutation operators. To identify literals that are more rel-
evant to the system under test, the implementation allows
the system under test to be used as its own source of idioms.

Figure 6 illustrates that these operators are all within the harvesting
capabilities of mutgen. Just et al. provide diff-formatted patches to
illustrate faults not coupled to existing mutation operators; mutgen

Table 3: Experimental results when harvesting from back-
ward or forward patches

Aspect Backward Forward

Extracted syntactic mutation operators 7,570 8,069
Extracted identifier shifts 5,000 5,000
Total number of syntactic mutants 139,289 183,683
Total number of applied identifier shifts 1,876 1,876
Successfully compiled syntactic mutants 20,803 21,617
Successfully compiled identifier shifts 127 127
Compilation rate 15% 12%
Average Am(S) 0.81 0.81
Median Am(S) 0.81 0.81

is able to harvest mutation operators automatically from the pro-
vided patches.6 The patches provided by Just et al. were in Java;
while our experiments exclusively used C, our toolchain is language
agnostic and we were able to create a Java language-definition file
and extract mutation operators from the provided Java patches. In
addition to being able to harvest such mutation operators from
diff-formatted patches, a user of our system can also manually
specify additional mutation operators in all of the above categories.

4.3 Research Question 3: Do Wild-Caught
Mutation Operators Differ From Existing
Mutation Operators?

Research Question 3 asks whether wild-caught mutants exhibit
behavior that is quantifiably different than existing mutation oper-
ators. Table 3 summarizes some basic metrics from the mutation-
testing experiment with Space.

Mutation-Detection Ratio. Andrews et al. [1] defined the sample-
based mutation-detection ratio Am(S) (see Definition 3.1 in Sec-
tion 3.3), and measured it as 0.75 when existing mutation-testing
techniques were applied to Space [8] and Space’s test suite. Using
the same sample-based technique, we measured an Am(S) value
of 0.81 for the mutation-operator set created via the wild-caught-
mutants technique. This indicates that the mutation operators ob-
tained by the wild-caught-mutants technique lead to mutants that
roughly as hard to kill as mutants from traditional mutation opera-
tors.

Compilability. Using the wild-caught mutation operators, the
compilation-success rate of the mutants created for Space was
around 14% (see Table 3). Although, this rate is substantially larger
than our original guess that the compilation-success rate would
be less than 5%, the rate is comparatively low: Andrews et al. [1]
reported a compilation-success rate of 92% for Space. However,
because of the large number of mutation operators harvested, mu-
tation testing via wild-caught mutants still appears feasible; our
set of 34,439 compilable mutants is more than three times larger
than Andrews et al.’s 11,379-mutant set (34,439 = 20,802 forward
mutants + 21,617 backward mutants - 7,980 duplicate mutants).

6For some of these patches, it is necessary to supply command-line arguments to
change the values of mutgen’s options from their defaults—specifically, those relating
to total-identifier count and the commonality threshold for harvesting identifier shifts.

518

The Care and Feeding of Wild-Caught Mutants ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

- return solve(min , max);

+ return solve(f, min , max);

(a) Math-369 fix as found in Just et al. [12]

- :return $1 .($2 ., $3 .) .;

+ :return $1 .($_ ., $2 ., $3 .) .;

(b) Math-369 fix as generalized by mutgen

- int indexOfDot = namespace.indexOf('.');

+ int indexOfDot = namespace.lastIndexOf ('.');

(c) Closure-747 fix as found in Just et al. [12]

indexOf ⇒ lastIndexOf

(d) Closure-747 fix as generalized to an identifier shift by mutgen

- return ... + toolTipText + ...;

+ return ... + ImageMapUtilities.htmlEscape(

toolTipText) + ...;

(e) Chart-591 fix as found in Just et al. [12]

- :return+ $1 .+;

+ :return+ $_ .. $_ .($1 .) .+;

(f) Chart-591 fix as generalized by mutgen

- FastMath.pow(2 * FastMath.PI , -dim / 2)

+ FastMath.pow(2 * FastMath.PI, -0.5 * dim)

(g) Math-929 fix as found in Just et al. [12]

- $1 .. :pow .(:2 .* $1 .. $3 ., .- $4 ./ :2 .)

+ $1 .. :pow .(:2 .* $1 .. $3 ., .- :0.5 .* $4 .)

(h) Math-929 fix as generalized by mutgen, with “pow,” “2,” and “0.5”
keywords added by idomization

- return getPct ((Comparable <?>) v);

+ return getCumPct ((Comparable <?>) v);

(i) Math-337 fix as found in Just et al. [12]

getPct ⇒ getCumPct

(j) Math-337 fix as generalized to an identifier shift by mutgen

- lookupMap = new HashMap <CharSequence ,

CharSequence >();

+ lookupMap = new HashMap <String , CharSequence >();

(k) Lang-882 fix as found in Just et al. [12]

- $1 .= :new $2 .< $3 ., $3 .> .(.) .;

+ $1 .= :new $2 .< $_ ., $3 .> .(.) .;

(l) Lang-882 fix as generalized by mutgen

- if (u * v == 0)

+ if ((u == 0) || (v == 0))

(m) Math-238 fix as found in Just et al. [12]

- :if .($1 .* $2 .== :0 .)

+ :if .(.($1 .== :0) .|| .($2 .== :0 .) .)

(n) Math-238 fix as generalized by mutgen, with “0” keyword added by
idiomization

Figure 6: Examples of mutation operators proposed by Just et al. [12] and identified by mutgen

The majority of failed compilations (64%) arise from simple pars-
ing errors. Another 21% fail because mutation has turned the left
operand of an assignment into a non-assignable expression (i.e., not
a C lvalue). Other frequent compilation errors include 5% due to
invalid operands to binary operators (e.g., “+” applied to a pointer
and a double) and 3% due to using an undeclared identifier. Compi-
lation errors of these kinds are to be expected, given the lexical level
at which we operate. Traditional mutation operators limit changes
to ones that are unlikely to ever introduce parsing errors. For exam-
ple, negating an if condition or replacing a “<” with a “<=” will not
break compilation except under truly exceptional circumstances.
Thus, the high compilation rates of traditional mutants arise essen-
tially by construction. The wild-caught-mutants approach offers no
such guarantees. That means we waste more time on failed compi-
lations, but it also means that we have the potential to change code
in much more interesting ways.

4.4 Research Question 4: Are “Forward” and
“Backward” Patches Different?

While considering patches in the backward direction (“backward
patches”) intuitively seems more likely to (re)introduce bugs, which
is good from the standpoint of mutation testing, we also tried har-
vesting mutation operators by considering the same set of patches
in the forward direction (“forward patches”).

Overlap. We found that the overlap is considerable between the
sets of mutation operators harvested by considering patches in
the “forward” and “backward” directions, but there is significant
non-overlap: of the 13,929 unique mutation operators found using
both techniques, 5,860 were found only from backward patches,
6,359 were found only from forward patches, and 1,710 were found
by both techniques.

519

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

Mutation-Detection Ratio. The mutants caused by mutation op-
erators harvested by forward and backward patches are ultimately
equally difficult to kill: average and median Am(S) scores are 0.81 in
each direction, per Table 3. This may seem surprising, if backward
patches truly represent bug reintroduction. However, one must
keep in mind that the “gold” version of Space used in our exper-
iments passes its entire, extensive test suite. The test suite, then,
effectively traps Space into a rather narrow set of allowed behaviors.
Any deviation from that, whether to fix a fault or not, is likely to
trigger at least one test case failure. Given the constraints of an
extensive test suite, any change will look like a new fault, whether
derived from backward or forward patches. Ultimately, forward
patches may still describe interesting human-generated changes,
and therefore harvesting them can be a worthy enhancement to
backward-patch harvesting.

Ability to Reproduce Faults in Space. To evaluate the differences
between mutation operators harvested from forward and backward
patches, we examined the faults in the 38 faulty versions of Space.
We classified each fault as to whether the two kinds of harvested
mutation operators could reintroduce them, if mutation testing
were carried out on the “gold” version.

• Seven faulty versions (3, 4, 5, 6, 20, 21, and 28) had faults that
would be reintroduced by some mutation operator harvested
from backward patches.

• One faulty version (30) had a fault that would be reintroduced
by a mutation operator that was harvested from both the
“forward” and “backward” patches.

• Five faulty versions (1, 2, 18, 23, and 33) had faults that could
potentially be reintroduced by mutins, but with mutation
operators that were not harvested—in either direction—from
the 50 GitHub projects that we analyzed. Of the five, faulty
version 18 had a fault that could potentially be reintroduced
via an identifier shift, albeit one that we did not harvest;
the faults in the remaining four are expressible as syntactic
mutation operators.

The remaining 25 faulty versions required mutations outside of
the scope of our current techniques. The majority of these are
expressible as syntactic mutation operators, but involve too many
lexical tokens to survive our filtering heuristics.

While these results are limited in scope, they provide weak sup-
port for the conjecture that, compared to forward-harvested muta-
tion operators, backward-harvested operators can introduce defects
that more closely resemble defects introduced by real programmers.
Ultimately, while the ideal is to insert “bug-like” changes into the
target program, a robust test suite must also be able to identify be-
havior changes introduced by human programmers, which our wild-
caught mutants—whether derived from bug fixes or not—simulate.

5 THREATS TO VALIDITY
There are several threats to the validity of our work.

We employ small changes—10 lexical tokens or fewer, and typi-
cally single-line—to generate our mutation operators. These size-
limited patches represent a distinct subset of all possible changes
to code, and as a result we do not derive mutation operators from
all valid patches observed. We enact this limitation because the
more complex each individual harvested mutation operator is, the

less likely it is to be matched in any particular piece of code to
which it is applied. Smaller and simpler mutation operators yield a
substantially higher proportion of matchable mutation operators;
syntactic mutation operators larger than those we harvest clutter
the system, but are rarely able to be applied to a system under test.

The idealized goal of mutation testing is to measure a test suite’s
quality, by measuring its ability to detect faults of the kind that
might be inserted into the program in the future. One may question
whether reversals of past changes are good candidates as predictors
of the kinds of future faults that one wants the test suite to detect.
Our experiment with the 38 faulty versions of Space provides a
small amount of evidence that backward-patch harvesting is a better
source of such candidates than forward-patch harvesting.

Even if our specific harvesting approach proves to be sub-optimal,
the general idea of supporting mutation testing using information
harvested from a revision-control system would still have much
potential. A possible improvement, which we plan to investigate
in follow-on work, is to extend the harvesting operation to in-
clude information from a bug-tracking system, such as Bugzilla
[4]. Śliwerski et al. [26] investigated how the combination of a
revision-control system and a bug-tracking system provides a way
to identify fix-inducing patches in the revision history.7 Such an
approach would provide three sources of input for harvesting mu-
tation operators: (i) the fix-inducing patch; (ii) the corrective patch;
and (iii) the commonalities between the fix-inducing patch and the
corrective patch.

Rather than experiment shallowly across a large benchmark
suite, we chose to focus on evaluating in depth a single application:
Space, from the SIR repository [8]. This decision allowed us to make
direct comparisons with the empirical findings of Andrews et al.
[1]. However, if Space is unlike other real-world code, then this
difference would harm the external validity of our findings—i.e.,
the extent to which our conclusions can be generalized to other
situations. In spite of that risk, Space is an appealing subject for
an experiment on the effectiveness of mutation testing. It is not
a synthetic benchmark, but rather is a mature piece of software
that has been subject to years of production use. Among the pro-
grams studied by Andrews et al., only Space had variants with real
faults instead of hand-introduced ones. Moreover, at 9,124 lines
of code, Space is larger than the programs in the Siemens suite.
For Space, mutins generated 241,517 single-mutation mutants, of
which 34,439 were compilable. The set of 241,517 mutants is a non-
trivial set, but was still small enough that, for each mutant, we
could run 5,000 100-case test-suite subsets.

6 RELATEDWORK
To the best of our knowledge, the wild-caught-mutants technique
is novel; however, several other projects have used related ideas.
Some of the latter techniques could be used to enhance our methods
for extracting mutation operators.

Śliwerski et al. [26] describe a technique to identify fix-inducing
patches within a revision history, and propose applying similar
tactics to identify failure-inducing patches. Many others have used
similar strategies, all based on recognizing specific keywords (such

7 As defined by Śliwerski et al., a fix-inducing patch is one that causes a later bug fix.

520

The Care and Feeding of Wild-Caught Mutants ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

as “fixed” or “bug”) or bug IDs (such as “#42233”) in commit mes-
sages [2, 6, 9, 13, 20]. Mutgen could be extended to use these tech-
niques to attempt to identify “higher-quality” mutation operators
by inferring properties of the changes induced by specific patches
in the source corpus.

Le et al. [16] mine revision histories to extract bug-repairing
patches, and use these as a basis for program repair. We provide a
technique that, effectively, does the opposite—we use mined patches
to break code instead of fixing it.

Coccinelle’s semantic patches are generalized patches that can
be applied to code, much like our syntactic mutation technique
[23]. However, Coccinelle works with manually authored patches,
whereas we harvest new mutation operators automatically. Coc-
cinelle applies semantic changes to multiple blocks of code, and
has been applied to bug detection [14, 15], whereas we focus on
breaking code for the purpose of mutation testing. The mutation-
testing context lets our toolchain utilize simpler patches, as well as
harvest them automatically.

As a follow-on to Coccinelle, Palix et al. [24] developedHerodotos,
a system to track the evolution of patterns in code through analysis
of a revision history. We share Palix et al.’s interest in the evolution
of code, although we focus on pairwise diffs between adjacent revi-
sions rather than entire revision histories. Herodotos requires more
manual intervention than our toolchain, most notably to create
and generalize the initial patterns to be tracked across revisions.
This approach is sensible for Herodotos, which ultimately drives
interactive code-understanding tools. However, our batch-testing
usage scenario calls for a fully automated approach.

Nam et al. [21] describe a technique for identifying bug-fixing
commits in a source-control repository and calibrating mutation
testing to utilize mutation operators that more closely resemble the
reverse of changes observed in bug-fixing commits. Nam et al. look
for keywords in commit messages, as many others have done, and
also manually inspect commits to confirm that they are indeed fixes.
Our approach is more automated, as we harvest all patches that fit
our purely syntactic filtering heuristics. Likewise, Nam et al. craft
several new mutation operators by hand, whereas our approach
automates the entire process of harvesting and generalizing new
mutation operators. Our automation-focused approach may be less
selective, but it allows us to work with a corpus two orders of
magnitude larger than that used by Nam et al.

7 EXPERIMENTAL ARTIFACTS
Our core mutation tools, consisting of mutgen and mutins, are
available at https://github.com/d-bingham/wildcaughtmutants.

We also provide tools to demonstrate our experiments at https:
//github.com/d-bingham/fse2017artifact. However, reproducing
our complete set of experiments would require months of processor
time (and as such was executed on a high-throughput computing
platform). Therefore, this experimental artifact recreates scaled-
down versions of the experiments described in Section 3.

The artifact allows the user to harvest a set of mutation operators
from scraped GitHub repositories (omitting the full Linux kernel
source due to space and time concerns). Once a set of mutation
operators are harvested from this corpus, the artifact then generates
thirty randomly-chosen mutants (chosen as mutation operators

and insertion indices into the Space program), attempts to compile
them, and evaluates the mutated programs against Space’s test
suite. With the pass/fail results from each test case, the artifact then
generates random “virtual” test suites to calculate Am(S) scores for
the generated mutants.

The artifact can be executed via a provided shell script or through
the use of a Docker[19] container, allowing demonstration of a small
portion of our experiment in a highly portable manner.

8 CONCLUSION
For mutation testing to provide a useful measure of the sensitivity
of a test suite, it must produce not only faults within the system
under test, but faults that mimic those caused by the actual de-
velopers working on a project. Just et al. demonstrated that faults
introduced through mutation testing can serve as proxies for real
faults introduced by developers and be effectively used to evaluate
the sensitivity of a testing suite, although they also described limi-
tations of existing sets of mutation operators. We expand upon that
work by automatically harvesting mutation operators—wild-caught
mutants—and comparing the capabilities of the harvested mutation
operators to those of existing mutation operators.

Andrews et al. [1], discussing threats to validity, caution that “It
is also expected that the results of our study would vary depending
on the mutation operators selected. . . .” Our findings provide strong
empirical support for this expectation. As opposed to existing “syn-
thetic” mutation testing techniques, every mutation we create is
based on a (reversed) change that some real programmer made
to some real piece of code. Our wild-caught approach produces
novel mutation operators, in turn creating defects that are about
as difficult to kill as those arising from existing synthetic mutation
operators or Space’s 38 naturally-arising faults. Whether existing
synthetic mutation operators or our wild-caught mutation opera-
tors can objectively be characterized as more “realistic” remains an
open question.

“Realism” arguments aside, it is clear that developers benefit if
their test suites can be challenged by bugs that resemble those they
might expect programmers to introduce. Our wild-caught-mutants
technique can be a source of such bugs. Instead of crafting mutation
operators by hand, we believe that our results demonstrate that
wild-caught mutants provide a stronger method for evaluating the
sensitivity of test suites.

ACKNOWLEDGMENTS
The authors are grateful to Josh Deaver for insightful discussions
regarding visualization of the effects of our filtering heuristics; to
Michael Ernst for guidance on experimental evaluation strategies
for mutation research; and to the UW–Madison Center For High
Throughput Computing (CHTC) for computational support.

This research was supported in part by a gift from Rajiv and Ritu
Batra; Defense Advanced Research Projects Agency MUSE award
FA8750-14-2-0270 and STAC award FA8750-15-C-0082; and Na-
tional Science Foundation grants CCF-1217582, CCF-1318489, and
CCF-1420866. Opinions, findings, conclusions, or recommendations
expressed herein are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

521

https://github.com/d-bingham/wildcaughtmutants
https://github.com/d-bingham/fse2017artifact
https://github.com/d-bingham/fse2017artifact
mailto:joshdeaver@yahoo.com

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps

REFERENCES
[1] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate

Tool for Testing Experiments?. In Proceedings of the 27th International Conference
on Software Engineering (ICSE ’05). ACM, New York, NY, USA, 402–411. https:
//doi.org/10.1145/1062455.1062530

[2] Cathal Boogerd and Leon Moonen. 2008. Assessing the value of coding standards:
An empirical study. In 24th IEEE International Conference on Software Maintenance
(ICSM 2008), September 28 - October 4, 2008. IEEE Computer Society, Beijing, China,
277–286. https://doi.org/10.1109/ICSM.2008.4658076

[3] Timothy A. Budd and Dana Angluin. 1982. Two notions of correctness and their
relation to testing. Acta Informatica 18, 1 (1982), 31–45. https://doi.org/10.1007/
BF00625279

[4] Bugzilla development team. 2016. Home :: Bugzilla :: bugzilla.org. (May 2016).
https://www.bugzilla.org/

[5] Henry Coles. 2017. PIT Mutation Testing. (2017). [Online; accessed Jun. 2017].
[6] Davor Čubranić and Gail C. Murphy. 2003. Hipikat: Recommending Pertinent

Software Development Artifacts. In Proceedings of the 25th International Confer-
ence on Software Engineering (ICSE ’03). IEEE Computer Society, Washington, DC,
USA, 408–418. http://dl.acm.org/citation.cfm?id=776816.776866

[7] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on
Test Data Selection: Help for the Practicing Programmer. IEEE Computer 11, 4
(1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

[8] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering: An International Journal 10, 4
(2005), 405–435.

[9] Michael Fischer, Martin Pinzger, and Harald Gall. 2003. Populating a Release His-
tory Database from Version Control and Bug Tracking Systems. In Proceedings of
the International Conference on Software Maintenance (ICSM ’03). IEEE Computer
Society, Washington, DC, USA, 23–. http://dl.acm.org/citation.cfm?id=942800.
943568

[10] Richard G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE
Trans. Software Eng. 3, 4 (1977), 279–290. https://doi.org/10.1109/TSE.1977.231145

[11] René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation
Analysis for Java. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA 2014). ACM, New York, NY, USA, 433–436. https:
//doi.org/10.1145/2610384.2628053

[12] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA, 654–
665. https://doi.org/10.1145/2635868.2635929

[13] Sunghun Kim and Michael D. Ernst. 2007. Which Warnings Should I Fix First?.
In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 45–54. https://doi.org/10.
1145/1287624.1287633

[14] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and Gilles Muller.
2010. Finding Error Handling Bugs in OpenSSL using Coccinelle. In Proceeding of
the 8th European Dependable Computing Conference, EDCC 2010. IEEE Computer
Society, Valencia, Spain, 191–196.

[15] Julia L. Lawall, Julien Brunel, Nicolas Palix, René Rydhof Hansen, Henrik Stuart,
and Gilles Muller. 2009. WYSIWIB: A Declarative Approach to Finding Protocols
and Bugs in Linux Code. In The 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE Computer Society, Estoril, Portugal,
43–52.

[16] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History driven program
repair. In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference on, Vol. 1. IEEE Computer Society, Suita, Osaka, Japan,
213–224.

[17] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-
dimensionally Equidistributed Uniform Pseudo-randomNumber Generator. ACM
Trans. Model. Comput. Simul. 8, 1 (Jan. 1998), 3–30. https://doi.org/10.1145/272991.
272995

[18] memcached community. 2017. Memcached. (Jan. 2017). https://github.com/
memcached/memcached

[19] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent De-
velopment and Deployment. Linux Journal 2014, 239, Article 2 (March 2014),
16 pages. http://dl.acm.org/citation.cfm?id=2600239.2600241

[20] Audris Mockus and Lawrence G. Votta. 2000. Identifying Reasons for Software
Changes Using Historic Databases. In Proceedings of the International Conference
on Software Maintenance (ICSM’00) (ICSM ’00). IEEE Computer Society, Washing-
ton, DC, USA, 120–. http://dl.acm.org/citation.cfm?id=850948.853410

[21] J. Nam, D. Schuler, and A. Zeller. 2011. Calibrated Mutation Testing. In 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops. IEEE Computer Society, Washington, DC, USA, 376–381. https:
//doi.org/10.1109/ICSTW.2011.57

[22] A. Jefferson Offutt and Jie Pan. 1996. Detecting Equivalent Mutants and the
Feasible Path Problem. In Proceedings of the 1996 Annual Conference on Computer
Assurance. IEEE Computer Society, Gaithersburg, Maryland, 224–236.

[23] Yoann Padioleau, René Rydhof Hansen, Julia L. Lawall, and Gilles Muller. 2006.
Semantic Patches for Documenting and Automating Collateral Evolutions in
Linux Device Drivers. In PLOS 2006: Linguistic Support for Modern Operating
Systems. ACM, San Jose, CA, Article 10, 6 pages.

[24] Nicolas Palix, Julia Lawall, and Gilles Muller. 2010. Tracking Code Patterns over
Multiple Software Versions with Herodotos. In Proceedings of the 9th International
Conference on Aspect-Oriented Software Development. ACM, Rennes and Saint
Malo, France, 169–180. https://doi.org/10.1145/1739230.1739250

[25] Salvatore Sanfilippo. 2017. Redis. (Feb. 2017). https://github.com/antirez/redis
[26] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do

Changes Induce Fixes? SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1–5. https:
//doi.org/10.1145/1082983.1083147

[27] Linus Torvals. 2017. Linux kernel. (Feb. 2017). https://github.com/torvalds/linux
[28] Filippos I. Vokolos and Phyllis G. Frankl. 1998. Empirical Evaluation of the Textual

Differencing Regression Testing Technique. In 1998 International Conference on
Software Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19, 1998.
IEEE Computer Society, Washington, DC, USA, 44–53. https://doi.org/10.1109/
ICSM.1998.738488

[29] W. Eric Wong, Joseph Robert Horgan, Aditya P. Mathur, and Alberto Pasquini.
1999. Test set size minimization and fault detection effectiveness: A case study
in a space application. Journal of Systems and Software 48, 2 (1999), 79–89.
https://doi.org/10.1016/S0164-1212(99)00048-5

522

https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1109/ICSM.2008.4658076
https://doi.org/10.1007/BF00625279
https://doi.org/10.1007/BF00625279
https://www.bugzilla.org/
http://dl.acm.org/citation.cfm?id=776816.776866
https://doi.org/10.1109/C-M.1978.218136
http://dl.acm.org/citation.cfm?id=942800.943568
http://dl.acm.org/citation.cfm?id=942800.943568
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://github.com/memcached/memcached
https://github.com/memcached/memcached
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=850948.853410
https://doi.org/10.1109/ICSTW.2011.57
https://doi.org/10.1109/ICSTW.2011.57
https://doi.org/10.1145/1739230.1739250
https://github.com/antirez/redis
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147
https://github.com/torvalds/linux
https://doi.org/10.1109/ICSM.1998.738488
https://doi.org/10.1109/ICSM.1998.738488
https://doi.org/10.1016/S0164-1212(99)00048-5

	Abstract
	1 Introduction
	2 Harvesting and Insertion
	2.1 Language Definition
	2.2 Idiomization
	2.3 Syntactic Mutation
	2.4 Filtering Heuristics
	2.5 Effect of Filtering Heuristics
	2.6 Identifier Shifts
	2.7 Insertion

	3 Experiments
	3.1 Repository Mining
	3.2 Target Program
	3.3 Procedure

	4 Results
	4.1 Research Quesion 1: Do Wild-Caught Mutation Operators Cover Existing Mutation Operators?
	4.2 Research Quesion 2: Do Wild-Caught Mutation Operators Extend Existing Mutation Operators?
	4.3 Research Quesion 3: Do Wild-Caught Mutation Operators Differ From Existing Mutation Operators?
	4.4 Research Quesion 4: Are ``Forward'' and ``Backward'' Patches Different?

	5 Threats to Validity
	6 Related Work
	7 Experimental Artifacts
	8 Conclusion
	Acknowledgments
	References

