
Model Checking Service Compositions under Resource
Constraints

Howard Foster1, Wolfgang Emmerich2,
Jeff Kramer1, Jeff Magee1, David Rosenblum2 and Sebastian Uchitel1

London Software Systems
1 Dept. of Computing, Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK
2 Dept. of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
1 {hf1,jk,jnm,su2@doc.ic.ac.uk} 2 {w.emmerich,d.rosenblum@cs.ucl.ac.uk}

ABSTRACT
When enacting a web service orchestration defined using
the Business Process Execution Language (BPEL) we ob-
served various safety property violations. This surprised
us considerably as we had previously established that the
orchestration was free of such property violations using ex-
isting BPEL model checking techniques. In this paper, we
describe the origins of these violations. They result from a
combination of design and deployment decisions, which in-
clude the distribution of services across hosts, the choice of
synchronisation primitives in the process and the threading
configuration of the servlet container that hosts the orches-
trated web services. This leads us to conclude that model
checking approaches that ignore resource constraints of the
deployment environment are insufficient to establish safety
and liveness properties of service orchestrations specifically,
and distributed systems more generally. We show how model
checking can take execution resource constraints into ac-
count. We evaluate the approach by applying it to the above
application and are able to demonstrate that a change in
allocation of services to hosts is indeed safe, a result that
we are able to confirm experimentally in the deployed sys-
tem. The approach is supported by a tool suite, known as
WS-Engineer, providing automated process translation, ar-
chitecture and model-checking views.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation

General Terms
Design, Languages, Verification

Keywords
Web Services, Resource Modelling, Validation, BPEL4WS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

1. INTRODUCTION
The Business Process Execution Language

(BPEL4WS) [2] has become the de-facto industry standard
for orchestrating web service invocations. Such orchestra-
tions effectively compose several web service invocations.
This combination can be given its own interface in a Web
Service Description Language and then becomes a web
service in its own right. Thus, we expect BPEL to take a
central role in any service oriented architecture.

BPEL supports a number of synchronisation primitives to
invoke other web services. Such invocations can be done in a
synchronous, deferred synchronous or asynchronous manner.
BPEL also includes a primitive to determine the concurrent
execution of a block of statements. In order to avoid concur-
rency problems, such as lost updates or inconsistent analy-
ses, the language supports locking primitives so that vari-
ables that maintain state can be accessed in mutual exclu-
sion. The combination of these primitives mean that BPEL
orchestrations that are not written carefully may deadlock
or exhibit other safety or liveness property violations.

In [8], we have shown how such safety property violations
of BPEL orchestrations can be detected. The approach rests
on a translation of BPEL processes into Finite State Pro-
cesses [16] and subsequently into labelled transition systems,
which can then be model checked using, for example, our
Labelled Transition System Analyser to establish presence
or absence of deadlocks or other safety or liveness prop-
erties. We have used this approach to establish deadlock-
freedom of a web service orchestration that implements a
scientific workflow to search for polymorphic crystal struc-
tures of complex organic molecules described in detail in [7].

Following implementation and deployment of these pro-
cesses in the open source ActiveBPEL process engine, we
were very surprised to find that every so often the BPEL
process would not terminate for no obvious reason. The
BPEL process that implements this scientific workflow is
computationally quite demanding. It spawns several thou-
sand sub-processes and has tens of thousands of web service
invocations. It turned out that a complex interaction be-
tween the allocation of web services to servlet containers, the
size of thread pools of the BPEL engine and the threading
policy adopted by the host server that processed invocations
and replies caused deadlocks of a hierarchy of processes that
was itself deadlock-free.

The main contribution of this paper is two-fold. We firstly

225



give a detailed account how a process that provably satisfies
safety and liveness properties can still be unsafe, and can
deadlock or livelock in a resource constrained environment.
We deduce from this insight that resource constraints need
to be considered when reasoning about safety or liveness
properties of web service orchestrations. Secondly, we de-
scribe a technique for model checking service compositions
under resource constraints and evaluate this approach using
the polymorph case study.

In Section 2, we provide a background to service orches-
tration, resource management and discuss related work. In
Section 3, we describe the case study that raised the issues
we are addressing in our work. In Section 4, we discuss a
method of modelling processes under resource constraints
and our abstraction of the problem domain. Section 5 il-
lustrates a validation of the models and suggests resolution
alternatives, whilst section 6 concludes this paper with a
summary and an indication of our future work in this area.

2. BACKGROUND
A Web Services Architecture (WS-A) is a set of conceptual

elements which define a common set of standards between
interoperating components, running on different platforms
and/or frameworks. The W3C definition of WS-A [3] in-
cludes a note that there is no restriction on how these ser-
vices are implemented or combined to provide more complex
compositions. The web services standards stack (including
specifications for data, interface, service description, orches-
tration and choreography) is evolving to support various as-
pects of creating a web services architecture, yet there re-
mains an ambitious task of building systems on such archi-
tectures and it is closely aligned with the capabilities of tech-
nology support. Amongst these standards is the Business
Process Execution Language for Web Services (BPEL) [2],
for service composition and orchestration. BPEL has gained
significant support by both industry and academia. The no-
tation in this specification aims to provide a standard de-
scription of processes which interact with a number of ser-
vice partners, and therefore research has explored modelling
these orchestrations to provide both design and implemen-
tation support in building complex processes.

Other work in the analysis of web service orchestrations
includes mapping BPEL to Petri Nets [19], for control logic
checking of BPEL and describes addition analysis for isolat-
ing “redundant messages” that are not necessary if a certain
activity has been performed. This appears to be an advan-
tage for efficiency in composition processing although the
level of benefit of this ability is difficult to measure. Alter-
natively, [12] uses Petri net-based models to represent web
service composition flows independently of a particular spec-
ification. In this work they define a “web service algebra”
(in BNF-like notation). There is a little coverage however,
of how this maps to current standard web service composi-
tion languages (such as BPEL4WS or WS-CDL). In [22] web
service compositions are described in the Language of Tem-
poral Ordering Specifications (LOTOS). The authors extend
a mapping between the algebra and BPEL4WS by provid-
ing rules for a partial two-way process, but again there is no
easily accessible mechanism for web service engineers to per-
form this analysis. Fu [10] provides an analysis tool based
upon translation of BPEL4WS descriptions to Promela and
analysed using the SPIN tool. They also apply limited
XPath expressions for state variable access analysis.

There has been little published on the design of web ser-
vices architectures, compositions and resource management.
Closely related to these topics however, are the works pub-
lished on component resource management and evaluation
of their resource usage. In [5] the authors present a for-
malism for specifying component interfaces that expose re-
quirements on limited resources. Their formalism permits
an algorithmic check if a composition of components exceeds
the available resources (e.g. network buffer overflows) and
suggests an optimal configuration. [24] models the states of
a set of printer components which uses memory resources
for pages, fonts etc. Using probabilistic calculus their ap-
proach also permits compositional resource usage reasoning.
Alternatively, [13] uses Labelled Transition Systems (LTSs)
in a theoretical framework capable of conducting analyses
of discrete-event processes that interact through shared, dis-
crete resources. The approach defines a simulation language
(called DEMO), which mimics the acquisition and release of
available resources in both synchronous and asynchronous
processes.

To date, existing enterprise application component server
technology, such as the Java 2 Enterprise Environment
(J2EE) compliant server framework and Microsoft .NET
framework, have extended capabilities to host components
as services. The deployment of web services into a web ser-
vice container means that the resource demands of a web
service during an invocation are controlled by the container
in cooperation with the underlying operating system. These
resources include memory, file descriptors, database connec-
tions and threads. Containers typically terminate if they
exhaust memory or if the number of file descriptors that
can be open at any one time is exceeded. The behaviour
for the management of database connections and threads
is different though and a container would have a fixed and
configurable pool of these resources, allocate resources from
these pools to web services and if this pool is exhausted it
would force web service executions to wait until a resource
becomes available again.

Web service compositions using BPEL are executed by a
specialist container, sometimes called a BPEL engine or a
BPEL run-time environment. These containers will again
use resources. BPEL engines will, for example upon receiv-
ing a SOAP message to start a BPEL process, instantiate
this process and execute it in a separate thread concurrently
with other ongoing BPEL processes. Again BPEL engines
typically have configurable database connections and thread
pools and they would delay the start of a BPEL process until
they can assign a thread from a pool. Both Web service and
BPEL containers typically map these threads efficiently to
a set of operating system threads. The amount of operating
system threads however, is finite due to the finite amount of
memory required to handle the stack segment of the thread.
Administrators must therefore carefully configure the thread
pools to avoid exhaustion of the operating system resources.

3. SAFETY AND LIVENESS VIOLATIONS
DUE TO RESOURCE CONSTRAINTS

3.1 Case Study
We have modelled a sizable theoretical chemistry work-

flow using BPEL. The workflow is used to predict organic
crystal structures from the chemical diagram. In order to

226



Figure 1: Case Study Workflow Hierarchy

structure the complex workflow, we have decomposed it into
a number of component workflows, which each expose a web
services interface. This decomposition is shown in Figure 1.
Arrows in the diagram indicate the synchronous invocation
of the web service that is implemented by a BPEL process.
Some client component invokes the root workflow, which
then invokes up to 38 InvokeMolpak workflows in parallel.
These, in turn, invoke the GSSubmission workflow in order
to submit jobs to a grid resource manager. The GSSubmis-
sion workflow uses the GridSAM web service [14] to submit
a job and then polls the GridSAM monitoring service until
the results are returned. Once these jobs are completed a
further 200 parallel InvokeDmarel workflows are instantiated
that then in turn each again submit a job to the GSSubmis-
sion workflow, causing the same process of job submission
and polling for results. The workflow and its orchestration
in BPEL are defined in detail in [7].

3.2 Naive deployment
We deployed all BPEL processes in the same instance of

the ActiveBPEL workflow engine and hosted the engine in
a Servlet container on a powerful Linux server. We hosted
the GridSAM web service in the same Servlet container. As
we had previously established deadlock freedom using the
approach and tools described in [8], we were considerably
surprised to find that the process would deadlock on a reg-
ular basis and it took us quite some time to understand the
cause of these deadlocks.

The deadlocks were caused by a complex interplay be-
tween allocation of web services and BPEL processes onto
execution hosts, the synchronisation behaviour of the web
service and BPEL processes on the one hand and the thread-
ing behaviour and thread pool configuration of both the
servlet engine and the BPEL engine on the other hand. We
had configured the Linux operating system to provide 2048
threads. We allocated 750 threads to the BPEL engine and
another 900 threads to the Servlet container. The concur-
rency constraints were such that easily more than 750 pro-
cess instances could be active at any one time. Under those
circumstances the ActiveBPEL engine enqueues the process
instances to wait until a thread from the engine’s thread
pool becomes available. Similar behaviour occurs with the
processing of SOAP messages by the Axis servlet that is
contained in Tomcat. Tomcat allocates a thread to process
for each incoming SOAP message and the thread is released
into the thread pool once the matching SOAP reply message
is set. In our workflow it is again possible for the pool of 900
threads to be exhausted and in that case, the SOAP mes-
sages get queued in the TCP stream until threads become
available to process them. Taken together, this behaviour
means that there is a chance for deadlocks because when

no threads are available and GSSubmission workflows are
polling for results using the monitoring service then these
invocations will not return, which means that the respec-
tive GSSubmission workflows will not terminate, which also
means that no further threads will be released and the sys-
tem enters a state of deadlock.

3.3 Key insight
The deadlocks described above, or more generally safety

and liveness property violations, can be caused by resource
allocation decisions of the underlying distribution middle-
ware. To ascertain safety and liveness of distributed sys-
tems it is therefore necessary to integrate models of the
abstract process behaviour with models that describe the
policies used for resource allocation policies of the underly-
ing middleware. We also note that fundamentally different
technology stacks are competing with each other for oper-
ating system resources and these need to be reconciled with
each other, too.

4. RESOURCE AWARE PROCESS MOD-
ELLING

The activity of providing resource aware process mod-
elling is formed from considering the architecture, the pro-
cesses and the resource allocation. To concisely build mod-
els of these concepts, we use the Finite State Process (FSP)
notation developed by Jeff Magee and Jeff Kramer of the
Distributed Software Engineering Group at Imperial Col-
lege London. We begin by briefly describing this notation.

4.1 FSP, LTS and Behaviour Models
Our approach uses an intermediate representation to un-

dertake analysis of web service compositions and choreog-
raphy. The FSP notation [16, 17] is designed to be easily
machine readable, and thus provides a preferred language
to specify abstract processes. FSP is a textual notation
(technically a process calculus) for concisely describing and
reasoning about concurrent programs. The constructed FSP
can be used to model the exact transition of workflow pro-
cesses through a modelling tool such as the Labelled Tran-
sition System Analyzer (LTSA) [23], which provides a com-
pilation of an FSP into a state machine and provides a re-
sulting Labelled Transition System (LTS). FSP supports a
range of operators to define a process model representation.
A summary of the operators for FSP is given as follows. Ac-
tion prefix “->”: (x->P) describes a process that initially
engages in the action x and then behaves as described by the
auxiliary process P; Choice “|”: (x->P |y->Q) describes a
process which initially engages in either x or y, and whose
subsequent behaviour is described by auxiliary processes P
or Q, respectively; Recursion: the behaviour of a process
may be defined in terms of itself, in order to express rep-
etition; Sequential composition “;”: (P;Q) where P is
a process with an END state, describes a process that be-
haves as P and when it reaches the END state of P starts
behaving as the auxiliary process Q; Parallel composition
“||”: (P ||Q) describes the parallel composition of processes
P and Q; Trace equivalence minimisation “determinis-
tic”: deterministic P describes the minimal trace equivalent
process to P. If no terminating traces are proper prefixes of
other traces, then it also preserves END states; Weak se-
mantic equivalence minimisation “minimal”: minimal

227



P describes the minimal weak semantic equivalent process
to P; Relabelling “/”: Re-labelling is applied to a process
to change the names of action labels. The general form of
re-labelling is / {newlabel/oldlabel}; Hiding “\”: When
applied to a process P, the hiding operator \{action1, ac-
tionx} removes the action names from the alphabet of P
and makes these concealed actions “silent”.

4.2 Modelling the architecture
The technology architecture we have used in our case

study (described in section 3.1) is that based upon the
Apache Tomcat 5.5 Servlet/JSP Container [23] and the
ActiveBPEL Engine [1] which runs on the J2EE environ-
ment. The server is used to host two BPEL processes,
and other web services, to carry out the intensive process-
ing of molecule breakdown analysis. Both Tomcat and Ac-
tiveBPEL provide a ”maxThreads” attribute to limit the
number of threads available if requested, although it is a
general characteristic of these engines types that they pro-
vide unlimited threads to support a growing need as client
requests are made to the services. Such technology imple-
mentations require an architecture to model how certain op-
erations acquire or release resources. In the case of Ac-
tiveBPEL we have found that the architecture described
in the ActiveBPEL Engine documentation required further
analysis of the engine logs to determine when threads are ac-
quired or released. Furthermore, different technologies built
to support the service orchestration implementations may
carry out the specification with their own strategy, which
effects the way in which resource management is utilised.
Our model of resource management is focused on the thread
pool utilisation and as such, is sufficiently generic enough to
represent varied differences in architecture configuration.

A model of the architecture can describe the characteris-
tics of the host server and orchestration as follows. There
are a number of Architecture Description Languages (ADLs)
we could use to describe this architecture, including DAR-
WIN [15], ACME/ADML [11], and UML [18]. We se-
lected an open format in the form of the eXtensible ADL
(xADL) [6] as it is general, maps to many ADLs, and has
good tool support. xADL 2.0 supports run-time and design
time modeling, architecture configuration management and
model-based system instantiation. Additionally, xADL 2.0
has a set of extensible infrastructure tools that support the
creation, manipulation, and sharing of xADL 2.0 documents.
An architecture model produced in ArchStudio 4 (an archi-
tecture meta-modeling environment built upon the xADL
2.0 specification) is illustrated in Figure 2. The underlying
document for this model is a xADL 2.0 XML description
which can be used later in our work to provide a source
for generating the server architecture process model. The
process of abstracting these elements from the underlying
document is quite detailed, and the focus of this work is on
the analysis of the behaviour exhibited, therefore we only
provide a summary here of how the types are mapped to
process elements. In our illustration the two BPEL process
components are connected to a servlet component through
”hosted” connector interfaces. The servlet component itself
is connected to a threadpool component through a ”man-
ages” connector interface, and the threadpool component
has an interface which includes a property of ”Size=10” to
demonstrate a threadpool size limitation. The architecture
description illustrated supports an abstraction of architec-

Figure 2: Server, Process and Resource Architec-
ture

ture elements which are necessary for our analysis, i.e. com-
ponents, connectors and links. As xADL 2.0 is extendable,
we foresee that further attributes of the architecture sup-
ported in analysis can be added at a later stage.

We now begin our process modelling by considering the
resource management aspects of the architecture.

4.3 Modelling resource management
A resource, or more specifically a system resource, is any

physical or virtual component of limited availability within
a computer system. Every device connected to a computer
system is a resource. Every internal system component is
a resource. Process related resources are typically defined
in one of three groups [20], that of Processor (thread pools,
priority mechanisms and intraprocess mutexes), Communi-
cation resources (protocol properties, connections etc) and
Memory (buffering requests in queues and bounding the size
of a thread pool). One such resource that is commonly used
with multiple processes and interactions is that of a shared
thread pool. We model the shared thread pool in FSP as a
sequence of processes which ”get” or ”put” a resource from
a container (Figure 3). The shared thread pool (TPOOL)
is a container for N number of threads (in the architecture
example given previously this was the ”SIZE=10” property
of the threadpool component), and represents the service
orchestration server technology stack for allocating and re-
leasing threads as required by the orchestration processes.
When a process is composed with this thread pool, those
interactions which acquire a thread (represented by the first
conditional statement of ”(t>0) get ->TPOOL[t-1]”) de-
crease the pool by one thread if there exists unallocated
threads in the pool. Alternatively a completed interaction
may free a thread which is represented by the statement
”put ->TPOOL[t+1]”, adding a thread back to the pool.

4.4 Modelling technology stack interactions
We now have a model of a generic shared thread pool,

and an architectural description with allocations of the pro-
cesses and resource pool to server instances. We must now
model the behaviour of the processes (hosted on the server
environment) and link these with the servlet and resource
process models.

4.4.1 Orchestration Behaviour and Resources
Figure 4 illustrates how a simple BPEL process acquires

and releases threads as the process is carried out, instigated
by an initial request message. A host servlet (in which the
process is contained) acts as a generic provider for listening

228



TPOOL(N=10) = TPOOL[N],
TPOOL[t:0..N] =
(when (t>0) get -> TPOOL[t-1]
|put -> TPOOL[t+1]).

Figure 3: FSP and LTS for a shared Thread Pool
model.

and managing to service requests. The servlet also requires
a thread, and is allocated one when the server starts.

Figure 4: Web Service Server, Servlet and BPEL
Process Thread Acquisition and Releases.

A scenario of thread resource management for host, con-
tainer and process (depicted in figure 4) is a follows. As
discussed, initially the servlet acquires a thread for its own
purposes (1). On a new request, the servlet attempts to
direct the message to the appropriate point in an existing
BPEL process, however, in the event there is no running
process then a new process is created and assigned a thread
(2). The ”receive” construct of BPEL usually provides an
entry point in to the process for a particular service oper-
ation request and is also assigned a thread (3). Immedi-
ately following the receive is an invocation (4), defined by a
”invoke” construct to another partner of the process. The
invocation is assigned a further thread (5). In this case the
invocation is synchronous and the invocation awaits a re-
ply from the partner. When a reply is given, the assigned
invocation thread is released back to the pool (6). As the
orchestration is of a composition of service interactions, the
process expects to receive a further request from another
partner (7). When this occurs another ”receive” requires
an additional thread (8) and the message is accepted. The
process does not reply to this request (the servlet responds
with a standard confirmation) and therefore the thread is
released back to the pool. A ”reply” statement completes
the process, and consequently releases the thread from the
initial ”receive” construct (9). On process completion the
process handler also frees its allocated thread. The remain-
ing thread allocated for the servlet, remains allocated for
the lifetime of the servlet instance on the host server.

4.4.2 Mapping Orchestration Activities
In more complex orchestrations, or where there are multi-

ple processes hosted in a servlet, the assessment of resources
required becomes increasingly difficult to estimate. A pro-
cess model however, can provide a formal specification of
the interactions and can be composed with resource mod-
els to detect where possible deadlocks may occur given a

// --- partial FSP for process transitions ---
GSSUB_SUBMITJOB = (GSSUB_

jobsubmissionpartner_invoke_submitjob->END).
GSSUB_SUBMITJOB_REPLY = (GSSUB_

jobsubmissionpartner_reply_submitjob ->END).
WAIT1_PT120S = (wait1_pt120s->END).
GSSUB_SEQ2 = (GSSUB_jobmonitoringpartner_

invoke_getjobstatus->END).
GSSUB_REPLY = (GSSUB_jobmonitoringpartner_

reply_getjobstatus ->END).
GSSUB_SEQ = GSSUB_SEQ2; GSSUB_REPLY; END.
GSSUB_SEQUENCE= WAIT1_PT120S; GSSUB_SEQ2; END.
||WHILE2 = (GSSUB_SEQUENCE).
// --- create and terminate additions ---
GSSUB_CREATEINSTANCE = (

createInstance_gssubmission->END).
GSSUB_TERMINATEINSTANCE = (

terminateInstance_gssubmission->END).

Figure 5: Partial FSP for GSSUBMISSION BPEL
Process.

limited number of resources available. In [8] we described
a mapping of BPEL processes to the FSP notation, and
here we extend this to support mapping interactions to re-
source allocation activities. Each of the BPEL interaction
activities of Invoke (synchronous), Invoke (asynchronous),
Receive and Reply, are represented in FSP as an activ-
ity label. The format of this label is in a template of
”process partner operation activity”, where ”process” is the
name of the BPEL process, ”partner” is the name of the
partner role for which the interaction is taking place, ”oper-
ation” is the method of the activity (e.g. newOrder, sellBook
etc), and ”activity” is the interaction form (i.e. invoke, re-
ceive or reply). Using these rules and as an example, we
translate each of the BPEL processes to FSP. This activity
maps each of the BPEL constructs to FSP operators and
activity labels. A sample of the FSP generated is listed in
Figure 5 along with a LTS Model (Figure 6) for the process
(short names have been used for presentation).

The key additions to our mapping for resource allo-
cation are as follows. Firstly we add an action for
the create and terminate process instances. These are
represented simply as GSSUB CREATEINSTANCE and
GSSUB TERMINATEINSTANCE in the example. In the
BPEL specification, a process may be instantiated by con-
taining at least one ”start activity”. This may either be
designated on a ”receive” activity or a ”pick” (which re-
sembles the switch..case statement in traditional structured
programming languages) through the use of a ”createIn-
stance” attribute. There is no restriction for the number
of activities which may create an instance of a process, and
there are further semantics for how these correlate on a
given process. Therefore, a createInstance action can oc-
cur in multiple activities, but only one may actually create
an instance of a process. In our current mapping capabil-
ity, we assume that one activity will be designated to cre-
ate an instance of a process. In the example given for the
GSSUBMISSION process, this is immediately following the
”client GSSUB receive runGSSUB” activity.

4.4.3 Linking Service Orchestrations
In our case study, the INVOKEDMAREL orchestration

calls the GSSUBMISSION orchestration to request a ”Rung-
Submission” operation. In this way, the two orchestrations
are interacting and our modelling approach needs to reflect
this in order to evaluate interactions accurately. We leverage

229



Figure 6: LTS Model for GSSUBMISSION BPEL Process.

our previously reported work on “compatibility verification”
in [9] for Web Service choreography. To model the interac-
tion between processes we require a process link between the
“invoke”, “receive” and “reply” actions of the BPEL4WS
processes and a model of how these interactions are buffered
across the system. Partner process activity interactions can
be represented in FSP by using the notion of a connector,
which encapsulates the interaction between the components
of the service architecture. This is implemented in FSP as a
monitor, allowing us to combine the concepts of information
hiding and synchronization. “Rendezvous” (Request-Reply)
invocations are specified in BPEL4WS with the “invoke”
construct, with both input and output container attributes.
To model these types of interactions, we use a generic syn-
chronous port model for each process port. Synchronous
invocations specified with the “invoke” construct and only
an input container attribute declare an interaction on a re-
quest only basis (there is no reply expected). With both
of these invocation model types, the connection interaction
for invoke activities in BPEL4WS can be modeled effectively
using transition links for send, receive and reply processes in
FSP. The task of modeling the invocation process and port
is completed by using the re-labeling feature of FSP link-
ing the appropriate activities between process and port. An
example of this port connector model is listed in FSP for
the INVOKEDMAREL and GSSUBMISSION interactions
as follows;

// --- port reply model ---
INVOKEDMAREL_GSSUBMISSIONPARTNER_RUNGSSUBMISSION
_PORT_REPLY = (gssub_gsclient_reply_rungssub-
mission->gssubpartner_invokedmarel_reply_rungs-
submission->INVOKEDMAREL_GSSUBMISSIONPARTNER_
RUNGSSUBMISSION_PORT_REPLY).

// --- port invoke model ---
INVOKEDMAREL_GSSUBMISSIONPARTNER_RUNGSSUBMISSION
_PORT_INVOKE = (invokedmarel_gssubpartner_
invoke_rungssubmission->gssubmissionclient_
gssubmission_receive_rungssubmission->
INVOKEDMAREL_GSSUBMISSIONPARTNER_
RUNGSSUBMISSION_PORT_INVOKE).

4.4.4 Linking Orchestration and Resource Manage-
ment

Now that we have provided methods for producing a
resource management process model for thread pools,
a translation of BPEL to an LTS process model and
interaction linking between processes, we can further define
a mapping between these models and include a model of
the acquisition and release of system thread resources.
Specifically for each orchestration architecture, we scan
each of the orchestration process interactions and gather
those which are resource-operator activities. In the case
of the BPEL notation, these are receive, invoke and reply.

A pseudocode algorithm for undertaking this is given as
follows.

For each Server Resource Pool
For each BPEL process model assigned

Gather the process interaction labels
For each interaction label

Determine operation of interaction
if operation is resource-operator then

add interaction label to resource-operator-list
add resource-operator-list to pool-operator-list

For each pool-operator-list item
if item is receive or invoke operator then

relabel item with pool get operator
otherwise

relabel item with pool put operator
add item-relabel to pool-resource-map

add createInstance to pool-resource-map
add terminateInstance to pool-resource-map
generate pool-resource-map process

END.

Additionally, we add a resource and activity mapping for
the createInstance and terminateInstance activities. These
are added as a resource ”get” and ”put” respectively. The
last activity stated is that of generating a pool-resource-
map process and is the result of the linking algorithm. To
generate this, we need to define a process stub for each com-
bination of orchestrations sharing the server resource pool
and represent that a number of instances of these processes
can exist at a given time. For example, in our case study we
have two BPEL orchestrations ”GSSUBMISSION” and ”IN-
VOKEDMAREL”. Both of these utilise the pool resources
and undertaking the algorithm provides us with a process
illustrated as FSP in Figure 7.

Note that each of the ”get” and ”put” relabelling is as-
signed to a given process ”proc[P]”. This represents one or
many instances of the processes on the server. ”proc” is pro-
cess label as a set of P interacting processes. So for example,
”proc[2]” would model two instances of both the GSSUB-
MISSION and INVOKEDMAREL orchestrations interact-
ing. In this way, we can simulate a number of clients re-
questing the orchestrations (where an initial request is made
to start either of the orchestrations).

4.4.5 A Complete Model for Validation
A complete model is represented in FSP in figure 8.

The FSP for the entire process is detailed, and there-
fore a summary illustrates the individual elements that
have been listed previously with an architecture model
representing a composition of these elements. Firstly,
we specify two compositions for the orchestrations

230



// --- pool mapping to acquire a resource ---
/{proc[P].{createInstance_gssubmission,
gssubmissionclient_gssubmission_receive_rungs-
submission,gssubmission_jobsubmissionpartner_
invoke_submitjob,gssubmission_jobmonitoring
partner_invoke_getjobstatus,createInstance_
invokedmarel,invokedmarelclient_invokedmarel_
receive_invokedmarel,invokedmarel_molpak2cml-
partner_invoke_preparedmarel,invokedmarel_gs-
submissionpartner_invoke_rungssubmission}
/get,

// --- pool mapping to release a resource ---
proc[P].{terminateInstance_gssubmission,
jobsubmissionpartner_gssubmission_reply_
submitjob,jobmonitoringpartner_gssubmission_
reply_getjobstatus,gssubmission_gssubmission
client_reply_rungssubmission,terminateIns-
tance_invokedmarel,molpak2cmlpartner_invoked
marel_reply_preparedmarel,gssubmissionpartner
_invokedmarel_reply_rungssubmission,invoked
marel_invokedmarelclient_reply_invokedmarel}
/put}.

// --- configure set of client processes ---
const Max_Processes = 2
range P = 1..Max_Processes

Figure 7: Resource Mappings for BPEL interactions
and Thread Pool

(GSSUBMISSION and INVOKEDMAREL) representing
their process models. We then compose these orches-
trations with their related port connector models, to
represent the linked interactions between them. This
linked model is a parallel composition named INVOKED-

MAREL GSSUBMISSION RUNGSSUBMISSION PORT ,
which combines invocation and reply models for these
interactions of both orchestrations. A complete interaction
model for the orchestrations is then provided (named
CompositionArchitecture) which combines the port con-
nector model and the process models described previously.
The last process model to combine with the orchestration
models is the deployment architecture. This is simply
a combination of both CompositionArchitecture and the
server resource pool which is allocated to the designated
deployment server for the orchestrations. In the example
given, this complete model is named ”DEPLOY ARCH”.
Note that each combined model is linked by the mapping
of process activity labels.

4.4.6 Abstraction and Limitations
Inherent in model checking is a scaleablity issue relating

to the degree of abstraction required, the state space of the
models generated and the type of analysis performed [4].
The complete model discussed previously was based upon
a number of abstractions for workflow and resource mod-
elling. Firstly, in our orchestration mapping, our case study
workflows used 200 parallel invocations of the same require-
ment and thus we were able to abstract to 2 client invo-
cations (of a single invocation type) to check concurrency
on a smaller scale. We have also assumed that only a sin-
gle activity causes a new process instance to be created (for
example the receive activity from a service client to the In-
vokeMolpak orchestration is modelled as the only process
instance creation trigger) yet in more complex orchestra-
tions there could be a number of such activities. We have
also abstracted from data analysis (which may also affect be-
haviour of the orchestration). More specifically this means

// orchestration models
||GSSUBMISSION_BPELModel=(GSSUBMISSION_SEQUENCE1).
||INVOKEDMAREL_BPELModel=(INVOKEDMAREL_SEQUENCE1).
// orchestration port connector models
||GSSUBMISSION_JOBSUBMISSIONPARTNER_SUBMITJOB_PORT
= (GSSUBMISSION_JOBSUBMISSIONPARTNER_SUBMITJOB_
PORT_INVOKE || GSSUBMISSION_JOBSUBMISSIONPARTNER
_SUBMITJOB_PORT_REPLY).

||INVOKEDMAREL_GSSUBMISSION_RUNGSSUBMISSION_PORT =
(INVOKEDMAREL_GSSUBMISSIONPARTNER_
RUNGSSUBMISSION_PORT_INVOKE || INVOKEDMAREL_
GSSUBMISSIONPARTNER_RUNGSSUBMISSION_PORT_REPLY).

// composition architecture (process and ports)
||CompositionArchitecture = (GSSUBMISSION_
BPELModel || INVOKEDMAREL_BPELModel || PORTS_
GSSUBMISSION_JOBSUBMISSIONPORTTYPELINK_
SUBMITJOB || PORTS_GSSUBMISSION_JOBMONITORING
PORTTYPELINK_GETJOBSTATUS || PORTS_INVOKEDMAREL_
MOLPAK2CMLPORTS_PREPAREDMAREL || PORTS_
INVOKEDMAREL_GSSUBMISSIONPLINKTYPE_
RUNGSSUBMISSION).

// deployment architecture of processes, ports
// and shared thread pool
||DEPLOY_ARCH = (proc[P]:CompositionArchitecture
|| TPOOL(10))

Figure 8: A summary of the complete model.

that a process may be influenced by the content of the mes-
sages rather than just by traditional control logic, which
we currently do not observe. Our architecture modelling is
based upon the configuration known to the specific technolo-
gies in our case study (namely Tomcat and ActiveBPEL),
and it is likely that alternative technologies will exhibit dif-
ferent process and resource management patterns. This also
relates to the size of the resource pool, which was predicted
on a brief visual calculation of the process interaction types.
We consider how we may address these limitations in our
conclusions and further work.

5. VALIDATION

5.1 Detecting deployment deadlocks
A safety property Q in FSP is represented by an image of

the LTS of the process expression that defines the property.
The image LTS has each state of the original LTS and has
a transition from each state for every action in the process
alphabet of the original. Transactions added to the image
LTS are to the error-state and signify a failure in verifica-
tion. The LTSA tool has an inbuilt safety check to deter-
mine whether a specified process is deadlock free. Deadlock
analysis of a LTS model involves performing an exhaustive
search of the LTS for deadlock states (i.e. states with no
outgoing transitions). Firstly, if we check our individual or-
chestration models for deadlock freedom they show positive
(i.e. no deadlocks detected). Secondly, if we check the linked
orchestrations, combining these models with port connector
models, they show positive (again no deadlocks detected).
Thirdly we check the complete model which includes all the
elements of orchestration models, port connectors, server
and orchestration allocation, and the server thread resource
pool. The complete model is assigned a number of client
instances, in this case we choose to verify against 2 concur-
rent client requests of the service orchestration. This time
a deadlock is detected and is illustrated as a set of interac-
tions in a Message Sequence Chart (MSC) in Figure 9. Note
that normally the semantics of MSCs show an ordered set of

231



Figure 9: Trace to DEADLOCK in polymorph case
study for 2 concurrent client requests and 2 orches-
trations deployed on a server with a shared thread
pool

interactions. For ease of illustration, we have included two
sets of interactions on one chart, whereby the parallel exe-
cution of client requests 1 and 2 are shown with 2 following
1 - although they are infact concurrent.

The reason for this deadlock is an exhausted resource
thread pool allocation, whereby a request to create a new
instance of the GSSUBMISSION orchestration process is
never fulfilled due to the interaction causing an activity of
requesting for a new thread. A summary of this thread
management against activity and process is listed in Ta-
ble 1. The concurrent allocation of thread resources for
client requests 1 and 2 is the cause for the pool limit to
be reached, with each request waiting for a response which
can never be received. For each request a thread is allo-
cated upon the process “receive” activity. A new instance
of the InvokeMarel orchestration process is then created,
and an invocation of the Molpak2CMLPartner is invoked
(creating 2 more threads). Replies to these invocations are
accepted (which release the allocated threads for the invo-
cation to the Molpak2Partner service), and two further in-
vocations are created to the GSSUBMISSION orchestration
process (allocating two threads in the sequence). The invo-
cations are received by the GSSUBMISSION host (creating
2 new threads) and an attempt to create two new instances
of GSSUBMISSION is undertaken. For the first request a
thread is allocated, however for the second request there are
no more available thread resources available in the pool. A
deadlock situation has occurred whereby neither of the in-
vocations can be replied to as the GSSUBMISSION would
also require further threads to undertake its activities (in-
vocations of other services).

Activity ToPartner P1 P2
receive invokedMarel 9 8

createProcess invokedMarel 7 6
invoke molpak2cmlpartner 5 4
reply invokedMarel 5 6

invoke gssubmission 5 4
receive gssubmission 3 2

createProcess gssubmission 1 0

Table 1: Thread allocation in trace to deadlock

Figure 10: Refined Architecture Model

5.2 Resolving deployment deadlocks
There are a number of options to resolve this deadlock.

Firstly, we could simply increase the number of threads
available in the shared resource pool. If we double the pool
to 20 threads available, the deadlock is resolved. However,
in terms of the architecture this may eventually lead to a
limit of the maximum number of threads available for a
server. This option could also impact performance of the
server overall, with other shared services suffering as a con-
sequence. An alternative option is to split the shared pool
and host the orchestration on a separate instance. In this
case the total number of resources reserved remains the same
however, we now model two thread resource pools and model
that each of the two orchestrations in our case study are allo-
cated to individual thread pools. The FSP for this solution
changes the main composition and process P relabelling as
listed below for P1 ”get” and P2 ”put”:

||DEPLOY_ARCH2 = (proc[P]:CompositionArchitecture
|| p1:POOL(5)|| p2:POOL(5))/

{proc[P].{createInstance_gssubmission,
gssubmissionclient_gssubmission_receive_
rungssubmission,gssubmission_jobsubmission
partner_invoke_submitjob,gssubmission_
jobmonitoringpartner_invoke_getjobstatus}
/p1.get,

proc[P].{terminateInstance_invokedmarel,molpak2
cmlpartner_invokedmarel_reply_
preparedmarel,gssubmissionpartner_
invokedmarel_reply_rungssubmission,
invokedmarel_invokedmarelclient_
reply_invokedmarel}
/p2.put}.

Note that each of the interactions for each orchestration
are split between a thread ”get” (to allocate a thread) and
a thread ”put” (to release the thread back to the pool) and
that these are assigned to each instance of a thread pool ”p1”
and ”p2”. Thus, for each client request, each orchestration
will utilise a thread pool designated by the orchestration
and activity mapped. The architecture model is similarly
updated to reflect this split, and is illustrated in Figure 10.
In summary, we have introduced a new orchestration host
servlet (container) and a new associated shared thread pool.

If we perform our deadlock analysis again, the interactions
of 2 concurrent client requests does not cause a deadlock sit-
uation where one is blocking the other from completing a set
of interactions. This mirrored the solution taken in the case
study (section 3.1) in which the deployment architecture was
reconfigured with a new servlet to host one of the two service
orchestrations.

232



5.3 Different resource types
In our analysis we have considered the thread pool man-

agement as a significant resource to model as it was the cause
of the initial deadlock in our case study. There are of course,
a number of resources which are managed by service tech-
nology architectures including memory allocation, processor
instances, and port availability. Our approach can be used
to define and model these constraints and include them in
analysis. The broader scope of analysis could contribute to
consideration of Service Level Agreements (SLAs) in a ser-
vice architecture being both from a perspective of the level
of service quality to the client, and also that the provider
is not subjected to a request load that they cannot fulfil.
In [21] an approach to monitor the timeliness of service pro-
vision (the duration in which requests can be completed)
at runtime is discussed. Reasoning about the provision of
services to clients is critical in maintaining a SLA, partic-
ularly where an exhausted service resource pool leads to a
violation of the SLA.

5.4 Tool Support in WS-Engineer
A tool, illustrated in (Figure 11), is known simply as ”WS-

Engineer” and is built on the existing LTSA tool suite [13].
The tool offers an extendable framework to support multi-
ple editor and view types using the core Eclipse framework.
The WS-Engineer plug-in provides editors for BPEL4WS
and FSP and FSP code is automatically generated for the
BPEL processes supplied. From an FSP description, the
tool generates an LTS model. The user can animate the
LTS by stepping through the sequences of actions it mod-
els, and model-check the LTS for various properties, in-
cluding deadlock freedom, safety and progress properties.
The WS-Engineer plug-in architecture leverages our previ-
ous work and is extended to support the approach in this
paper through Deployment views. In this work we have used
XML, WSDL, BPEL4WS and xADL, but we also support
modelling WS-CDL for service choreography models. The
WS-Engineer Eclipse plug-in is available for download from
the following web page: http://www.doc.ic.ac.uk/ltsa.

6. CONCLUSIONS AND FURTHER WORK
In this paper we have presented an approach to the mod-

elling, analysis, detection and resolution of deadlocks for a
web services composition under a number of resource con-
straints. Our approach applies a modelling of web service
compositions in the form of a translation of BPEL4WS ser-
vices to FSP and a representation of architectures with re-
sources. Within our approach however, are a number of as-
sumptions. In this first case we have abstracted several areas
of the composition, and in particular to scale the processes
for modelling efficiency. We plan to experiment with large
process compositions to test the approach and technology.
We also assume that the user can describe the behaviour
of service orchestration engines (for example the semantics
for the ActiveBPEL engine), yet once defined these could
be gathered to provide a suite of alternative architectures to
test certain configurations upon iteratively prior to deploy-
ment (and perhaps find an optimal architecture). We also
currently have a limited representation of BPEL4WS seman-
tics, in that we assume a single activity marks the instance
creation of a service component. This leads us to explore
further work to expand the coverage of multiple activities
that can create a new instance of a service component.

We plan to expand the approach to consider other re-
source constraints. The scope is also defined to cover other
properties such as dynamic analysis of policies for service
interactions in service choreography and also the analysis of
composition deployments on distributed architectures.

Acknowledgements
We are grateful to Liang (Ben) Chen and Bruno Wasser-
mann for identifying the problem and helping us understand
where the problem originated. We thank Sally Price for pro-
viding a web service orchestration that was sufficiently re-
source demanding for the problems to occur. This work has
been funded partly by the EU project IST-2005-16004 (SEN-
SORIA), EPSRC project GR/S90843/01 (OMII-BPEL) and
by an IBM Eclipse Innovation Award (2006).

7. REFERENCES
[1] Active-Endpoints. Activebpel engine, 2005. Available

at: http://www.activebpel.org.

[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia,
Yaron Goland, Johannes Klein, Frank Leymann,
Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,
Ivana Trickovic, and Sanjiva Weerawarana. Business
process execution language for web services version
1.1, 2004.

[3] David Booth, Hugo Haas, Francis McCabe, Eric
Newcomer, Michael Champion, Chris Ferris, and
David Orchard. Web services architecture, w3c
working group note 11 february 2004, 2004. Available
at: http://www.w3.org/TR/ws-arch/.

[4] T. Bultan and A. Betin-Can. Scalable Software Model
Checking Using Design for Verification. In Proceedings
of the IFIP Working Conference on Verified Software:
Theories, Tools, Experiments, volume 989, Zurich,
Switzerland, 2005.

[5] Chakrabarti, A., Alfaro, L.D., Henzinger, T.A., and
Stoelinga, M. Resource interfaces. In Third
International Conference on Embedded Software
(EMSOFT 2003). ACM Press, 2003.

[6] Eric M. Dashofy, Andre Van der Hoek, and
Richard N. Taylor. A highly-extensible, xml-based
architecture description language. wicsa, 00:103, 2001.

[7] W. Emmerich, B. Butchart, L. Chen, B. Wassermann,
and S. L. Price. Grid Service Orchestration using the
Business Process Execution Language (BPEL).
Journal of Grid Computing, 3(3-4):283–304, 2005.

[8] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Model-based Verification of Web Service
Compositions. In Proc. of the 18th IEEE Int.
Conference on Automated Software Engineering, pages
152–161. IEEE CS Press, 2003.

[9] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff
Kramer. Compatibility for web service choreography.
In 3rd IEEE International Conference on Web
Services (ICWS), San Diego, CA, 2004a. IEEE.

[10] Xiang Fu, Tevfik Bultan, and Jianswen Su. Wsat: A
tool for formal analysis of web services. In 16th
International Conference on Computer Aided
Verification (CAV), Boston, MA, 2004.

[11] C. Goyette. Xml applied to product line software
development, 2005. Available from:
http://www.mcc.com/projects/ssepp/papers.

233



Figure 11: The WS-Engineer Tool Environment

[12] Rachid Hamadi and Boualem Benatallah. A petri
net-based model for web services composition. In 3rd
IEEE International Conference On Web Services
(ICWS), San Diego, CA, 2004.

[13] Jonathan Haymann. The application of a resource
logic to the non-temporal analysis of processes acting
on resources (hpl-2003-194). 2003. Available at:
http://www.hpl.hp.com/techreports/2003.

[14] W. S. Lee, A. S. McGough, S. Newhouse, and
J. Darlington. A Standard Based Approach to Job
Submission through Web Services. In S. Cox, editor,
Proc. of the UK e-Science All Hands Meeting,
Nottingham, UK, pages 901–905. UK EPSRC, 2004.

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schafer and P. Botella, editors, Proc. 5th European
Software Engineering Conf. (ESEC 95), volume 989,
pages 137–153, Sitges, Spain, 1995. Springer-Verlag,
Berlin.

[16] J. Magee and J. Kramer. Concurrency - State Models
and Java Programs - 2nd Edition. John Wiley, 2006.

[17] Jeff Magee, Jeff Kramer, and D. Giannakopoulou.
Analysing the behaviour of distributed software
architectures: a case study. In 5th IEEE Workshop on
Future Trends of Distributed Computing Systems,
Tunisia, 1997.

[18] OMG. Unified modelling language (uml) 2.1.1
specification, 2007. Available from: www.uml.org.

[19] C. Ouyang, W.v.d Aalst, S. Breutel, M. Dumas, A.t.
Hofstede, and H. Verbeek. Formal semantics and
analysis of control flow in ws-bpel (revised version)
bpm-05-15. Technical report, BPMcenter. org, 2005.

[20] Pyarali, I., Spivak M., Cytron, R., and Douglas C., S.
Evaluating and optimizing thread pool strategies for
real-time corba. In ACM SIGPLAN workshop on
Languages, compilers and tools for embedded systems,
Language, Compiler and Tool Support for Embedded
Systems. ACM Press, 2001.

[21] F. Raimondi, J. Skene, L. Chen, and W. Emmerich.
Efficient monitoring of web service slas (research note
rn/07/01). 2007. Available at:
http://www.hpl.hp.com/techreports/2003.

[22] G. Salan, L. Bordeaux, and M. Schaerf. Describing
and reasoning on web servicesusing process algebra. In
3rd IEEE International Conference On Web Services
(ICWS), San Diego, CA, 2004.

[23] The-Apache-Software-Foundation. Apache-tomcat 5.5,
2005. Available at: http://tomcat.apache.org/.

[24] Chris Tofts. Efficiently modelling resource in a process
algebra (hpl-2003-181). 2003. Available at:
http://www.hpl.hp.com/techreports/2003.

234


