Artifact evaluated by FSE |

Correctness Withesses:
Exchanging Verification Results between Verifiers

Dirk Beyer', Matthias Dangl?, Daniel Dietsch 3, Matthias Heizmann?

! LMU Munich, Germany

ABSTRACT

Standard verification tools provide a counterexample to wit-
ness a specification violation, and, since a few years, such
a witness can be validated by an independent validator us-
ing an exchangeable witness format. This way, information
about the violation can be shared across verification tools
and the user can use standard tools to visualize and ex-
plore witnesses. This technique is not yet established for
the correctness case, where a program fulfills a specification.
Even for simple programs, it is often difficult for users to
comprehend why a given program is correct, and there is
no way to independently check the verification result. We
close this gap by complementing our earlier work on viola-
tion witnesses with correctness witnesses. While we use an
extension of the established common exchange format for
violation witnesses to represent correctness witnesses, the
techniques for producing and validating correctness witnesses
are different. The overall goal to make proofs available to
engineers is probably as old as programming itself, and proof-
carrying code was proposed two decades ago — our goal
is to make it practical: We consider witnesses as first-class
exchangeable objects, stored independently from the source
code and checked independently from the verifier that pro-
duced them, respecting the important principle of separation
of concerns. At any time, the invariants from the correctness
witness can be used to reconstruct a correctness proof to
establish trust. We extended two state-of-the-art verifiers,
CPAcHECKER and ULTIMATEAUTOMIZER, to produce and vali-
date witnesses, and report that the approach is promising
on a large set of verification tasks.

CCS Concepts

eSoftware and its engineering — Formal software ver-
ification;

Keywords

Correctness Witness, Witness Validation, Software Verifica-
tion, Program Analysis, Model Checking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’16, November 13-18, 2016, Seattle, WA, USA
(© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2950351

2 University of Passau, Germany

326

3 University of Freiburg, Germany

1. INTRODUCTION

The omnipresent dependency on software in society and
industry makes it necessary to ensure reliable and correct
functioning of the software. This trend will continue and
become even more important in the future. During the
last decade, various conceptual breakthroughs in verification
research were achieved, and, as showcased by the annual
TACAS International Competition on Software Verification
(SV—COMP)E] [1112L3], many successful software verifiers were
developed.

Recently, the problem of false alarms that verification
tools sometimes produce has been addressed |5]: Formerly,
a verification tool reported found bugs as counterexample
traces in a tool-specific manner; those counterexamples were
often not readable and therefore hardly usable. Determining
whether the reported bug was a false alarm or described
an actual programming error that needed to be fixed was a
tedious manual process for the user. Exchangeable violation
witnesses resolve this issue, because the general syntax allows
new tools for presentation to be developed and used [4].
Witnesses should be considered as first-class objects that
have much more value than the actual verification result
TRUE or FALSE. A verification result should be trusted only
if the reason for the result is provided, and the result can be
re-established with the additional information. The process
of witness validation is fully automatic.

This paper complements our previous work on violation
witnesses [5] by a method for producing and validating cor-
rectness witnesses. The most recent edition of the TACAS In-
ternational Competition on Software Verification [3| revealed
that soundness is a big issue: ten out of 13 participating
verifiers in the category ‘Overall’ reported wrong correct-
ness claims for verification tasks with known specification
violations. One of the submissions was even claiming safety
for 962 out of 2348 verification tasks that were known to
contain a bug. This rather embarrassing situation of the
state-of-the-art in software verification can be fixed by pro-
ducing correctness witnesses and letting a witness validator
confirm the result. The result should be trusted only if it
can be confirmed by at least one other verifier.

We propose that a verifier should be required to augment a
verification result with a machine-readable and exchangeable
witness, such that both, bug alarms and claims of safety,
may be validated. With this technique, a trusted validator
establishes trust in the verification results produced by an
untrusted verifier, and even in the absence of a trusted
validator the user’s confidence in a verification result can be

Thttp:/ /sv-comp.sosy-lab.org/

http://sv-comp.sosy-lab.org/

extern unsigned int nondet (void);

int main () {
unsigned int x nondet () ;
unsigned int y X;
while (x < 1024) {
X X +
Y

1;
1;

© 0w N C s W N

}
// Valid safety property
if (x !'=y) |
ERROR: return 1;
}

return 0O;

N
CA W N = O
—

(a) Safe program

(b) Witness automaton

1 extern unsigned int nondet (void) ;
2

3 int main () {

4 unsigned int x = nondet();

5 unsigned int y = x;

6 while (x < 1024) {

7 x = x + 1;

8 y = x + 1; // Bug

9

}
// Invalid safety property
if (x !'=y) {
ERROR: return 1;
13 }
return 0O;

(c) Unsafe program

Figure 1: Example C programs (a,c) and a potential correctness witness (b)

increased by applying different validators to a verification
witness. Witnesses can be read by humans (perhaps using a
visualization or inspection tool) or by a witness validator.
This paper reports our experience with implementing two
different witness-producing verifiers and two different witness
validators for correctness witnesses. On the syntactic level,
we use XML, more specifically GraphML [12], as a language
to represent correctness witnesses. On the semantic level,
we use the standard concept of (non-deterministic) finite
automata to represent correctness witnesses. A correctness-
witness automaton observes the program locations (along
the control flow) that the verifier explores and provides
invariants that hold at the locations that the verifier visits.
A correctness witness is valid if its predicates are invariants
for the program, and a validator should reject witnesses
with incorrect invariants. The strength of the invariants
determines the quality of the witnesses, but no particular
strength is required. Witness validation can be more efficient
than verification because it might be easier to (re-) verify that
invariants indeed hold, while the verification needs to come
up with the invariants. The task of finding useful invariants
is in general considered one of the key challenges in software
verification. Generalizing this approach allows for a lot of
flexibility, because the more helpful the candidate invariants
are, the less work has to be performed by the validator.

Example. We illustrate the idea of correctness witnesses us-
ing two short C programs and an example witness automaton.
The first of the two C programs is listed in Fig. It is taken
from the category Loops of the benchmark set of the TACAS
International Competition on Software Veriﬁcationﬂ [3]. It
contains two unsigned integer variables x and y. Variable x
is initialized to a non-deterministic value in line 4, and y is
set to the value of x in line 5. Lines 6-9 contain a while loop
that increments both variables in each iteration while the
value of x is less than 1024. In the lines 1013, the safety
property is asserted, which requires that x equals y. While
the safety property trivially holds before the first execution
of the loop body, a verifier has to find out that x = y is
a loop invariant in order to prove that the safety property
holds after the loop. Because the loop invariant x = y is
inductive, it is easy to prove that it holds. Therefore, proving

Zhttps://github. com/sosy-lab/sv-benchmarks/blob/svcomp16/
c/loop-acceleration/multivar_true-unreach-calll.i

327

the whole program correct is easy if the loop invariant z =y
is given, but finding such a loop invariant is in general hard,
and depends on the employed verification strategy: it is the
critical step in verifying this program.

A verifier that successfully proves the safety property for
the program may then export a correctness witness. If the
correctness witness contains the invariant x = y, a witness
validator should be able to easily confirm the correctness
witness. Figure displays a graphical representation of
such a correctness witness, which is actually produced by
our implementation in CPAcHECKER for the program listed
in Fig. (we reduced it to the most important parts for
readability). Our implementation in ULTIMATEAUTOMIZER pro-
duces a very similar witness. The witness uses the same type
of syntactic guards as the violation witnesses that we intro-
duced in a previous work [5], to match automaton transitions
with program operations. The automaton starts in an initial
control state go. The witness assigns the invariant true to
control state go. It is allowed to proceed to state ¢1 if the
control-flow enters the loop head. As long as this transition
is not possible, the automaton remains in state qo via the
self-transition ‘otherwise’ (o/w). From g¢i, the automaton
can proceed to state gq if the condition of the while loop in
line 6 is true (the then-case), or to state g3 if the condition in
line 6 is false (the else-case). As long as none of these transi-
tions are possible, the automaton remains in state ¢1 via the
self-transition o/w. The automaton proceeds from state g2
to g4 on the program operation in line 7 and from there back
to state ¢ after the program operation in line 8. As long
as these conditions are not met, the automaton will stay in
each of the control states via their self-transitions o/w. If the
automaton is in state gs, it will stay there foreverEI States qo,
q2, q3, and g3 contain the trivial invariant true. State q1
specifies the invariant x = y. Because state g1 describes
the loop head, a validator is able to prove (for example by
induction) that the invariant holds at this program location,
and can then use the invariant to prove the correctness of
the program, thus validating the witness.

The second program in Fig. is almost identical to the
program in Fig. [[a] with the critical difference that there

3The rest of the exploration does not matter for the witness,
because the sole purpose of the witness is to attach the
invariant at the right program location.

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp16/c/loop-acceleration/multivar_true-unreach-call1.i
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp16/c/loop-acceleration/multivar_true-unreach-call1.i

is a bug in line 8, which causes the safety property to be
violated: After each iteration, the value of y equals x + 1
instead of x. Due to the structural similarity between the
two programs, the witness in Fig. can also be matched
with the second (unsafe) program. A validator that checks
the loop invariant x = y will fail to prove its invariance, and
thus will reject the witness. Because each validation of a
correctness witness also implicitly uses the safety property as
an invariant, the validator could alternatively also reject the
witness by finding a counterexample to the safety property
in lines 1013 before disproving the loop invariant x = y.

Related Work. The exchange format for correctness wit-
nesses and the corresponding techniques for communicating
verification witnesses across verification tools are based on
previous work on violation witnesses [5]. While the tasks
of producing and validating correctness witnesses as well
as the involved concepts are different from those for viola-
tion witnesses, we were able to reuse the exchange format
for violation witnesses with only minor extensions, namely
adding tags for location invariants and a new syntactic guard
to identify loop heads. The stability of the format is im-
portant because it may incite developers of other verifiers
(which perhaps already support violation witnesses) to sup-
port correctness witnesses as well. Analogous to the concept
of stepwise testification of violation witnesses, a correctness-
witness validator becomes a correctness-witness testifier if
the validator itself documents its reasoning again in a correct-
ness witness. Before the common exchange format, violation
witnesses were used only based on proprietary formats within
particular tools. For example, EsBMc was extended to re-
produce errors via instrumented code [27], and CPACHECKER
was used to re-check previously computed error paths by
interpreting them as automata that control the state-space
search [11]. The competition on termination uses CPF [28§]
to store termination proofs for term-rewrite systems.

Proof-Carrying Code (PCC). Ideas on proof witnesses have
previously been explored in the context of proof-carrying
code [26]. PCC is a mechanism where an untrusted source
supplies both an executable program and a proof witness
that can be checked against the program and specification
by a trusted validator to establish trust in the program.
Intermediate results during the verification procedure can be
used by certifying model checkers to compose and dump full
proofs as proof certificates [25].

The two implementations of correctness-witness validation
that we provide and the presented exchange format for cor-
rectness witnesses enable the mechanism of proof-carrying
code for real-world C programs and allow further verifica-
tion tools to adopt the technique. The main difference of
our work to proof-carrying code is that we do not strictly
require the witness to contain a full proof. We found that in
practice, a full proof for even small programs may become
very large in size unless a considerable amount of additional
effort is spent on simplifying formulas. Especially for larger
programs, it is often neither wanted nor even feasible to deal
with such a full proof — as in math, good lemmas or proof
sketches are of essence. Therefore, we support flexibility:
the better the witness, the more likely it is that the witness
validator will quickly confirm it; a less detailed witness may
also succeed in guiding the validator to the proof, but in turn
may require more effort from the validator. In addition, we
do not use the program to carry the proof, but consider the

328

witness separately as an own first-class object (separation of
concerns, flexibility, maintainability).

Certificates. Correctness certificates have long been used for
increasing the trust in code generated from some form of
formal description or model (e.g. [13}/14,(18}/20}|31]). Those
correctness certificates are complete proofs of functional cor-
rectness. Our exchange format can also be used as correctness
certificate and to represent a full proof, but this is not re-
quired: a correctness witness can —more generally— be a
partial proof of correctness.

Reusing Reachability Graphs. Many model checkers materi-
alize the intermediate results produced by their state-space
exploration as an abstract reachability graph (ARG). The
ARG, which is the basic data structure in tools like SLawm,
BrasT, and CPACHECKER, can be used to extract invariants
of the program [18], which in turn can be used for PCC,
or for extreme model checking [19], which checks if a previ-
ously computed ARG is a safety proof for the given (slightly
changed) input program. StaB [15] is a certifying model
checker that produces a proof certificate for the abstract
model of a program in SMT-LIB format. Such a certificate
can easily be checked using an SMT solver, but mapping
it back to the original program to validate that it indeed
certifies the correctness of the original program is non-trivial.
As a result, the user can only assume that the certificate
faithfully refers to the original program.

Search-Carrying Code (SCC). The approach SCC [29] uses
search scripts to guide a model checker along paths of the
ARG. Search scripts and correctness witnesses share the im-
portant idea of guiding a validator through the state space
in order to reconstruct the correctness proof. Search scripts
can be seen as a special case of correctness witnesses where
the invariants are omitted (witnesses support branching as
well). Correctness witnesses overcome three limitations of
search scripts (cf. Sect. 4.3 in [29]): (i) the exchange format
is independent from the verification approach (not bound to
explicit-state model checking), (ii) the approach works across
different verifiers, even if built on different technologies (as
shown in our evaluation with CPACHECKER and AUTOMIZER),
and (iii) the approach allows a flexible mapping from pro-
gram operations to the verifier-specific states and transitions
that is more tolerant to code reduction (which was already
used by violation witnesses and is supported by many verifi-
cation tools [3]). We found these extensions are essential for
practical impact.

Proof Programs and Configurable Certification. One aspect
of PCC is the idea that validation should be much faster
than verification. In programs-from-proofs [23], correctness
certificates take the form of new, behaviorally equivalent
programs that are generated by a predicate analysis. Those
new programs can then be efficiently verified by a data-flow
analysis alone, although they may be exponentially larger
in terms of lines of code. As their control-flow is necessarily
different, they may exhibit completely different run-time be-
havior. Certificates for configurable program analysis [21}22]
represent all reachable states of a program as correctness
certificate, which is comparable to a correctness witness with
an invariant for each program location. Then, in order to
speed up the validation, various size-reducing techniques are
applied. Because correctness witnesses can contain partial
proofs, a validator may choose to complement a partial proof
with its own verification strategy or even perform the full

verification of a verification task itself; the validator never as-
sumes that a correctness witness constitutes a complete proof.
Therefore, the validation of these witnesses does not consis-
tently exhibit a speedup. Nevertheless, similar techniques
can be applied if one assumes that the witnesses represent
complete proofs. Because both implemented witness pro-
ducers, CPACHECKER and AUTOMIZER, restrict themselves to
loop invariants and procedure post conditions, the size of the
witnesses is not an issue.

Partial Verification. Verifiers have three possible outcomes:
a verifier either (1) finds a bug, (2) proves correctness, or
(3) fails. Error witnesses [5| and correctness witnesses im-
prove the first and second case, respectively. Conditional
model checking (CMC) [7] improves the third case, by ad-
vocating reports of partial verification results. The output
condition describes the result of an incomplete verification
attempt (which part of the state was successfully verified),
and the input condition instructs a model checker to only
partially verify a system (which part of the state space is
to be verified). Subsequent verification runs with a different
approach can be used to complete the verification. Witnesses
can be used to complement CMC by describing (a) invariants
(in correctness witnesses) that were used to verify the part
of the system that was successfully verified and (b) paths (in
violation witnesses) that hindered a complete verification.

2. CORRECTNESS WITNESSES

The goal of our work is to represent verification results in
such a way that they are reproducible, machine-readable, and
exchangeable between different verifiers. This paper focuses
on correctness witnesses, i.e., witnesses that provide evidence
that the given program satisfies the given specification. We
use witness automata to represent witnesses.

For the theoretical foundation of our work, we refer the
reader to our concepts for violation witnesses [5]. Here,
we only explain the difference and give an informal motiva-
tion. We restrict our presentation to a simple imperative
programming language that contains only assignment and
assume operations, and where all program variables are inte-
gers. Our implementations are based on CPAcHECKER [9] and
UrriMatEAuToMIZER [16], both of which support C programs.
We use control-flow automata (CFA) to represent programs.
A control-flow automaton consists of a set of program loca-
tions (modelling the program counter), the initial program
location (program entry), and a set of control-flow edges,
each of which models an operation that is executed during
the flow of control from one program location to another.

A correctness-witness automaton is an observer automaton,
and a correctness-witness analysis can be formalized using the
notion of configurable program analysis (CPA) [8], resulting
in an observer CPA for a correctness-witness automaton,
which runs as one component CPA of a composite program
analysis in parallel to other component CPAs. In contrast to
the control automata that we use for violation witnesses [5],
correctness-witness automata do not restrict the exploration
of the program’s state space but only observe the state-
space exploration. While a violation-witness automaton
may restrict the successor states to those successor states
that lead the exploration to the specification violation, a
correctness-witness automaton has abstract successor states
for all concrete successor states. The correctness-witness
automaton annotates each abstract program state e with

329

an invariant ¢, i.e., a predicate that holds at e on every
program path that passes e. The program analysis of a
witness validator checks if the given invariants indeed hold
at their corresponding abstract program states; a witness is
rejected if the predicate ¢ for an abstract program state is
not confirmed.

There are only two differences between violation witnesses
and correctness witnesses:

e A violation witness has assumptions at the witness automa-
ton’s transitions that restrict the state space; a correctness
witness does not restrict the state space but contains a state
invariant at each control state in the witness automaton.

A validator for a violation witness tries to replay an error
path through the program, while a validator for a cor-
rectness witness tries to replay the correctness proof, i.e.,
checks for each invariant whether all reachable program
states are covered by the invariant and that no error state
is contained in the state space that the invariants define.

Exchange Format for Correctness Witnesses. Our ex-
change format for correctness witnesses is an extension of
our earlier format for violation witnesses [5]. The format
is based on GraphML [12], where a graph contains nodes
representing states and edges representing transitions of a
witness automaton. The format supports adding attributes
to the states, for example to mark them as initial state or
error state, or to annotate invariants to a state. Transitions
can also be labeled with guard attributes, like line numbers
and assumptions, which can be used by witness validators
to match the witness to the program and, for violation wit-
nesses, to constrain the state-space of the program. In order
to be able to express correctness witnesses, we extend the
format as follows:

Graphs can now be labeled with the attribute
witness-type, for which correctness_witness or
violation_witness are valid values. If omitted, the wit-
ness is assumed to be a violation witness.

States can be labeled with the additional attribute invari-
ant, which has to be a Boolean C expression that is valid
in the scope given by invariant.scope. The attribute
invariant represents an invariant that is required to hold
at the program location that is represented by the state.

If the witness type is correctness_witness, transitions
are not allowed to have the attribute assume, because
correctness-witness automata are observer automata, which
do not restrict the search space of the program.

If the witness type of is correctness_witness, marking
states as violation states with the attribute violation is
not allowed, because that would contradict the intention
of the correctness witness.

The syntactic guard enterLoopHead matches automaton
states to loop heads in the control flow.

The decision to restrict invariant attributes to C expressions
is based on the idea that it should be as easy as possible
to extend an existing verification tool for C such that it
can produce or validate correctness witnesses. Nevertheless,
C is not suitable to express all aspects of invariants that are
commonly used, like quantifiers, references to the return value
of functions, or relations between variable values spanning
several stack frames. Formal specification languages like

ACSLEI support those constructs and would be a natural
extension to the format, but were too complex for the first
step towards exchangeable correctness witnesses, as they
would likely hinder the quick adoption of the format by a
wide range of verifiers.

3. CONSTRUCTION OF
CORRECTNESS WITNESSES

There are many different ways to obtain program invari-
ants, and different approaches give invariants of different
quality. The better the invariants, the easier it is to under-
stand the proof, and the more efficient it is to re-verify the
program. We implemented two approaches, one based on
k-induction in CPACHECKER, and one based on automata in
ULTIMATEAUTOMIZER.

3.1 CPAchecker’s Verifier

The CPAcHECKER-based verifier that we extended to gen-
erate correctness witnesses uses the k-induction technique
KI«&-DF [6]. k-induction combines techniques from bounded
model checking with induction, in order to obtain unbounded
safety proofs. Consider a candidate invariant P for a verifica-
tion task that contains an unbounded loop. A bounded model
check with bound k = 1 is able to show that no program
path of length k = 1 exists for which P is violated (a), but it
cannot prove the absence of longer counterexample paths. If
P is inductive, i.e., for any given iteration through the loop
where P holds before, P also holds after the iteration (b),
induction can be used to prove that P is an invariant, taking
(a) as the base case for the induction and (b) as the inductive
step case.

For k-induction, this procedure is extended to larger
values of k by asserting the invariant P for not only
one but k consecutive predecessors in the step case.
For k> 1, (k— 1)-inductiveness implies k-inductiveness,
therefore, k-induction may in practice be easier (because
more constrained) to prove than (k — 1)-induction [30|. Nat-
urally, this procedure cannot succeed if P is not k-inductive
for any k. For these cases, it is desirable to strengthen P with
auxiliary invariants to try making the assertion inductive. In
the k-induction technique KI«&-DF, an auxiliary-invariant
generator (based on data-flow analysis) runs in parallel to the
k-induction procedure and provides invariants to strengthen
the induction hypothesis. As time progresses, the precision
used by the invariant generator is increased, causing stronger
invariants to be generated, until the auxiliary invariants
sufficiently strengthen the induction hypothesis to become
inductive, and the induction proof of the invariant P (which
is the safety property) in conjunction with the auxiliary in-
variants succeeds. If the proof succeeds and the correctness
witness is constructed, the auxiliary invariants that were used
to strengthen the induction hypothesis are also attached to
the respective location in the witness.

3.2 UltimateAutomizer’s Verifier

Avutomizer follows an automata-based verification ap-
proach [17] in which a correctness proof is a sequence of
automata. In this subsection we present this verification
approach and demonstrate how we transform a correctness
proof given as a sequence of automata into a correctness
proof given as invariants.

“http://frama-c.com/download/acsl.pdf

330

In a first step, AuTtomizEr transforms the given program
and the given correctness specification into a CFA with error
locations. We consider this CFA as an acceptor of a formal
language whose alphabet X is the set of all program opera-
tions and whose accepting states are the error locations of
the program. The words accepted by this automaton are
exactly the labelings of all paths that lead from the initial
location to an error location. We say that a sequence of
operations (a word over this alphabet) is infeasible if it does
not correspond to any program execution. The analysis is
based on the fact that the program is correct if and only
if each word accepted by the CFA is an infeasible sequence
of operations. During the verification process, AUTOMIZER
iteratively constructs automata A, ..., A, over the alpha-
bet 3 such that each automaton accepts only words that
are infeasible. As soon as the union of the languages of
these automata is a superset of the language accepted by the
CFA, the verification process is finished and the automata
Ai, ..., A, constitute a correctness proof for the program.

An example for such a proof is depicted in Fig. The
program on the left contains its correctness specification in
the source code (lines 4-6), which states that the value of p
is not 0. The program is correct. An intuitive argument to
justify the correctness is that p can be set to 0 only in the very
last iteration of the while loop. AuTomizer first translates
this program into the CFA depicted in Fig.[2b] We note that
for this CFA we applied an optimization that removes all
nodes from which there is no path to an error location. Next,
AuToMIZER constructs the two automata A, (Fig. and
Az (Fig. as a correctness proof for the program. The
automaton A; accepts all sequences of operations that reach
the error location but did not take the if branch (line 7) in
the preceding iteration. All these sequences of operations are
infeasible because the operation (p !'= 0 and the operation

p == 0 are contradicting each other. The automaton A
accepts all sequences of operations that take the if branch
and enter the while loop another time. All these sequences
of operations are infeasible, because the operations ‘n == 7 ,
n

n-1 and (n >= 7 cannot be executed after each other.
Aurtomizer uses the concept of Floyd-Hoare automata |17)
to construct the automata Ai,...,A, that constitute
the correctness proof. A Floyd-Hoare automaton A =
(Q,%,9,qo, Qsin) is an automaton over the alphabet ¥ of the
program’s operations together with a mapping that assigns
to each state ¢ € @ a formula ¢, that denotes a predicate
over the program variables such that the following holds:

e The initial state is annotated by the formula true.

e Tor each of the automaton’s transitions (g, op,q’) € 8, the
triple {4} op {¢q } is a valid Hoare triple.

e Each accepting state is annotated by the formula false.

Hence, a Floyd-Hoare automaton accepts only sequences
of operations that are infeasible. The automata depicted
Fig. [2c|and Fig. are Floyd-Hoare automata. The formulas
that are annotated to the automata’s states are framed by
cornered boxes. E.g., for the automaton A1, the state ¢1 is
annotated by the formula p # 0.

Given a CFA Ap and Floyd-Hoare automata Aj,..., A,
we use the following approach to construct invariants. In a
first step, we construct an automata-theoretical product of
the automata Ap and A, ..., A,. The states of the product
are tuples of the form (¢, s1,...,s,) where the first com-
ponent (a state of the CFA) is a location of the program

http://frama-c.com/download/acsl.pdf

1 int foo(int n, int p) { =nG
2 if (p != 0) { P
3 while (n >= 7) { @
4 if (p == 0) {
5 ERROR: return 1; n>=7
6 }
. if (n == 7) { @
8 p = 0; p==0
0) p 1= 0
10 n=n-—1;
n :=n-1

11 }

n==7
12 } n!=7
13 return 0O; BI=I0

14} <

(a) C code (b) Control-flow

automaton

true S\{m =17}

n

true @. S\{p =0}
P :1
p!'=0

=

n>=7
false . »

(d) Floyd-Hoare

(¢) Floyd-Hoare
automaton As

automaton A;

Figure 2: Program whose correctness is specified by an error label (a); corresponding CFA (b); automata (c)
and (d) represent internal correctness proof by Auromizer; we construct a product of these automata in order

to obtain invariants for the program

Table 1: Reachable states in the product automaton
of Ap, A1, and A2 together with their annotation

state annotation state annotation
(l2,q0,p0) true Atrue (l7,q1,p3) p#O0A false
(ls,q1,p0) p#OAtrue (l&s,q1,p1) p#0An=T7
(l3,q0,p2) trueAn=6 (f3,q1,p3) pF#O0A false
(¢s,q0,p3) trueA false (f10,q1,p0) D # OAtrue
(3,q1,p3) p#O0AN false (l10,q0,p1) trueAn=7T
(ls,q1,p0) p#O0Atrue (lro,q0,p3) trueA false
(€s,q0,p3) trueA false (l10,q1,p3) p# 0N false
(La,q1,p3) P F#ON false (Ler,q2,p0) false Atrue
(477q17p0) p# 0 Atrue (ZerHQO,pB) p# 0/\false
(Cerey q2,p3) false A false
Table 2: Invariants for the program depicted in
Fig.
location invariant

12 true

l3 p#0Vn==6V false

£y p# 0V false

07 p# 0V false

L (p£0ANR=T7)V false

l1o p#0Vn="7V falseV false

Lerr falseV falseV false

and the 7 + 1-th component s; is a state of the automa-
ton A;. We annotate each tuple in the product by a formula
which is the n-ary conjunction of the annotations of all s;,
that is, the annotation of the tuple (¢, s1,..., sn) is the con-
junction A, ¢s,. Table [l shows the annotations for the
reachable states in the product of the automata from Fig.

In a second step, we obtain the invariant for a location ¢
by taking the disjunction of all annotations of all tuples that
are reachable in the product and whose first component is
location ¢. Table [2 shows the invariants that we obtain for
the program depicted in Fig.

In the current implementation of AuToMIZER, we write the
invariants only at loop heads into the witness file. The other
invariants are constructed only optionally and are used for
tool-internal sanity checks. For the program in Fig. 2a] we
output the invariant p # 0V n = 6 at location /3.

331

4. VALIDATION OF
CORRECTNESS WITNESSES

Out of the many possibilities to implement a witness val-
idator, we show the potential and flexibility of the approach
by describing two different strategies that are implemented
in two different verification frameworks.

4.1 CPAchecker’s Validator

Like the CPAcHECKER-based verifier, the CPACHECKER-
based validator for correctness witnesses uses k-induction.
In a preparatory step, the invariants are extracted from
the correctness witness and mapped to their corresponding
program locations. By design, a witness may be imprecise,
therefore it is possible that an invariant is mapped to several
program locations. Then, a k-induction algorithm with an
initial value k£ = 1 and iteratively increasing k is started as
described in previous work [6]: For a given value of k, there
is a bounded model-checking phase (the base case) followed
by an induction phase (the inductive-step case). In the first
phase, each invariant and the safety property are checked
with a bounded model check with bound k. If the bounded
model check detects a violation of the safety property, then
the witness is rejected. If the bounded model check finds a
counterexample to an invariant at some program location,
then the invariant is removed from that program location,
and, if no possible program location for this invariant re-
mains, then the witness is rejected. In the second phase,
each invariant and the safety property are checked for k-
inductivity. If the safety property is k-inductive, then the
program satisfies its specification and the witness validation
terminates successfully. If an invariant is inductive, it is
confirmed and can be used as a sound auxiliary invariant
to strengthen future k-induction checks for the remaining
unconfirmed invariants and the safety property. Then, k is
incremented and the first phase starts again.

One of the benefits of using k-induction for witness valida-
tion is that k-induction for software verification is known to
perform well on non-trivial verification tasks only if supplied
with the necessary auxiliary invariants [6,[24]. All techniques
that are implemented in CPACHECKER to generate its own aux-

iliary invariants are turned off for the validation. Therefore,
the ability of this validator to prove that a given program
satisfies its specification is tied to the quality of the given
invariants in the witness.

Using the example program from Fig. [Ta] the CPACHECKER-
based validator confirms the witness from Fig. If the
invariant x = y is removed from the witness for state qi,
the witness is still valid in principle (because true is an
invariant). However, the k-induction-based validator will no
longer confirm it, because it lacks the information that is
required to prove the correctness of the program, and it is not
allowed to synthesize the required information itself. This is
a design choice, in order to not confirm witnesses that are
extremely weak (e.g., true everywhere). If the CPACHECKER-
based validator is applied to the program from Fig. in
which the safety property is violated, and the witness from
Fig. [IB] the validator rejects the witness because it is able
to find a counterexample for the invariant.

4.2 UltimateAutomizer’s Validator

While validating a witness, AuTomiZERr verifies the given
program and considers each invariant as an additional spec-
ification that has to be proven. For checking one of these
specifications AuToMIzEr assumes that all other specifica-
tions are valid. The witness is confirmed if all specifications
(including the original one) hold, otherwise the witness is
rejected. The adding of the witness specifications is imple-
mented as follows. First, the program that is given as a CFA
is matched with the witness in order to determine which
invariant belongs to which location. We match an invariant
to a program location if an outgoing or incoming line from
the invariant location is labeled with the same line number as
the program location. If we have to match several invariants
to the same location, we instead map their disjunction. The
result of this first step is a partial map f from program
locations to invariants. In a second step, we modify the CFA
as follows. For each location ¢ for which the mapping f is
defined, we add

e a new location ¢,

e a new edge (£, 0ps(p), ¢") where opy(ey is the assume opera-
tion that assumes the invariant f(¢) that was mapped to
£, and

e a new edge (¢, 0p_f(s),Ler), Where op_ () is the assume
operation which assumes the negation of the invariant f(¢)
and Zer is an error location.

Furthermore, we replace each outgoing edge of the form
(¢,0p,2”) by an edge (¢',0p,£”). The resulting CFA is then
verified as described in Sect.

4.3 Testification

If the validation of a witness succeeds (i.e., the witness
is confirmed), then CPAcHECKER and AUTOMIZER produce
another correctness witness, which in turn contains all con-
firmed invariants. Therefore, the two validators that we
implemented are not only consumers but also producers of
correctness-witnesses. We call a witness validator that itself
documents its process with another witness a witness testi-
fier, based on the notion introduced for the corresponding
concept for violation witnesses [5]. This feature is important
for cases where the validator is untrusted. Several testifiers
can then be chained together, such that even if the user does
not trust any of the testifiers alone, a verdict supplemented

332

by a witness that has been validated and potentially refined
by testifiers that are implemented in different frameworks
and based on different technology is less likely to be incorrect.
Witnesses that are produced by CPAcCHECKER’s validator
are always at most as large as the witnesses used as input,
because they contain at most all of the provided invariants,
but may contain less if not all were required for the proof to
succeed. Another application for this validator is therefore to
compress witnesses by removing some irrelevant invariants,
although it is not guaranteed to eliminate all irrelevant invari-
ants. Also, this validator is idempotent with respect to the
witnesses it produces, meaning that validating them again
with the same validator will produce the same witness.

5. EXPERIMENTAL EVALUATION

To demonstrate the applicability of our approach, we per-
formed a large number of experiments in a feasibility study.
The experimental work flow consists of instructing the verifier
(1) to produce a correctness witness and (2) to validate a
correctness witness.

5.1 Experiment Goals

We define an exchange format for machine-readable wit-
nesses to enable different verifiers to document the facts their
proofs are based on in the form of correctness witnesses. We
perform a feasibility study to support the following claims:
Claim 1: Witnesses produced by a verifier based on a cer-

tain framework can be validated by a validator based on

the same framework, otherwise there is obviously an in-
consistency in the communication of the invariants via the
witnesses.

Claim 2: The correctness witnesses produced by a verifier
based on one framework can be understood by a witness
validator of a different framework.

Claim 3: The complexity of the validation of a correctness
witness is related to the contents of the witness, i.e., there
are verification tasks for which a verifier can produce
witnesses such that the validation uses less resources to
validate the witness than the verifier used to verify the
verification task.

5.2 Benchmark Set

Our benchmark is composed of 3411 verification tasks with-
out any known specification violations from all categories
of SV-COMP 2016 |3| except ArraysMemSafety, HeapMem-
Safety, Recursive, Termination, and Concurrency, which are
not supported by the validator implemented in CPACHECKER,
or not supported by UrtiMaTEAUTOMIZER. We also did not use
the tasks from the demo category BusyBox, which has not
been included as an official category by the jury of SV-COMP
2016 due to an apparent lack of quality of the contained tasks.

We considered including the verification tasks with known
specification violations to check if correctness witnesses for
wrong proofs are rejected, but CPAcHECKER did not produce
any wrong proofs for these tasks. Of the four cases for
which UrtiMATEAUTOMIZER produced wrong proofs for these
tasks in SV-COMP 2016, we could only reproduce threeEl in

5 The tasks are:
ldv-linux-3.7.3/main4_false-unreach-call_drivers-—
scsi-mpt2sas-mpt2sas-ko-32_7a-linux-3.7.3.c,
43_2a_bitvector_linux-3.16-rcl.tar.xz-
43_2a-drivers-scsi-megaraid-megaraid_

the current version of UrtiMATEAUTOMIZER. The correctness
witnesses that Avutomizer produces for these presumably
incorrect proofs contain no candidate invariants, and the
validation with CPACHECKER was not able to confirm or
reject these witnesses within a CPU time limit of 15 min in
our experimental setup. Therefore, we cannot provide an
extensive evaluation on the rejection of non-artificial known
incorrect proofs.

5.3 Experimental Setup

Our experiments were conducted on machines with two
2.6 GHz 8-core CPUs (Intel Xeon E5-2650 v2) with 135 GB
of RAM. The operating system was Ubuntu 16.04 (64 bit),
using Linux 4.4 and OpenJDK 1.8. Each verification task
was limited to two CPU cores, a CPU run time of 15 min,
and a memory usage of 15 GB. We used version cpachecker-
1.6.8-fsel6-correctnessWitnesses of CPACHECKER, with
MATHSATS as SMT solver. As a verifier, CPACHECKER
was configured to perform k-induction using the theory of
bit-vector arithmetics and uninterpreted functions. The
k-induction procedure was augmented by an auxiliary-
invariant generator based on expressions over intervals. For
the validator based on CPACHECKER, the same configuration
of k-induction as above for the verifier was used, but instead
of synthesizing invariants, the validator uses only auxiliary
invariants from the set of confirmed candidate invariants from
the witness, as described in Sect. ULTIMATEAUTOMIZER
was used in revision ¢3312191 from the dev branch, with
Z3 as SMT solver. The benchmarks were executed using
BencHEXEC [10] in version 1.9.

5.4 Presentation and Availability

The results, tools, and verification tasks that we used in
our evaluation are available on the supplementary web page.ﬂ
All reported times (CPU time) are rounded to two significant
digits. Our knowledge about existing violations is based
on the verdicts of the software-verification communitym If
the validation of a witness exceeds its resource limits before
confirming the witness, it is counted as a rejection.

5.5 Results

Claim 1: Consistency within the Same Framework.
Our first experiment represents a feasibility study showing
that we were able to implement a witness exchange format
for correctness witnesses for C programs for CPACHECKER
and ULTIMATEAUTOMIZER, where both can take the roles of
a verifier (producing witnesses) and a witness validator for
their own witnesses. The first and last columns of Table (3]
show that CPAcHECKER accepted 1906 of 2081 witnesses
produced by CPACHECKER, and that AvromizeEr accepted
1875 of 1898 witnesses produced by Autowmizer, so that
the acceptance rates for their own witnesses are 92 % and
99 %, respectively. Furthermore, for the rejected witnesses,
AvuTtoMmiZER detects incorrect invariants in seven of its own
witnesses, and CPACHECKER refutes invariants in four of its

mm.ko-entry_point_false-unreach-call.cil.out.c,

and linux-4.2-rcl.tar.xz-43_2a-drivers-scsi-
megaraid-megaraid_mm.ko-entry_point_false-
unreach-call.cil.out.c
Shttps://www.sosy-lab.org/research/correctness-witnesses,
"https://github.com /sosy-lab/sv-benchmarks

333

Table 3: Accepted and Rejected Witnesses

Validator CPACHECKER AUTOMIZER

Producer CPACHECKER | AUTOMIZER CPACHECKER | AUTOMIZER
Produced 2081 1898 2081 1898
Accepted 1906 697 1164 1875
Rejected 175 1201 917 23
Accept. rate 92 % 37% 56 % 99 %

own WitnessesEl We also performed an experiment where
we applied correctness-witness testification by validating the
witnesses produced by the CPAcHECKER-based witness vali-
dations (as mentioned in Sect. our validators support
testification [5]). In this experiment, the CPAcCHECKER-based
witness validator was able to confirm 1905 of the 1906 wit-
nesses that it had produced during the validation of the
witnesses produced by the CPAcHECKER-based verifier. We
interpret the results for our first experiment as confirmation
that the witnesses produced by both tools are consistent with
their own frameworks.

Claim 2: Validation across Frameworks. Our second
experiment represents a feasibility study showing that we
were able to communicate witnesses across frameworks, where
witnesses produced by the CPAcHECKER-based verifier are
validated by the AuTomizer-based validator and vice versa.
Table [3| shows that CPAcuecker accepted 37 % of the wit-
nesses produced by AutomizeRr, and that AuTomizEr accepted
56 % of the witnesses produced by CPAcHECKER. These
results are not yet as promising as those where the tools
validate their own witnesses. We analyzed the rejections and
found different causes for both cases: (1) CPAcuEckER did
not detect any incorrect invariants in the witnesses produced
by Autrowmizer, and there are often too few invariants present
in those witnesses for the k-induction-algorithm to succeed
within the time limit. This means that CPACHECKER mostly
does not dispute the witnesses of AuTomizER, but it cannot
confirm them either. (2) The prototypical implementation
of the AuTomizERr-based validator is not always able to find
the correct program location for an invariant. If AuTomizEr
maps an invariant to the wrong program location, and the
invariant does not hold there, the witness is rejected. While
there is still room for improvement to our prototypical im-
plementations, in general, the witnesses were understood
by the validators of other frameworks, and the rejections
are mostly due to timeouts rather than due to wrong or
miscommunicated invariants. Our experiment shows that for
between 700 to 1200 of 1900 to 2100 tasks verified by one
verifier, a validator based on a different framework and differ-
ent techniques not only agreed on the verdict but confirmed
that no flaw was detected in the reasoning represented by the
witness, whereas previously, communicating such information
between different tools was entirely impossible.

81t may be interesting to developers of other verifiers to
learn that when the development of the CPAcHECKER-based
correctness-witness export and validation started, there were
a lot more incorrect invariants, which were caused by several
actual bugs in other components of the framework that the
CPACHECKER team had been unaware of. In addition to the
other benefits, implementing correctness-witness validation
can therefore also be a way to improve the overall quality of
a verifier.

https://www.sosy-lab.org/research/correctness-witnesses/
https://github.com/sosy-lab/sv-benchmarks

200

20

2 I I 2 I I

2 1 1 2 I I

2 20 200 2 20 200
(a) CPACHECKER / CPACHECKER (b) AuTOMIZER / CPACHECKER

2 20 200 2 20 200
(¢) Auromizer / Automizer (d) CPACHECKER / AUTOMIZER

Figure 3: Scatter plots for pairwise composition for witness validation: CPU seconds for producing a witness
on the x axis, CPU seconds for witness validation on the y axis. A caption “p/c” abbreviates “witnesses

produced by p that are accepted by ¢”

Claim 3: Effort and Feasibility of Validation Depends
on Witness Contents. Our experiments also confirm that
the contents of the witnesses influences the difficulty of the
validation, so that for a given verification task, one witness
can be validated quickly, while the validation of another wit-
ness may require more resources or even fail to terminate at
all. We first take a closer look at the differences in resource
usage between verification and validation for a given task.
Figure [3a] shows that, especially for tasks that require more
than 20s of CPU time, CPACHECKER produces three groups
of witnesses, for which the validation is (a) about as fast as,
(b) quicker than, and (c) slower than the preceding verifica-
tion: The first group is explained by tasks for which few or
even no auxiliary invariants are required by the k-induction
technique. The second group is caused by tasks for which the
witnesses contain useful invariants that allow the validator to
quickly validate the task, while the verifier had to spend time
on synthesizing the invariants. The third group represents
tasks for which the witnesses contain significant amounts of
invariants that turn out to be irrelevant, but the time spent
by the validator to check them exceeds the time spent by the
verifier to generate them. Figure [3b] shows that many of the
witnesses produced by AuTtomizer that can be validated by
CPACHECKER are in most cases validated more quickly than
they were produced. Figure [3c| shows that for AuTomizer,
there is no discernible difference between the CPU times
required to produce a witness and to validate it. Figure [3d]is
similar to Fig. there are cases for which the validation is
faster than the verification and vice versa. Since in this figure,
validation and verification are performed by different tools,
the differing characteristics of the two tools may outweigh
the effects of the witnesses on validation speed: AUTOMIZER
is often not faster at validating the invariants contained in
the witnesses, and instead is often slower than CPACHECKER
for those of CPACHECKER’s witnesses that it can validate.

General Trend. In general, we could not observe a gen-
eral trend of speed-up over all validation runs. We at-
tribute these results to the fact that it is not trivial to
determine which invariants should be exported to the wit-
ness, because exporting too much information unnecessarily
complicates the validation, while too few or too weak in-
variants impede the feasibility of the validation. This is
further complicated by the fact that an invariant that suf-
fices for one validator may not be sufficient for a different
validator. There are, however, individual cases for various
different types of verification tasks for which a speed-up ex-

ists: CPACHECKER, for example, takes about 800s to verify
the task product-lines/elevator_specl_product31_true-unreach-
call.cil.c, but validating the witness with CPACHECKER
takes only about 290s. It takes CPAcHECKER 730s to
verify the task eca-rers2012/Problem15_label35_true-unreach-
call.c, but only about 310s to validate the witness.
Verifying seq-pthread/cs_peterson_true-unreach-call.i with
CPACHECKER takes about 610s, while validating the cor-
responding witness with CPACHECKER takes about 32s. As
expected, validation only benefits from invariants that are
hard to derive but easy to prove. If, on the other hand, too
much work is left to the validator, then the validation is
slower than the verification. Our prototypical implementa-
tions are based on generic model checkers and the potential
for optimization towards validation is not yet leveraged.

Placebo Test. To further explore these aspects of witness
validation, we performed additional experiments, where we
compare the validations of real witnesses with validations of
‘empty’ witnesses, which contain only invariants true: We
first took the tasks for which CPAcHECKER had produced a
witness and configured the CPAcHECKER-based validator to
not use any invariants. The results of this benchmark can be
used as a baseline for comparing the results for validating
the real witnesses. In this experiment, only 1063 empty
witnesses were accepted, while 1018 were rejected, which
is an acceptance rate of 51%. This is significantly worse
than the acceptance rate of 92 % depicted in Table [3) where
the invariants were used. Then, we took the tasks where
Avtomizer had produced a witness and again configured the
CPACHECKER-based validator to not use any of the invariants.
In this experiment, only 701 empty witnesses were accepted,
while 1197 were rejected, which is an acceptance rate of
37%. This is the same acceptance rate as the one for the
real witnesses produced by Automizer depicted in Table
which matches the observation that the invariants contained
in the witnesses produced by AuTtoMizer are often too few
for the plain k-induction proof without auxiliary invariant
generation in CPACHECKER’s validator to succeed, and also
suggests that the apparent speed-up observed in Fig. may
just be due to the fact that these are verification tasks that
the k-induction proof technique is well-suited for.

Summary. In conclusion, these experiments show that the
contents of a witness can make a difference for one of the
validators (CPACHECKER), while they do not seem to notice-
ably impact the other validator (Auromizer), which in turn
is slower than the validator based on CPAcHECKER. This

334

trade-off between the reasoning power of a validator and the
quality of the witnesses it validates is one of the strengths of
our flexible exchange format for correctness witnesses: Users
may choose a quick but less powerful validator or a slower
but more powerful one, depending on their use case.

5.6 Validity

Benchmark Selection. For our benchmarking, we se-
lected several full categories from the standard repository of
software-verification tasks without any selection of subsets.
We excluded those categories that are not supported by one
of the two verification tools: two memory safety categories,
the recursive category, the termination category, and the
concurrency category. While the main goal of this paper is
to show that the approach can work in practice, we have not
further excluded those verification tasks from the benchmark
set for which the prototypical implementation is still insuffi-
cient. There is a large number of verification tasks for which
one of the tools is insufficient, and more engineering effort
would be necessary to succeed on those as well.

Verification Tools. Our implementations for producing
and validating correctness witnesses are based on two
software verifiers that use completely different technolo-
gies: in CPACHECKER we implemented an approach using
k-induction [6] and ULTIMATEAUTOMIZER uses an automata-
based approach [17]. This means that comparisons of speed
between verification with one tool and validation with the
other tool are only meaningful on a very coarse level. For the
comparisons between verifier and validator within the same
framework, however, no such restriction applies, because the
CPACHECKER-based verifier and validator differ only on how
auxiliary invariants are derived, and the ULTIMATEAUTOMIZER-
based verifier and validator are the same except the validator
parses and checks the invariants.

Reproducibility. We use the state-of-the-art benchmarking
framework BENcHEXEC [10] for measuring and controlling the
computing resources (CPU time, memory, core and memory
assignment), in order to make sure that our results are ac-
curate and reliable. The data (verification tasks, witnesses,
verifiers, and their configurations) are available on our sup-
plementary web site

6. ALTERNATIVE IMPLEMENTATIONS

The usefulness of an exchange format increases with the
tool support for the format. Therefore, it would be good
to explore more strategies for producing and validating wit-
nesses. One idea for witness validation that we would like
to see implemented in addition to those we already provide
is as follows. Take all finite sequences of edges of the CFA
of the verification task that unroll the loops at most once.
From this set, compute for each finite sequence of transitions

7= (li,0pi, bit1) .. (Listn, OPitn, Litn1)

and the witness invariant I; at ¢; the strongest post condition.
Then check if the computed strongest post condition sp(I;, T)
implies the witness invariant at £;4,+1. If the invariant is not
implied, reject the witness. Otherwise, replace the computed
strongest post condition by the invariant and continue with
the next sequence of transitions. If no finite sequence of
transitions is left and the witness was not rejected, accept it.

In the range of potential validation strategies, this tech-
nique is an extreme, because it would always require the

335

witness to contain a full proof and would directly reproduce
the program abstraction represented by the witness. As with
proof-carrying code, the higher this abstraction is, the faster
the validation would complete.

7. CONCLUSION

Software verification is a mature research area and there
were many breakthroughs in the past two decades that made
software verification efficient enough to be applicable on
industrial scale. But why is software verification not picked
up more in industry? Probably because of usability and trust
issues. In testing, an engineer constructs a test suite for a
certain coverage and obtains precise results: (i) a quantitative
coverage and (ii) a precise answer on which tests passed and
which tests failed. Considerable resources are spent, but
concrete answers are provided in return. In verification, an
engineer has to invest a significant amount of resources, but in
turn gets back a wishy-washy answer TRUE or FALSE without
any argument. The confidence in this answer is only derived
from the reputation of the verification tool. Checking by
manual inspection if an error path represents an actual bug
or a false alarm is a tedious task and a waste of resources. For
the answer TRUE, most tools do not even bother to output
any reason why the verifier reports the program as correct.

We propose to change this situation by using machine-
readable, tool-independent witnesses for both specification
violations and correctness. In this paper we focus on correct-
ness witnesses and suggest a format (a simple extension of
the already existing format for violation witnesses [5]) and
provide several example implementations for both, producing
and validating witnesses. Producing witnesses should be easy,
because a proof of correctness is present in every verification
tool anyway, if the verifier is designed for more than just
bug-hunting. In practice, there are some engineering efforts
necessary to compute a useful witness. Witness validation is
harder to implement, because the invariants in the witness
need to be understood and assigned to the program locations
that they were meant for.

We performed a large experimental study with thousands
of verification runs on problems from the public repository
of verification tasks (C programs). We implemented the
approach in two verification tools that performed extremely
well in the recent competitions on software verification, and
tried to validate witnesses that were produced by the same
verification framework and also across verifiers. The results
with our proof-of-concept implementations show that the ap-
proach can work in practice. We hope that other developers
find our ideas useful and implement support for witnesses in
their tools, thus adding the value of diversity to the process:
While applying a validator to a witness produced by a verifier
based on the same components as the validator may serve
as a sanity check, a defective common component may hide
flaws in the reasoning. Our solution is to establish a common
exchange format that many verifiers support, such that differ-
ent validators that are based on different technologies can be
used. So far, there are two validators that are based on two
completely different technologies, and our results on witness
validation show that this already helps a lot. If witnesses
become an accepted standard in software verification, then
there will be a lot of tools around that focus not only on
witness validation, but also on witness visualization, witness
maintenance, quality measures for the invariants or error
paths, bug and proof databases, and many more.

8. ARTIFACT DESCRIPTION

This section describes the replication package for our ex-
periments. Our supplementary web pageEl provides all ex-
perimental data, and a virtual machine that contains our
implementations and that has been prepared such that our re-
sults can be easily replicated. In this section, we will give an
overview over the proposed exchange format for correctness
witnesses, such that the reader may understand our approach
and derive an own implementation of our concepts. Further
details on how to replicate our experiments inside or outside
of the virtual machine can be found on the supplementary
web pa.geEl7 which also contains a tutorial.

8.1 Witness Exchange Format

Our exchange format for correctness witnesses extends
the exchange format for violation witnesses [5] to add the
possibility to attach invariants to witness-automata states.

Source-Code Guards. From the existing format for vio-
lation witnesses we adopt all source-code guards, such as
startline and endline, which are used to map a transi-
tion in the witness automaton to lines in the original pro-
gram. The source-code guard control also continues to be
used to distinguish between different branches in the pro-
gram. Valid values for this guard are condition-false and
condition-true, where for a conditional branching in the
original program, the then-branch is referred to by the value
condition-true, and the else-branch is referred to by the
value condition-false. Given such a control guard, an
observer-automaton transition matches if the observed analy-
sis takes the control-flow edge corresponding to the specified
branch, but not its counterpart. A source-code guard that we
newly introduce for correctness witness, but is also applicable
to violation witnesses, is the guard enterLoopHead, which
signifies that an observer-automaton transition annotated
with this guard only matches if the observed analysis takes
a control-flow edge into a loop head.

State-Space Guards. In our format for correctness wit-
nesses, we forbid the usage of state-space guards that are
used to restrict the state-space exploration for violation
witnesses, because the validation of correctness witnesses
requires an unrestricted exploration of the state space to
ensure that violations cannot be hidden from the validator.
Specifically, this ban affects the guard assumption, which is
currently the only type of state-space guard in witnesses.

States and Invariants. In violation witnesses, automaton
states can be annotated with the Boolean data keys entry,
sink, or violation, where the default value is false if the
data key is not present. In contrast, correctness witnesses
contain no violation or sink states, because a violation state
would contradict the purpose of the witness, and a sink state
would restrict the exploration of the state space.

To attach invariants to automaton states, we introduce
two new keys for state data tags, namely invariant and
invariant.scope. Valid values for the invariant data tag
are expressions of the input programming language, such as
(x ==y && x > 0). All variables used in these invariants
must appear in the original program code. Name conflicts
between local variables that have the same name as local
variables of other functions or global variables can be resolved
by using a data tag with the key invariant.scope and, as
its value, the name of the function that the invariant is

https://www.sosy-lab.org/research/correctness-witnesses,

44 <graph edgedefault="directed">
45 <data key="witness—type">
< correctness_witness</data>
46 <data key="sourcecodelang">C</data>
47 <data key="producer">CPAchecker
— 1.5—svn</data>
48 <data key="programfile">
— example—safe.c</data>
49 <data key="programhash">
— 9eab6d387b773690c13645abf30cce9571728660
— </data>
50 <data key="memorymodel">precise</data>
51 <data key="architecture">32bit</data>
52 <node 1id="gO0"><data
— key="entry">true</data></node>
53 <node id="qgl">
54 <data key="invariant">(y == x)</data>
55 <data key="invariant.scope">main</data>
56 </node>
57 <edge source="q0" target="qgl">
58 <data key="enterLoopHead">true</data>
59 <data key="startline">5</data>
60 </edge>
61 <node 1id="g2"/>
62 <edge source="gl" target="g2">
63 <data key="startline">6</data>
64 <data key="control">condition—true</data>
65 </edge>
66 <node 1id="g3"/>
67 <edge source="gl" target="g3">
68 <data key="startline">6</data>
69 <data
<~ key="control">condition—false</data>
70 </edge>
71 <node id="g4"/>
72 <edge source="qg2" target="g4">
73 <data key="startline">7</data>
74 </edge>
75 <edge source="qg4" target="qgl">
76 <data key="enterLoopHead">true</data>
77 <data key="startline">8</data>
78 </edge>
79</graph></graphml>

Figure 4: Correctness-witness automaton
(cf. Fig. 1b) for the introductory safe example
program (Fig. la) in GraphML format; header
omitted for brevity

intended to be interpreted in. This mechanism is similar to
assumption and assumption.scope in violation witnesses.

8.2 [Example Witness

Figure shows the witness automaton produced by
CPAcHECKER for the example C program from the intro-
duction section, stripped down to the important parts and
without the GraphML header [12]. Line 52 shows the entry
state go. Lines 53-56 show that (cf. introduction) the witness
contains the invariant (y == x) at state g1, using the new
data-tag key invariant, and that the scope of the variables
in this expression is function main, using the new data-tag
key invariant.scope. Lines 61, 66, and 71 declare the states
q2, q3, and qu, respectively. Lines 57—60 represent the tran-
sition from state qo to ¢1, marked as entering a loop head
using the new source-code guard enterLoopHead. Lines 62—
65 represent the transition from state ¢ to g2, corresponding
to the then-branch of line 6 in the C program (cf. Fig.
while condition fulfilled), while the transition from g1 to g3
in lines 67-70 corresponds to the else-branch of line 6 in the
C program. Lines 72-78 show the transitions from g2 over ga
back to g1, corresponding to the loop body.

336

https://www.sosy-lab.org/research/correctness-witnesses/

REFERENCES

D. Beyer. Status report on software verification. In Proc.
TACAS, LNCS 8413, pages 373—-388. Springer, 2014.
D. Beyer. Software verification and verifiable wit-
nesses (Report on SV-COMP 2015). In Proc. TACAS,
LNCS 9035, pages 401-416. Springer, 2015.

D. Beyer. Reliable and reproducible competition re-
sults with BENCHEXEC and witnesses. In Proc. TACAS,
LNCS 9636, pages 887-904. Springer, 2016.

D. Beyer and M. Dangl. Verification-aided debugging:
An interactive web-service for exploring error witnesses.
In Proc. CAV, LNCS 9780, pages 502—-509. Springer,
2016.

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and
A. Stahlbauer. Witness validation and stepwise testi-
fication across software verifiers. In Proc. FSE, pages
721-733. ACM, 2015.

D. Beyer, M. Dangl, and P. Wendler. Boosting k-
induction with continuously-refined invariants. In Proc.
CAV, LNCS 9206, pages 622-640. Springer, 2015.

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and
P. Wendler. Conditional model checking: A technique to
pass information between verifiers. In Proc. FSE. ACM,
2012.

D. Beyer, T. A. Henzinger, and G. Théoduloz. Config-
urable software verification: Concretizing the conver-
gence of model checking and program analysis. In Proc.
CAV, LNCS 4590, pages 504-518. Springer, 2007.

D. Beyer and M. E. Keremoglu. CPACHECKER: A tool
for configurable software verification. In Proc. CAYV,
LNCS 6806, pages 184-190. Springer, 2011.

D. Beyer, S. Lowe, and P. Wendler. Benchmarking and
resource measurement. In Proc. SPIN, LNCS 9232, pages
160-178. Springer, 2015.

D. Beyer and P. Wendler. Reuse of verification results:
Conditional model checking, precision reuse, and ver-
ification witnesses. In Proc. SPIN, LNCS 7976, pages
1-17. Springer, 2013.

U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and
M. S. Marshall. GraphML progress report. In Graph
Drawing, LNCS 2265, pages 501-512. Springer, 2001.
H. Cai, Z. Shao, and A. Vaynberg. Certified self-
modifying code. In Proc. PLDI, pages 66-77. ACM,
2007.

A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli.
The KIND 2 Model Checker In Proc. CAV, LNCS 9780,
pages 502-509. Springer, 2016.

K. Drager, A. Kupriyanov, B. Finkbeiner, and
H. Wehrheim. SLAB: A certifying model checker for
infinite-state concurrent systems. In Proc. TACAS,
LNCS 6015, pages 271-274. Springer, 2010.

337

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

(26]

27]

(28]

29]

(30]

(31]

M. Heizmann, D. Dietsch, J. Leike, B. Musa, and
A. Podelski. ULTIMATE AUTOMIZER with array inter-
polation. In Proc. TACAS, LNCS 9035, pages 455-457.
Springer, 2015.

M. Heizmann, J. Hoenicke, and A. Podelski. Software
model checking for people who love automata. In Proc.
CAV, LNCS 8044, pages 36-52. Springer, 2013.

T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula,
G. Sutre, and W. Weimer. Temporal-safety proofs for
systems code. In Proc. CAV, LNCS 2404, pages 526-538.
Springer, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A.
Sanvido. Extreme model checking. In Verification: The-
ory and Practice, pages 332-358, 2003.

A. Tliasov. Generation of certifiably correct programs
from formal models. In Proc. WoSoCER, pages 43-48.
IEEE, 2011.

M.-C. Jakobs. Speed up configurable certificate valida-
tion by certificate reduction and partitioning. In Proc.
SEFM, LNCS 9276, pages 159-174. Springer, 2015.
M.-C. Jakobs and H. Wehrheim. Certification for con-
figurable program analysis. In Proc. SPIN, pages 30—-39.
ACM, 2014.

M.-C. Jakobs and H. Wehrheim. Programs from proofs
of predicated data-flow analyses. In Proc. SAC, pages
1729-1736. ACM, 2015.

T. Kahsai and C. Tinelli. PKIND: A parallel k-induction
based model checker. In Proc. PDMC, EPTCS 72, pages
55-62, 2011.

K. S. Namjoshi. Certifying model checkers. In Proc.
CAV, LNCS 2102, pages 2—13. Springer, 2001.

G. C. Necula. Proof-carrying code. In Proc. POPL, pages
106-119. ACM, 1997.

H. Rocha, R. S. Barreto, L. Cordeiro, and A. D. Neto.
Understanding programming bugs in ANSI-C software
using bounded model checking counter-examples. In
Proc. IFM, LNCS 7321, pages 128-142. Springer, 2012.

C. Sternagel and R. Thiemann. The certification prob-
lem format. In Proc. UITP, EPTCS 167, pages 61-72,
2014.

A. Taleghani and J. M. Atlee. Search-carrying code. In
Proc. ASE, pages 367-376. ACM, 2010.

T. Wahl. The k-induction principle, 2013. Available
at http://www.ccs.neu.edu/home/wahl/Publications/
k-induction.pdf.

M. Whalen, J. Schumann, and B. Fischer. Synthesizing
certified code. In Proc. FME, pages 431-450. Springer,
2002.

http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1145/2786805.2786867
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1007/978-3-319-21690-4_42
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1145/2393596.2393664
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-642-39176-7_1
http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-319-41540-6_29
http://dx.doi.org/10.1007/978-3-642-12002-2_22
http://dx.doi.org/10.1007/978-3-642-12002-2_22
http://dx.doi.org/10.1007/978-3-642-12002-2_22
http://dx.doi.org/10.1007/978-3-642-12002-2_22
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1145/2695664.2695690
http://dx.doi.org/10.1145/2695664.2695690
http://dx.doi.org/10.1145/2695664.2695690
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1145/1858996.1859079
http://dx.doi.org/10.1145/1858996.1859079
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
http://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

