
Improving Trace Accuracy through Data-Driven
Configuration and Composition of Tracing Features

Sugandha Lohar, Sorawit
Amornborvornwong

DePaul University
Chicago, IL, USA

sonul.123@gmail.com,
sorambww@hotmail.com

Andrea Zisman
Department of Computing

The Open University
Milton Keynes, MK7 6AA, UK

andrea.zisman@open.ac.uk

Jane Cleland-Huang
DePaul University

Systems and Requirements
Engineering Center
Chicago, IL, USA

jhuang@cs.depaul.edu

ABSTRACT

Software traceability is a sought-after, yet often elusive qual-
ity in large software-intensive systems primarily because the
cost and effort of tracing can be overwhelming. State-of-the
art solutions address this problem through utilizing trace re-
trieval techniques to automate the process of creating and
maintaining trace links. However, there is no simple one-
size-fits all solution to trace retrieval. As this paper will
show, finding the right combination of tracing techniques
can lead to significant improvements in the quality of gener-
ated links. We present a novel approach to trace retrieval in
which the underlying infrastructure is configured at runtime
to optimize trace quality. We utilize a machine-learning ap-
proach to search for the best configuration given an initial
training set of validated trace links, a set of available tracing
techniques specified in a feature model, and an architecture
capable of instantiating all valid configurations of features.
We evaluate our approach through a series of experiments
using project data from the transportation, healthcare, and
space exploration domains, and discuss its implementation
in an industrial environment. Finally, we show how our
approach can create a robust baseline against which new
tracing techniques can be evaluated.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Life cycle

General Terms

Documentation, Management

Keywords

Trace retrieval, configuration, trace configuration

1. INTRODUCTION
Software traceability is an important element of the de-

velopment process, especially in large, complex, or safety-

critical software-intensive systems [4]. It is used to capture
relationships between requirements, design, code, test-cases,
and other software engineering artifacts, and support crit-
ical activities such as impact analysis, compliance verifica-
tion, test-regression selection, and safety-analysis. As such,
traceability is mandated in safety-critical domains includ-
ing the automotive, aeronautics, and medical device indus-
tries. Unfortunately, tracing costs can grow excessively high
if trace links have to be created and maintained manually
by human users, and as a result, practitioners often fail to
establish adequate traceability in a project [27].

To address these needs, numerous researchers have devel-
oped or adopted algorithms that semi-automate the process
of creating trace links. These algorithms include the Vec-
tor Space Model (VSM) [23], Probabilistic approaches [14],
Latent Semantic Indexing [2, 12], Latent Dirichlet Alloca-
tion (LDA) [13], rule-based approaches that identify rela-
tionships across project artifacts [35], and approaches that
identify artifacts committed as part of the same change to
a version control systems [21] or modified consecutively by
a single user [3].

Given such a profusion of traceability techniques, and the
multiple ways in which each technique can be configured
or combined with others, it is difficult to know which com-
bination of techniques to use for a specific dataset and/or
project. The problem of finding the right configuration is
particularly pertinent as researchers have not yet been able
to provide clear guidelines as to which tracing techniques
are most effective on different kinds of datasets. As the re-
sults reported in this paper will show, finding the right con-
figuration can lead to very significant improvements in the
accuracy of generated trace links, in some cases improving
trace accuracy by over 100%. This is particularly notable be-
cause there is currently no individual tracing technique that
has been shown to consistently outperform other techniques
across all datasets. Industrial adoption of trace generation
methods will be better supported if best-of-breed techniques
can be discovered and used within the context of a specific
project. Furthermore, research advances will be facilitated
if new techniques can be compared against the best com-
bination of existing techniques instead of against a single
baseline technique which performs inconsistently across dif-
ferent datasets.

In this paper we therefore present a state-of-the-art ap-
proach for configuring a traceability infrastructure in or-
der to improve the achieved accuracy of the generated trace
links. We define traceability infrastructure as the enterprise-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2491432

378

Trace

Generation

Dictionary

builder

American
National
Corpus

Local_idf

Trace

Algorithm

VSM

LSI

Pre-

processor

Acronym

expander

Stemmer

Splitter

Stopper

Static

stopper

Dynamically

Stopper

Normalized

Cosine

Jacard

[0..N]

[1..2]

[0..2]

[1]

[1]

Dice

Simple

Non-

normalized

Cosine

LDA

[1]

Ranked

[1]

[1]

[0..1]
Trace

Capture

Commit log
trace

extractor

Prospective
trace

capture

[1..2]

Direct Query

Manipulator

Results

orderer

Intermediate/root node.

Feature used in

experiments.

Potential feature, not

used in experiments.

[1..N] Cardinality

Link Merger

/Voter

[0..1]
[0..1]

Alpha wt

Beta wt

Gamma wt

Increment

Count

Increment size

Incremental

Threshold

Topic Count

Thrd Parameters

[1..3]

Figure 1: A Selection of trace algorithms and utilities represented in a feature model.

wide instrumentation needed to support all aspects of the
traceability process, including GUI (graphical user inter-
face) components, plug-ins for case tools, files for storing
traceability data, and also trace-generation and traceability
management tools. Our approach, which we refer to as Dy-
namic Trace Configuration (DTC), utilizes an initial train-
ing set of validated trace links to discover a good configura-
tion of tracing techniques. We define a good configuration as
one that delivers high accuracy of the generated trace links.
Furthermore, as our approach does not guarantee to find
the optimal approach, we also introduce the concept of top
configuration as the best configuration found by our DTC
approach for a given dataset and feature model. Given the
potentially large combination of techniques, and the slow
running time of some of the tracing algorithms, we utilize
a Genetic Algorithm (GA) to intelligently search through
the space of viable configurations in order to find the best
performing configuration. We justify our choice of the GA
in Section 2.3. While other researchers have explored dif-
ferent techniques for combining predefined sets of tracing
techniques [6, 13, 18, 19], the novel contribution of our work
is the dynamic and scalable approach for learning what can
be seen as a good composition and configuration of a very
broad and potentially expanding set of tracing techniques.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the DTC infrastructure and processes in-
cluding the use of feature modeling, simulation, and intelli-
gent search. Section 3 describes a series of experiments that
we conducted to evaluate the efficacy of our approach for
finding an effective configuration, and for using the identi-
fied configuration in an evolving software project. Section
4 discusses the practical applications in industrial projects
and research domains. Section 5 discusses threats to validity
and Section 6 describes related research from areas of trace-
ability and self-adaptation environments. Finally, Section 7
summarizes our findings and discusses future work.

2. DYNAMIC TRACE CONFIGURATION
Our approach takes as input a training set of source and

target artifacts and a matrix of human validated trace links
which serve as a “reference set” for improving the accuracy
of the generated trace links. It also imports a feature model

of available tracing techniques, and then searches for the
combination and configuration of features that increase the
accuracy of automatically generated trace links when ap-
plied to the reference set. The DTC includes three primary
elements: (1) a feature model specifying the available trace
algorithms and utilities (from now on referred to as ‘fea-
tures’), (2) a simulation environment in which any viable
configuration of features in the feature model can be instan-
tiated and then used to generate trace links against a given
dataset, and (3) an intelligent search component capable of
directing a search through the space of all viable config-
urations in order to find a good configuration for a given
dataset. In the following sections we describe each of these
in more detail.

2.1 Modeling Features and Configurations
DTC utilizes a feature model to specify the set of available

features and their constraints [8]. While alternate represen-
tations are possible [18], feature models have been shown to
be expressive and scalable across many different domains,
and can therefore support a wide variety of features and
interactions. Utilizing a feature model not only accommo-
dates the features of the current experiment, but can easily
scale up to incorporate new features as they are proposed
by researchers and become available to practitioners. Fur-
thermore, given the widespread interest in feature model-
ing, several different tools are available for generating valid
configurations and/or checking the correctness of candidate
configurations.

In this work we represent the feature model using the
Textual Variability Language (TVL) [8] and associated tools
developed by Heymans et al. TVL is a text-based feature
modeling language that provides a rich syntax and formal
semantics. The TVL tool provides a syntax checker which
was used to initially validate the well-formedness of the trace
feature model. It also provides support for querying whether
a specific configuration is valid. For illustrative purposes
we depict a small and representative set of popular tracing
techniques in Figure 1 using a graphical display of a feature
model.

This feature model contains several basic features. Pre-
processors are used to prepare raw data for tracing. For ex-

379

Splitter Stemmer

Static

stopper

Dynamic

stopper

Acronym

expander

Pre-processor

Dictionary

Builder

Similarity

Computation

Display

Local

idf

ANC

idf

LSI

Vector
Space
Model

Simple

Jacard

Dice

Ranked

Incre-

mental

Metrics

computation

Cosine
(Norm)

Cosine
(Basic)

Figure 2: Pipe-and-filter Architecture used to instantiate valid combinations of tracing features.

ample, a stopper removes commonly occurring terms such
as “this” and “that”, which are not useful for tracing pur-
poses, while an acronym expander expands acronyms such
as “RBAC” to their extended forms (in this case “Role based
access control”). The dictionary builder constructs an index
of terms found in various documents, and computes term
weightings using algorithms such as tf-idf (term frequency
- inverse document frequency) based on terms found in the
project documents, or on terms found in the American Na-
tional Corpus. Core algorithms such as VSM (Vector Space
Model), LSI (Latent Semantic Indexing) and LDA (Latent
Dirichlet Analysis) compute the similarity between pairs of
documents. Latent Semantic Indexing (LSI) [2, 12, 16] uti-
lizes a mathematical technique called Singular Value Decom-
position (SVD) to uncover the underlying latent semantic
structure of word usage in unstructured text, and then uses
these latent topics to match queries and documents that are
conceptually similar in meaning regardless of whether they
share specific words. The Vector Space Model (VSM) [23]
represents queries and documents as vectors of terms, and
then applies the standard term-frequency inverse-document
frequency (tf-idf) approach to compute similarity scores be-
tween artifacts based upon the frequency at which the term
occurs in both the source and target artifact and the inverse
frequency of its occurrence across the collection of docu-
ments.

Generated trace links can be presented to the user in sev-
eral different ways, including a basic ranked approach in
which links are presented in the order of the generated sim-
ilarity scores, an incremental approach in which links are
presented incrementally to the user and relevance feedback
is used to reorder the remaining links, and finally the Direct
Query Manipulation (DQM) approach, in which a user mod-
ifies the query in order to filter out unwanted results [32].
Finally, components such as commit parsers [21], rule-based
link generation techniques [35], and tool-based monitors [3]
can also be used to generate trace links.

A feature model also specifies the cardinality of features
and depicts whether a given feature is mandatory or op-
tional. In addition to the visual representation shown in Fig-
ure 1, additional requires and constrains relationships must
also be specified. Examples include: “VSM requires dictio-
nary builder” or “[trace algorithm>1] requires Link Merg-
er/Voter”. While most features are binary in nature (i.e.
either present or not present), some features such as LSI
must be configured prior to use. The feature model docu-
ments the range of allowed values for each parameter.

2.2 Evaluating a Configuration
Our approach requires various candidate configurations to

be evaluated by utilizing the configuration to generate trace

links from source to target artifacts. The resulting trace
links are then compared against the reference trace matrix to
determine how well the configuration performed. The metric
of Mean Average Precision (MAP) is used for evaluative
purposes. MAP computes the extent to which correct links
are placed at the top of the ranked list of generated trace
links. Because our implementation of MAP examines all
correct links it also assumes recall (i.e. the ability to retrieve
correct links) of 100%. The use of MAP as a traceability
measure has been advocated in numerous papers [36, 38].
First the average precision (AP) of each query is computed:

AP =

∑N

r=1
(Precision(r)× isRelevant(r))

|RelevantDocuments|
(1)

where r is the rank of the target artifact in an ordered list
of links, isRelevant() is a binary function assigned 1 if the
link is relevant (i.e. marked as correct in the reference set)
and 0 otherwise, P (r) is the precision computed after trun-
cating the list immediately below that ranked position, and
N is the total number of documents. When multiple links
are listed for a single similarity score (e.g. at similarity of
zero) the links are evenly distributed across the space of
that score, simulating their random distribution. MAP is
then computed across all queries as follows:

MAP =

∑Q

q=1
AP (q)

Q
(2)

where, q is a single query and Q is the total number of
queries.

To determine the efficacy of a configuration for tracing a
particular dataset it is necessary to provide an architecture
that can accommodate all valid combinations of available
features. For purposes of the experiments described in this
paper we designed the architecture, shown in Figure 2, to
accommodate all of the features shaded in Figure 1. This
architecture utilizes a pipe-and-filter pattern and assumes
a fairly rigid sequencing of processes. Components in the
pipeline can be turned on or off, depending on whether they
are required in the configuration. The architecture provides
one possible solution for configuring any valid configuration
of features from our feature model. However, alternate, and
more flexible architectural designs are also possible. For ex-
ample, a more extensive architecture could accommodate
the dynamic sequencing of preprocessors and/or allow re-
sults from multiple tracing techniques to be merged through
voting and or other combinatory techniques.

2.3 Searching for the Best Configuration
Utilizing a brute force approach to evaluate every single

candidate configuration can be infeasible given that the fea-

380

Current
Configuration

Evaluate
Fitness

Function

Perform
Crossover,

Mutation, and
Roulette Wheel

Selection

Top
Discovered

Configuration

Feature
Model

Triggers:
User, data change,
trace use change,
environment change.

Generate
Trace Links

and compare
to reference

set
New

population

Evolve

further?

Generate
Initial Population

Randomly

 Check for
Validity (TVL)

Initial valid

population

No

Yes

Chromosome

Mean Avg.

Precision

Data and
Trace Links

Architecture
Model

Figure 3: The overall DTC Process

ture model shown in Figure 1 includes 1,644,408 valid config-
urations without even considering parameterizations of the
individual components. Assuming reasonable increments for
each parameter (i.e. increments of 5 for values ranging from
0 (or 5) to 500, increments of 1 for values ranging from 1-20,
and increments of 0.05 for values ranging from 0.0-1.0) the
number of valid configurations jumps to 7.033383E+12. In
our experiments we observed that for large datasets and can-
didate configurations that include slow running algorithms
such as LSI, it takes approximately two hours to generate
a complete set of trace links from source to target artifacts.
We estimate the average time over all candidate configu-
rations for our largest data set (See Section 3) to be 40
minutes per configuration. Therefore, generating traces for
every configuration would take approximately five hundred
and thirty-five million years to run. This is clearly infeasi-
ble and therefore a more intelligent approach is needed for
searching through the space of viable configurations.

There are several viable searching techniques; however we
chose to utilize a Genetic Algorithm (GA) [20] because it is a
natural fit for our problem and is relatively straightforward
to implement. A GA mimics the evolutionary process found
in nature. It involves the steps of (i) modeling a candidate
solution as a chromosome, (ii) creating an initial population
of chromosomes, (iii) computing fitness functions to evaluate
the efficacy of a given configuration, (iv) evolving the pop-
ulation to the next generation, and (v) selecting the best
known configuration. Figure 3 shows an overview of the
main GA steps. These steps are described below.

2.3.1 Modeling Candidate Solutions

A GA fits our problem because each candidate trace con-
figuration can easily be modeled as a chromosome encoded
as a string of bits, where each bit represents a different fea-
ture that is either present (1) or not present (0) in the con-
figuration. As shown in Figure 4, configurable parameters
are represented as sub-chromosomes. For experimental pur-

poses we included 22 features with four configurable ones.
For example, the incremental ranking component is config-
ured by five parameters (alpha, beta, gamma, increment
count, and increment size), all of which are represented in
the sub-chromosome.

2.3.2 Creating an Initial Population

For each run of the GA, an initial population of 50 chro-
mosomes is created (See Step 1 in Figure 3). As previously
explained, the feature model is specified using the Textual
Variability Language (TVL) [8]. Chromosomes are passed
as queries to the TVL tool to check their validity (See Step
2). Invalid configurations are rejected, and the process is
continued until the complete population is built.

Splitter (Target Side) 0

Stemmer (Target Side) 1

Stopper (Target Side) 1

Dynamic stopper (Target Side) 0 0-500 Threshold

Acronym Expander (Target Side) 0

Splitter (Query Side) 0

Stemmer (Query Side) 1

Stopper (Query side) 1

Dynamic stopper (Query side) 0 0-500 Threshold

Acronym Expander (Query side) 1

Local IDF-Dictionary (Target Side) 1

Local IDF-Dictionary (Query Side) 0 1.0 Alpha

ANC Dictionary Builder 0 0.8 Beta

Ranked ordering of results 0 0.2 Gamma

Incremental ordering of results 1 5 No. Iterations

VSM with simple matching 0 10 Size Increment

VSM with DICE 0

VSM with normalized Cosine 1

VSM with non-normalized Cosine 0

VSM with Jacard 0

LSI 0 50-500 No. of Topics

Average Precision 1

Figure 4: The Genetic Algorithm represents tracing
configurations as a chromosome.

2.3.3 The Fitness Function

The fitness function of each chromosome is computed by
generating a trace configuration according to the features
specified in the chromosome, and then using this configura-
tion to generate trace links for the training set (See Steps
3 and 4 in Figure 3). The MAP score, which is computed
by comparing the generated links to the reference matrix
for each dataset, serves as the fitness function for the GA
algorithm.

2.3.4 Evolving the Population

A stochastic process is used to select the best chromo-
somes to be carried forward as parents into the next genera-
tion. Our implementation carries ten chromosomes forward.
One of these is the elite chromosome, i.e. the chromosome
with the highest MAP value from the previous generation.
The remaining nine chromosomes are selected using a stan-
dard practice based on the roulette wheel, which works on the
premise that chromosomes scoring higher MAP values have
a greater chance of survival than weaker ones. Basically,
fitter individuals are given proportionally higher chances of
being selected during a spin of the roulette wheel than less
fit ones. In our implementation we select only ten parents

381

based on an initial series of experiments designed to fine-
tune performance by minimizing runtime and maximizing
accuracy of the GA algorithm.

GAs typically use two techniques of cross-over and mu-
tation to generate offspring chromosomes from the parents
in order to create the new generation (Step 5). These two
practices emulate the natural process of carrying forward ge-
netic material from the parents while introducing sufficient
variation to potentially surpass their parents in terms of fit-
ness. A mutation involves flipping one of the genomes (bits)
in the chromosome, i.e. flipping a 1 to 0 in order to remove a
feature, or flipping a 0 to 1 in order to add a feature. Based
on initial experimentation, a mutation rate of 0.25 was es-
tablished for our experiments. To execute a mutation, a
number N from 1-5 is randomly selected to represent the
number of bits to be flipped. N unique bits are then ran-
domly selected and flipped. If a sub-chromosome exists for
any of the selected bits, one of the sub-chromosome’s bits
are randomly switched to a score within the range of allowed
values. A cross-over involves creating two children from the
genetic material of two parent chromosomes. Cross-overs
are executed by selecting two parents, choosing a random
position in the chromosome, using this position to partition
each of the chromosomes into head and tail sections, and
then exchanging the two tails.

2.3.5 Computing Fitness Functions

For purposes of our experiments we established a stopping
condition that halts the GA if no improvements are found
after 5 successive generations, and otherwise halts after the
60th generation. Once the experiment halts, the highest
performing configuration across all generations is selected.
The visualization tool depicted in Figure 5 was developed
to support experimentation by displaying the MAP score
of configurations discovered through multiple generations of
the GA search. It depicts results from the first seven gener-
ations for a healthcare dataset (i-Trust) described in Section
3. As a sanity check we compared the output of our GA to
previously published results which were available for some
of the datasets. These results confirmed that our approach
consistently produced either improved or comparative MAP
scores [33].

X

1.0

0.9

0.8

0.7

.6

0.5

0.4

0.3

0.2

0.1

0.0

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

Main Page iTrustReq-JSPCode2 iTrustReq-JSPCode

Generations

G1 G2 G3 G4 G5 G6 G7

Figure 5: Visualization of the growth in MAP scores
(y-axis) over progressive generations (x-axis) of the
GA search process

3. EVALUATING DTC CUSTOMIZATION
While the goal of DTC is to find the optimal trace con-

figuration for a dataset given an available set of tracing fea-
tures, a GA algorithm does not guarantee to do so. For any
form of dynamic adaptation to be worthwhile in a system,
the benefits gained from changing the system must outweigh
the associated costs. In this section of the paper we evalu-
ate the benefits of customizing the trace infrastructure for
a specific project. In the following section we explore the
practicality and processes that might be followed in order to
integrate reconfiguration into a real project environment.

3.1 Experimental Design
DTC was evaluated against six different projects from the

transportation, healthcare, and space domains as depicted
in Table 1. In the table, the number of the source and target
elements are represented in brackets. For example, Indus-
try 1 has 442 unique requirements and 3,104 unique design
artifacts. Four of our datasets were obtained from industry
or government sources, while the remaining two datasets
represent academic projects. The two transportation sector
projects were provided under non-disclosure agreements and
are, therefore, simply referred to as Industry-1 and Industry-
2. All datasets except for Industry 1 and 2 are publicly avail-
able through CoEST.org. For each dataset, the confirmed
trace matrix was provided either by the industrial source,
or else previously used and validated by several different re-
search groups [2, 23,33].

Table 1: Datasets used in Study
Project Source Target Links
Industry 1 (Transport) Reqs (442) Design (3104) 6961
Industry 2 (Transport) Reqs (224) Design (945) 700
I-Trust (Health) Reqs (131) Code (332) 535
CCHIT (Health) Reg. Codes (453) Reqs(958) 534
E-Clinic (Health) Use Cases (30) Test Cases (47) 63
CM-1 (NASA) Reqs (22) Design (46) 46

All of the experiments were conducted utilizing the sub-
set of features shaded gray in Figure 1. Features were lim-
ited to those which were either already available to us as
executable components, or which we were able to imple-
ment within the timeframe of this project. The architecture
shown in Figure 2 was utilized as a framework capable of ex-
ecuting any valid combination of features. The experimen-
tal tracing environment was constructed using the Trace-
Lab tool [15]. TraceLab is a highly flexible research plat-
form that provides an extensible library of components for
importing and preprocessing artifacts, for generating trace
links using multiple techniques, and for reviewing and eval-
uating results. These components can be integrated into
complex, executable workflows using the TraceLab plug and
play environment. Data is exchanged between components
via standard TraceLab datatypes using a blackboard archi-
tectural style. Our experimental test harness, which was
created in TraceLab, was responsible for importing the data
to be tested and then utilizing the DTC process to search
for the best trace configuration.

3.2 Experiments
Experiments 1-3 were conducted to address three specific

research questions (RQ) designed to evaluate the benefits
and efficacy of dynamic trace configuration.

382

Table 2: Experiment 1 demonstrated that each
dataset had a unique top configuration

Features E-Clin CM-1 CCHIT i-Trust Ind-1 Ind-2
C1 C2 C3 C4 C5 C6

Achieved MAP 0.835 0.726 0.395 0.376 0.285 0.363
Stem • • • • • •

SourceStandardStop •

TargetStandardStop
SourceDynStop • • • •

TargetDynStop •

SplitSource • • • • •

SplitTarget • •

SourceAcronym
TargetAcronym • •

tf-idfDictBld • • • • •

ANCDictBld •

VectorSpModel • • • • •

LSI •

Cosine(basic) • • • •

Cosine(norm)
Dice
Jacard
SimpleMatch •

Incr.Display • •

Rank.Display • • • •

SourceDynStop 27 46 43-49 6
TargetDynStop 25
RocchioIteration 10 9
RocchioTopN 2 1
RocchioGamma 0.316 0.829
RocchioAlpha 0.464 0.829
RocchioBeta 0.996 0.932
LSI-k 320

RQ1: Does each dataset of source and target arti-
facts have a distinct top performing trace configu-
ration? The first research question investigated whether
each of the six datasets depicted in Table 1 had a unique
top configuration. We utilized DTC to discover the top con-
figuration for each of the datasets. Running time of DTC
varied from 10 minutes for smaller datasets (e.g., E-Clinic)
to over 12 hours for larger datasets (e.g., Industry-1).

Results are reported in Table 2 and show that different
datasets performed best with very different configurations.
For each data set we report the achieved MAP score for
the highest performing configuration (Ci), marked with a
bullet (•) in the corresponding cells of the features in the
configuration. The lower part of Table 2 shows the pa-
rameter values of the features in the respective configura-
tions. For example the E-Clinic dataset returned a healthy
MAP score of approximately 0.835 when using the VSM
with local IDF. In contrast, the CCHIT data set performed
best using LSI, achieving MAP scores of 0.395. Finally, the
Industry-1 achieved its highest MAP scores of 0.285 using
VSM combined with the ANC Dictionary builder. These re-
sults clearly show that different datasets have their own top
scoring configurations. As a general observation, it should
be noted that larger datasets tend to produce lower MAP
scores due to the higher potential for false positive links.

Another interesting observation is that the results were
not easily predictable in advance. In fact general wisdom
suggests that LSI outperforms VSM on larger datasets; how-
ever in this experiment, LSI was not selected for the largest
dataset i.e. Industry-1. Furthermore, the use of the global
tf-idf, which had previously been discredited [9], led to very
significant improvements in the Industry-1 dataset. These
results highlight the value of using DTC to experimentally

discover the optimal configuration for a given dataset instead
of just adopting a default configuration.

RQ2: Is there a single configuration which performs
well on all datasets? The previous experiment identi-
fied the top configuration for each dataset; however in a
second experiment we explored the closely related question
of whether any of these top configurations, would perform
“well” across all six datasets. The underlying premise here
is that if we could identify a single configuration which per-
formed well for all datasets, then we should adopt that con-
figuration as the default and avoid the costs associated with
dynamic discovery and adaptation of a trace configuration.

In order to investigate these differences we used the top
configuration achieved for each of the six datasets in Experi-
ment 1 (labeled configurations C1 to C6 in Table 2), and ap-
plied each configuration against all of the other five datasets
to obtain their respective MAP values. The results of this
experiment are reported in Figure 6, and show that none of
the tested configurations performed well across all datasets.
The best overall configuration was C4 with a mean MAP of
0.423 over all six datasets. However, this configuration per-
formed particularly poorly on the Industry-1 dataset, and
was outperformed by three other techniques for E-Clinic.

These results, and the others reported in Figure 6 clearly
show that no single configuration performed well across all
datasets. We hypothesize that individual characteristics of
each dataset influence the performance of the various tracing
features. For this reason the “one size fits all” approach
which has been the defacto standard until now does not
appear to be effective.

RQ3: Does each pair of artifact types in a project
have a distinct top performing configuration? In this
experiment we evaluated whether the same configuration
could be used to trace between different types of artifacts in
the same project i.e. between requirements and regulatory
standards, or between test cases and requirements. Easy
Clinic, Industry-2, and I-Trust datasets were used for this
experiment as each of these had multiple trace matrices as
depicted in Table 3. DTC was run against each pair of arti-
fact types for which a confirmed trace matrix was available.
The experiment followed the same design used for Experi-
ment 1. For each pair of artifacts in a project we used the top
configuration achieved for that pair and applied it against
all other pairs of artifacts in the same project to obtain their
respective MAP values. The results are reported in Table 3,
and show that each pair of source/target artifacts performed
best when using its own customized configuration, meaning
that a configuration identified for one pair of artifacts in a
project should not necessarily be used for all other pairs of
artifacts in a project. These results were not entirely unex-
pected given that different artifact types (i.e. requirements
vs. code vs. test cases) exhibit very different characteristics
in terms of document length and vocabulary used.

3.3 Analysis of Results
An analysis was performed to determine statistically if

the use of the customized trace configurations was effective.
Based on the results of Experiment 1 and Experiment 3, we
identified the top configuration for each pair of source-target
artifacts across all of the datasets. We refer to these con-
figurations as customized trace configurations. For example

383

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E-Clinic CM-1 CCHIT I-Trust Ind-1 Ind-2

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

 (
M

A
P

)
C1 C2 C3 C4 C5 C6

 Customized configuration

Figure 6: Mean Average Precision (MAP) obtained using the six winning configurations across all datasets

the customized trace configuration for Easy-Clinic dataset
from Table 2 is C1, while all other tested configurations are
considered non-customized configurations for that dataset.

Based on these definitions, a paired T-test was performed
to determine if the use of customized trace configuration is
effective. In this analysis, each customized configuration is
paired with its relevant non-customized configuration. For
example, in the Easy-Clinic dataset C1 is paired with its rel-
evant C2, C3, C4, C5 and C6 (see Table 2) configurations, as
well as C1.2 and C1.3 (see Table 3). (Please note that C1.1
is excluded because it is the same as C1). For 11 different
pairs of source-target artifacts across six different datasets,
there was 44 pair of customized :non-customized configura-
tion pairs. We point out that if we could have performed
pairwise comparisons against a far larger sample of config-
urations generated by the GA or randomly selected ones.
We chose not to do this because we wanted our comparison
to be against strongly viable configurations and not very
low-performing configurations which would be unlikely to
be used.

A mean improvement in MAP score of 0.14 (on a scale
of 0.00-1.00) was observed for customized configurations,
with a standard deviation of 0.113. This was significantly
greater than zero (i.e. t (43) =2.01, one-tail p= 8.20E-
11, and confidence interval of 95%) providing evidence that
customized configurations are effective for improving trace
accuracy. The 0.14 increase in MAP score represented a
49.45% improvement realized through using customized ver-
sus non customized configurations. Furthermore, given con-
cerns over the normal distribution of the data, a Wilcoxon-
Ranked Sum test was also conducted. This test rejected
the null hypothesis at z-value=-5.7767 (with alpha = 0.01
and p<0.01), indicating that there is a significant difference
between the two samples.

We also compared the raw distribution of MAP scores for
customized versus non-customized configurations and plot-
ted the results in the box and whisker graph shown in Fig-
ure 7. This graph provides an intuitive visualization of
the difference in MAP scores between customized and non-
customized configurations. For example, it shows that mean
MAP scores for customized trace infrastructures is 0.54 ver-
sus 0.39 for non-customized configurations. Based on these
results and the datasets included in our study, we conclude

Table 3: Different configurations are needed for dif-
ferent traceability paths within the same project

Easy-Clinic
UC-TC TC-Code UC-Code
(C1.1) (C1.2) (C1.3)

Use Case - Test Case 0.8347 0.5213 0.72
Test Case - Code 0.7025 0.8616 0.8186
Use Case - Code 0.4201 0.5944 0.7978

i-Trust
Req-Code Req-JspCode Req-JavaCode
(C2.1) (C2.2) (C2.3)

Requirements - Code 0.3756 0.2846 0.3195
Requiremnts - JSP 0.4306 0.6646 0.3195
Requirements - Java 0.389 0.323 0.4359

Industry-2
SSRS-SDD SDD-SRS

(C3.1) (C3.2)
System Reqs - Design 0.3632 0.3269
Design - Software Reqs. 0.3654 0.4061

that customizing trace configurations significantly improves
the quality of generated trace links across all datasets.

4. DTC IN PRACTICE

One of the primary objectives of DTC is to support ongo-
ing customization of the traceability infrastructure in an in-
dustrial project in order to improve the effectiveness of trace
retrieval methods in practice. In this phase of the work we
experimentally investigated the use of DTC in an industrial
setting by simulating the impact of a growing dataset on the
trace configuration.

4.1 Experiments
Two additional experiments were conducted. The first ex-

plored the degree to which configurations were stable over
time, while the second addressed the critical question of
whether a configuration learned on an initial training set
of data would be effective for new data as it was created
(i.e. new requirements and/or new code etc).
RQ4: Are configurations stable over time? An exper-
iment was designed to answer the critical question of how
stable the trace configuration is over time. This is an im-
portant practical question that addresses the likelihood of
thrashing from one configuration to another. This question

384

X

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Customized Non-Customized

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

(M

A
P

)

X = Mean

Figure 7: Difference in MAP scores obtained across
all evaluated datasets for customized versus non-
customized configurations. Maximum, Minimum,
Mean, as well as 1st, 2nd (Median), and 3rd Quar-
tiles are shown.

was explored against the Industry-1, Industry-2, and CCHIT
datasets, as these were the only datasets of sufficient size to
support this type of analysis. We created four versions of the
source artifacts including 25%, 50%, 75%, and 100% of the
data, labeled D25, D50, D75, and D100 respectively. The
sub-parts were derived following the natural structure of the
requirements documents that constituted source artifacts in
all three datasets. This meant that D25 represented the first
physical 25% of the requirements appearing in the specifica-
tion and D50 represented the first 50% of the requirements,
and so on.

The DTC algorithm was used to identify the top config-
uration for tracing from each subset of source artifacts (i.e.
D25, D50, D75, and D100) to the target artifacts shown in
Table 1, i.e. in the case of Industry-1, the first trace was
executed from the first 25% of requirements to the 3,104 de-
sign elements, and so on. The top configurations are shown
in Table 4, labeled C25, C50, C75, and C100 respectively.

In the case of the Industry-1 dataset, we see an initial
configuration based on LSI for the D25 subset and then a
transition to VSM with use of the global tf-idf computations
(i.e. American National Corpus of written terms). The con-
figuration remained relatively stable as the datasize grew
over D50-D100. We see a similar pattern for the CCHIT
dataset. The initial D25 configuration utilized VSM, but
this was replaced by LSI at D50, and from that point on
the configuration remained relatively stable. In the final
case of Industry-2, the configuration was slightly less stable.
We hypothesize that this could have been because the num-
ber of source artifacts was significantly smaller than in the
other two datasets (i.e. 224 requirements vs. 442 and 453
in Industry-1 and CCHIT respectively), and so the configu-
ration did not have time to stabilize.

These results suggest that changing configurations too fre-
quently during initial phases of the project could lead to
thrashing; however some reconfiguration is necessary as the
size of the project grows. Although not investigated here, it
might be helpful to evaluate configurations over small sized
increments of growth, and only reconfigure if a configuration
is stable over a window of several increments or if it returns
a very significant increase in MAP score.

Table 4: Trace configurations for various sized
growth increments of three datasets

Features
Industry-1 Industry-2 CCHIT

C
2
5

C
5
0

C
7
5

C
1
0
0

C
2
5

C
5
0

C
7
5

C
1
0
0

C
2
5

C
5
0

C
7
5

C
1
0
0
.

STEM • • • • • • • • • • •

SourceStandardStop • •

TargetStandardStop • • • • •

SourceDynamicStop • • • • •

TargetDynamicStop • •

SplitSource • •

SplitTarget • • • •

SourceAcronym
TargetAcronym • • •

Tf-idf Dict Builder • • • • • • • • •

ANC Dict Builder • • •

Vector Space Model • • • • • • • •

LSI • • • •

Cosine (not norm) • • • •

Cosine (normalized)
Dice
Jaccard
SimpleMatching • • • •

Incremental display •

Ranked display • • • • • • • • • • •

RQ5: Do reconfigurations of the trace infrastruc-
ture lead to better trace quality in future traces?
While previous experimental results clearly demonstrated
that trace configurations can be customized according to
the current dataset, it is important to know whether run-
time configuration improves the overall quality of trace links
in the project. This question directly addresses one of the
underlying hypotheses of our work, that performing a“what-
if” analysis on past data, serves as an effective predictor of
the best configuration as the project data continues to grow
in size. In this scenario, a baseline trace configuration is used
to generate an initial set of trace links, and then dynamically
learned configurations are used throughout the remainder of
the project.

For experimental purposes we selected an initial default
configuration (C0) that included a stemmer, stopper, Vec-
tor Space Model with non-normalized cosine similarity, and
ranked ordering of results. While we could have selected a
different default configuration, this one was chosen because
the selected combination of components is fairly standard
across the literature [23] and also performed well in our pre-
vious experiments. The documents (D25-D100), and config-
urations (C25-C100) were reused from Experiment 4.

Configuration C0 was used to generate trace links and
then to compute MAP scores for D25, C25 for D50, C50
for D75, and finally C75 for D100. In this way the system
was reconfigured after the simulated arrival of each block of
25% of requirements, and the new configuration was used
for tracing purposes until the next configuration occured.

Figure 8 depicts two scenarios for each of the three datasets.
In the first scenario the C0 baseline configuration was used
for the entire dataset, while in the second scenario the trace
infrastructure was reconfigured upon arrival of each subse-
quent 25% block of requirements. The three graphs show
that reconfiguration led to marked improvements in MAP
scores. The most important observation from this experi-
ment is that in all cases the customized configuration out-
performed the static configuration. The ‘dip’ in MAP scores
for Industry-2 is attributed to the fact that the Industry-2
dataset is smaller than the other two data-sets (i.e. had a

385

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25% 50% 75% 100%

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

 Customized configuration

Standard configuration

(a) Industry-1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25% 50% 75% 100%

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

(b) Industry-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

25% 50% 75% 100%

M
e

a
n

 A
v

e
ra

g
e

 P
re

ci
si

o
n

(c) CCHIT

Figure 8: Results of Experiment 5 showing the im-
pact of utilizing a default industry standard config-
uration (C0) versus dynamically reconfiguring the
trace infrastructure at regular intervals (i.e. arrival
of next 25% of requirements) across the project

total of 224 requirements only) and, therefore, the results
were more sensitive to nuances in individual requirements.

5. THREATS TO VALIDITY
There are a number of potential threats to validity. One

threat to internal validity is that the top configurations iden-
tified in our experiments are based on the selected archi-
tectural design, the feature model used in the experiments,
and also the components which we implemented. Different
choices in any of these areas might have produced different
results. The issue of component quality was partially miti-
gated through reusing as many existing TraceLab [15] com-
ponents as possible, especially those which had been used
successfully in previously published results. For example,

the LSI feature was implemented through using an LSI com-
ponent previously developed by researchers at the College of
William and Mary. More importantly, the primary contribu-
tion of this paper is the process for dynamically discovering
an optimal configuration given an available set of features,
and is not primarily designed to comparatively evaluate dif-
ferent algorithms.

A threat to external validity is concerned with the data
sets used in the experiments. We assumed that the initial
set of trace links provided for the data sets are correct, inde-
pendent of the way they have been generated. This issue is
mitigated in two ways. First, trace links for Industry-1 and
Industry-2 were provided by our industry collaborators. The
provided links are therefore likely to be correct, although
there is no guarantee of completeness. I-Trust links were
likewise created by a member of the I-Trust project. Links
for the other three datasets have been created by various
research groups and have been used extensively in past re-
search projects. Despite potential inaccuracies in the answer
set, our approach is designed to search for the best trace
configuration in terms of delivered MAP scores, given the
known set of trace links and would only be significantly im-
pacted if the quality of the trace links were very low. This is
not the case, as each trace matrix has undergone significant
review either in an industrial or research setting.

In terms of experimental design, it was not possible to
explore every single configuration to know whether the GA
algorithm discovered the optimal configuration. Given the
running time needed to test certain configurations, we were
unable to repeat execution of the entire DCT algorithm mul-
tiple times for each experiment in order to perform a more
rigorous statistical analysis. We leave this for future work.
Furthermore, in the experiments in which we compared the
efficacy of different configurations, it is possible, although
somewhat unlikely given the consistency of our results, that
another undiscovered configuration would have performed
well across all datasets.

Finally, only six different projects were used in this work,
providing a limited perspective on the traceability problem.
This limitation, which is partially due to the significant chal-
lenge of acquiring industrial sized datasets, means that we
cannot make broad generalizations about the relationships
between data characteristics and trace configurations. On
the other hand, several of the datasets represent large indus-
trial projects taken from different domains, artifact types,
and sizes, and therefore provide a solid context for the ex-
periments.

6. RELATED WORK
In related work, Gethers et al. [19] analyzed the benefits

of combining IR techniques such as VSM and the Jensen
and Shannon model with Relational Topic Modeling to im-
prove traceability recovery accuracy. Similarly, Chen and
Grundy [6] combined VSM with Regular Expressions, Key
Phrases, and Clustering techniques. Dekhtyar et al. [13]
used voting committees composed of three to five trace re-
trieval techniques to identify mistakes introduced by hu-
man analysts when building a trace matrix. However all of
these approaches integrated a fixed set of previously selected
techniques. Finally, Falessi et al. [18] empirically evaluated
whether a limited combination of techniques outperformed
a single technique. They used logistic regression to compute
the optimal combination of techniques; unlike DTC, their

386

approach was not designed to support dynamic configura-
tion of a large and potentially growing set of techniques.

Dynamically adaptable and configurable systems have been
the focus of study in several areas of computing such as
software engineering, robotics, control systems, program-
ming languages, and bioinformatics. The software engineer-
ing community attaches great importance to this topic and
has proposed two roadmaps on software engineering for self-
adaptive systems [5, 11].

In Requirements engineering, self-adaptive systems include
languages to address uncertainty when specifying the behav-
ior of adaptive systems [39], requirements monitoring frame-
works to verify violations of system’s properties [31], and
changes in requirements due to other requirements [34]. Ar-
chitecture models have also been used to support adapta-
tion of software systems [7,10,24]. For example, Dashofy et
al. [10] present a framework for self-healing of event-based
software architectures which uses“what-if”analysis to verify
the change impact in architecture descriptions.

Genetic algorithms (GAs) have been used in different soft-
ware engineering activities [22]. Examples of these activities
include, but are not limited to, evaluation of software relia-
bility [25], refactoring [29], software testing [17,26,30], iden-
tification of valid design pattern transformation for software
reusability [1], software clone detection [37], and configura-
tion of topic modelling techniques [28]. Our approach has
similarities to Ensan et al.’s approach [17], which uses a GA
to explore the configuration space of product line feature
models in order to identify test suites at low size complex-
ity while balancing error and feature coverage. In contrast,
our approach is designed to identify an optimal configura-
tion of the traceability infrastructure. While both Ensan’s
approach and our approach use a GA to search the configu-
ration space of a feature model, the fitness functions are very
different. GAs were also used by Wang et al. [37] to identify
suitable configurations for clone detection techniques in or-
der to ameliorate the confounding configuration choice prob-
lem that is found in several clone detection techniques. The
LDA-GA approach [28] uses a GA to configure the param-
eters of LDA (Latent Dirichlet Allocation) topic modelling
technique, in order to improve the performance of trace-
ability link recovery, feature location, and software artefacts
labelling. In contrast, our work uses a GA to explore con-
figurations and compositions of different tracing techniques
of which LDA could be one of the possible features.

7. CONCLUSION
This paper has presented a novel approach for compos-

ing and configuring a trace infrastructure according to the
data characteristics of a project. From an implementation
perspective, DTC adds little overhead to the human effort
involved in the tracing process as all of the functionality can
be bundled up and deployed into a single tracing compo-
nent. While DTC’s benefits can only be realized once an
initial training set of confirmed trace links has been estab-
lished, it is primarily during the later phases of development
and maintenance that tracing support is most needed. Once
realized, the benefits of DTC can lead to significant improve-
ments in the accuracy of the generated trace links.

DTC also has the potential to significantly impact future
research practices in the area of traceability. Currently, new
techniques are typically compared against a single baseline
technique such as VSM or LSI. The authors of this paper

have also followed this practice in the past. However, a
more rigorous analysis would either compare a new tech-
nique against the top configurations for a set of datasets, or
would demonstrably show that the technique generally im-
proves trace results across multiple datasets in comparison
to a baseline technique such as VSM or LSI.

Finally, DTC supports technology transfer. If an organi-
zation has adopted DTC, then there is little innate risk in
adding a new feature to the mix. If the feature is effective
it will be selected during the configuration process, and if it
is not-effective it will not be used. This approach follows a
low-risk in-situ approach to data-driven adoption.

This paper has described the DTC approach and con-
ducted an initial series of experiments. However, in future
work we intend to extend the feature model to incorporate
additional features, and to explore different searching tech-
niques such as hill climbing.

8. ACKNOWLEDGMENTS
The work in this paper was partially funded by US Na-

tional Science Foundation Grants CNS-0959924 and CCF-
0810924. We thank Arnaud Hubaux and Patrick Heymans
for providing the TVL tool and Bogdon Dit and Denys
Poshyvanyk for sharing their LSI code with us.

9. REFERENCES
[1] M. Amoui, S. Mirarab, S. Ansari, and C. Lucas. A

genetic algorithm approach to design evolution using
design patterns transformation. Intel. Comp.,,
1(2):235–244, 2006.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng.,
28(10):970–983, 2002.

[3] H. U. Asuncion, A. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In
International Conference on Software Engineering,
pages 95–104, 2010.

[4] B. Berenbach, D. Gruseman, and J. Cleland-Huang.
Application of just in time tracing to regulatory codes.
In Proceedings of the Conference on Systems
Engineering Research, 2010.

[5] Betty H. C. Cheng et al. Software engineering for
self-adaptive systems: A research roadmap. In
Software Engineering for Self-Adaptive Systems, pages
1–26, 2009.

[6] X. Chen and J. C. Grundy. Improving automated
documentation to code traceability by combining
retrieval techniques. In P. Alexander, C. S. Pasareanu,
and J. G. Hosking, editors, ASE, pages 223–232.
IEEE, 2011.

[7] S.-W. Cheng, V. Poladian, D. Garlan, and B. R.
Schmerl. Improving architecture-based self-adaptation
through resource prediction. In Software Engineering
for Self-Adaptive Systems, pages 71–88, 2009.

[8] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of tvl. Sci. Comput. Program.,
76(12):1130–1143, Dec. 2011.

[9] A. Czauderna, M. Gibiec, G. Leach, Y. Li, Y. Shin,
E. Keenan, and J. Cleland-Huang. Traceability
challenge 2011: Using tracelab to evaluate the impact

387

of local versus global idf on trace retrieval.
International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), 6, 2011.

[10] E. M. Dashofy, A. van der Hoek, and R. N. Taylor.
Towards architecture-based self-healing systems. In
WOSS, pages 21–26, 2002.

[11] R. de Lemos, H. Giese, H. Muller, and M. Shaw.
Software engineering for self-adaptive systems: A
second research roadmap. In Dagstuhl Seminar
proceedings 10431, Software Engineering for
Self-Adaptive Systems, 2010.

[12] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora.
Enhancing an artefact management system with
traceability recovery features. In ICSM ’04:
Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 306–315,
Washington, DC, USA, 2004. IEEE Computer Society.

[13] A. Dekhtyar, J. H. Hayes, S. K. Sundaram, E. A.
Holbrook, and O. Dekhtyar. Technique integration for
requirements assessment. In RE, pages 141–150, 2007.

[14] C. Duan and J. Cleland-Huang. Clustering support for
automated tracing. In ASE, pages 244–253, 2007.

[15] E. Keenan et al. Tracelab: An experimental
workbench for equipping researchers to innovate,
synthesize, and comparatively evaluate traceability
solutions. In Tool Demo, 34th International Conf. on
Software Engineering (ICSE), pages 1375–1378, 2012.

[16] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G.
Guéhéneuc. Cerberus: Tracing requirements to source
code using information retrieval, dynamic analysis,
and program analysis. In ICPC, pages 53–62, 2008.

[17] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary
search-based test generation for software product line
feature models. In CAiSE, pages 613–628, 2012.

[18] D. Falessi, G. Cantone, and G. Canfora. Empirical
principles and an industrial case study in retrieving
equivalent requirements via natural language
processing techniques. IEEE Transactions on Software
Engineering (TSE), 2011 Preprint).

[19] M. Gethers, R. Oliveto, D. Poshyvanyk, and
A. DeLucia. On integrating orthogonal information
retrieval methods to improve traceability link
recovery. In Proc. of 27th IEEE International
Conference on Software Maintenance (ICSM’11),
pages 133–142, 2011.

[20] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[21] S. Guckenheimer. Software Engineering with Microsoft
Visual Studio Team System. Adison Wesley, Boston,
MA, 2006.

[22] M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Comput. Surv., 45(1):11, 2012.

[23] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram.
Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Trans. Softw.
Eng., 32(1):4–19, 2006.

[24] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE, pages 259–268, 2007.

[25] A. Kuri-Morales. The application of genetic
algorithms to the evaluation of software reliability.

[26] Z. Li, M. Harman, and R. M. Hierons. Search
algorithms for regression test case prioritization. IEEE
Trans. Software Eng., 33(4):225–237, 2007.

[27] P. Maeder, P. Jones, Y. Zhang, and J. Cleland-Huang.
Strategies for effective traceability in safety critical
systems. IEEE Software, To appear (May/June 2013).

[28] A. Panichella, B. Dit, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia. How to effectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In ICSE, pages
522–531, 2013.

[29] M. D. Penta, M. Neteler, G. Antoniol, and E. Merlo. A
language-independent software renovation framework.
Journal of Systems and Software, 77(3):225–240, 2005.

[30] A. Rathore, A. Bohara, R. G. Prashil, T. S. L.
Prashanth, and P. R. Srivastava. Application of
genetic algorithm and tabu search in software testing.
In Bangalore Compute Conf., page 23, 2011.

[31] W. N. Robinson. A requirements monitoring
framework for enterprise systems. Requir. Eng.,
11(1):17–41, 2006.

[32] Y. Shin and J. Cleland-Huang. A comparative
evaluation of two user feedback techniques for
requirements trace retrieval. In Proc. of 27th
Symposium on Applied Computing (SAC), 2012.

[33] Y. Shin, J. Huffman Hayes, and J. Cleland-Huang. A
framework for evaluating traceability benchmark
metrics. In Technical report, DePaul University,
School of Computing, pages TR:12–001, 2012.

[34] V. Souza, A. Lapouchnian, and J. Mylopoulos.
Evolution requirements for adaptive systems. 7th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012.

[35] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and
P. Krause. Rule-based generation of requirements
traceability relations. Journal of Systems and
Software, 72(2):105–127, 2004.

[36] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A.
Holbrook. Assessing traceability of software
engineering artifacts. Requir. Eng., 15:313–335,
September 2010.

[37] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching
for better configurations: A rigorous approach to clone
evaluation. In 9th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2013), 2013. To appear.

[38] E. Weyuker, R. Bell, and T.J.Ostrand. We’re finding
most of the bugs, but what are we missing? In 3rd
International Workshop on Testing, Verification and
Validation, 2010.

[39] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J.-M. Bruel. Relax: a language to address
uncertainty in self-adaptive systems requirement.
Requir. Eng., 15(2):177–196, 2010.

388

