
Control Theory Meets Software Engineering:
The Holonic Perspective

Luca Pazzi
DIEF - University of Modena and Reggio Emilia

Via Pietro Vivarelli 10
Modena, Italy

luca.pazzi@unimore.it

ABSTRACT
One of the main challenges towards a software-based theory
of control consists in finding an effective method for decom-
posing monolithic event-based interactive applications into
modules. The task is challenging since this requires in turn
to decompose both the invariants to be maintained as well as
the main control loop. We present a formalisms for gathering
portion of behaviour by special units, called holons, which
are both parts and wholes and which can be arranged into
part-whole taxonomies. Each holon hosts a state machine
and embodies different invariants which give semantics to
its states. Control is achieved by both taking autonomously
internal actions by the state machine in order to maintain
such state invariants, as well as by having the the state ma-
chine move from one invariant to another by actions driven
by external events. Such an approach requires to introduce
non trivial solutions in order to allow communication among
such modules, mainly by implementing control loops among
couple of holons. The proposed model consists essentially
in shaping each module in order to be both a controller and
a controllable entity. Each module may control a definite
number of modules and is controlled by a single module.
Control is exercised by discrete events which travel through
a communication medium. Control actions as well as feed-
back events travel thus from a module to the another, thus
achieving local control loops which, taken globally, decom-
pose the main control loop.

Categories and Subject Descriptors
H.1 [MODELS AND PRINCIPLES]: General

Keywords
Holons, Part-Whole Statecharts, Compositional verification

1. INTRODUCTION
Time-dependent real-time software systems deal with fast

changing environments, to which they adapt in order to

maintain a specific and often complex operation task. Chang-
ing environments are heavily dynamical, and their changing
behaviour is often revealed by events which reach the soft-
ware system [12]. Software systems react to external incom-
ing events by producing, in turn, other outgoing events to-
wards the environment, thus closing the loop and becoming
de facto control systems (Figure 1).

physical environment
(phenomenon under

control)

physical
status

physical
control

M
Controller's logic

Sensors Actuators

logical
action

logical
feedback

Figure 1: Asymmetry in the control process at first
glance. A generic controllable phenomenon does not
know its controller M , while the controller is de-
signed specifically for dealing with the phenomenon
through actuators and sensors.

Software systems are required to exhibit however other
features, mainly effectiveness, robustness, and dependabil-
ity: when dealing closely with real world, such features have
to ensure, in first place, liveness and safety properties. Al-
beit a control software may be even conceived as a mono-
lithic block modelling a single global behaviour, a really ef-
fective software development methodology requires to mod-
ularise the overall control software in order to defeat the
overall complexity. This requires in turn a coherent crite-
rion for decomposing, as well as composing, the control loop.
Though control engineers practiced such a decomposition for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CTSE’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3814-1/15/08...$15.00

http://dx.doi.org/10.1145/2804337.2804343

34

many years, a deeper understanding of the basic software en-
gineering notion of module structure and connectivity would
improve both control theory and software engineering. If a
modelling paradigm is more efficient then it is presumably
more natural, i.e., ontologically sound. By the current view,
systems are seen “as transmitting and transforming signals
from the input channel to the output channel, and intercon-
nections are viewed as pathways through which outputs of
one system are imposed as inputs to another system” [13].
Such a view of systems seen as signal transformers is naively
accepted by both software and control engineering commu-
nities, but reveals its limitation especially when modelling
interconnected systems under a software engineering per-
spective, typically raising problems in terms of understand-
ability, reusability and maintainability. Even worse, once
systems are interconnected by direct links, model checking
becomes infeasible due to the exponentially growing com-
plexity of the resulting system. A paradigm shift is therefore
needed in order to ensure effective modularity. The paper
describes an ongoing research [6][8] in modular decomposi-
tions of behaviour of reactive and autonomic systems [7].
In particular this paper will focus on the hierarchic con-
trol of distributed invariants and can be seen a continuation
of [6]. We believe that the application to control theory of
the holonic approach may shed new light and bring further
ideas to the original research in software engineering.

As in [9] we are interested in the basic control problem
of ensuring that a logical predicate remains invariantly true
when it is initially satisfied. By the supervisory control ap-
proach [10] the problem bears to state space explosion that
is exponential in the number of system components. It be-
comes thus necessary to explore modular system architec-
tures with the property that the overall complexity can be
appropriately defeated. We devise a state-based tree-like
structure of modules as in [5]: our composition model and
general motivations are similar also to those in [2], but we
believe our model is conceptually cleaner and simpler.

Our approach is mainly focused on restricting communi-
cation among modules and on labelling states by invariant
state propositions as described in detail in [8]. State tran-
sitions laid among states have to comply with both arrival
and starting state propositions. In other words, each module
is “correct by construction” in the sense that it is guaran-
teed that when control is in a state a given proposition on
the states of its components is always satisfied. More com-
plex predicates can be existentially or universally verified by
exploring the state diagrams within the modules.

We start by examining (Section 2) how events reveal struc-
tural aspects of the domain, and as such may be used in
order to shape modelling constructs among which they flow.
Events are not only the basic elements of communication in
control, they reveal different aspects of entities participat-
ing in the scenario being controlled. The way events flow
to and from them may in fact help conceiving a method for
decomposing control around the participating entities and
for shaping control structures. Such control structures may
on their turn be centred around behavioural constructs, fi-
nite state automata, which indeed prescribe control by pars-
ing and generating event flows. Additionally, since the time
of the Fusion methodology [1], finite state automata pro-
vide a very effective tool for specifying software behaviour
in the development process [11] and notably they can be
easily transformed into code or directly executed by a suit-

able interpreter. Holon inspired control modules are there-
fore shaped around such behavioural constructs. They pro-
vide a connection framework in which events flow from one
state machine to another by following a decomposition hier-
archy. Section 3 introduces finally holons as control units by
a working example adapted from [6] used in order to show
the feasibility of the approach.

2. FROM EVENTS TO MODULES
Events taken separately are not meaningful: their sequences

instead reveal complex phenomena happening in the real
world. Such sequences are part of a language built upon
them denoting indeed real-world phenomena. For example
it can be easily observed that “door-open, door-close, light-
green, engine-on” is a string of events belonging to the lan-
guage describing the interaction of an automated car and a
traffic light. Such a car is additionally provided with doors
for embarking and disembarking passengers along a track:
additionally, it stops and restarts its engine according to sig-
nals from traffic lights on its route. Doors are automatically
opened when the car has to embark/disembark passengers
and closed when it restarts. Doors are locked when the car
moves, but the locking mechanism may be bypassed and the
doors may be opened at any time, in which case the car
has to stop immediately. By the schema of Figure 2 it may
be hypothesised that a controller takes care of the mutual
interaction of the doors and of the engine.

CAR

ActuatorSensor

DOOR

Sensor Actuator

ENGINE

open,
close

open,
close on, offoverheating

Figure 2: Module Car parses and generates the
joint language which denotes the synchronization
of its controlled modules. Events may be distin-
guished between input events (bold) and output
events (italic) and travel, respectively, along double
and single arrow lines.

Entities belonging to the environment produce a language
built from a vocabulary of words, i.e. strings of events com-
ing from their respective event alphabet. Modelling some
sort of interaction means restricting the full set of sequences
that can be built from the alphabet of events of the partici-
pating entities. Consider for example the interaction of the
doors of the automated car and its engine. Once the engine
and the doors do not interact, that is when they are taken
physically apart, any sequence of events from their joint vo-
cabulary may be observed. We call it the free alphabet of
the doors and the engine, for example “door-open, engine-
off ” and “door-open, engine-on” are both words belonging
to their joint free vocabulary. In order to model a useful

35

behaviour, the second word has to be banned, since a sim-
ple safety constraint does not allow the vehicle to move with
doors open.

In order to shape a useful joint language, that is a use-
ful behaviour, we therefore insert a module which is able
to observe and to prescribe events to both the involved en-
tities. Module Car of Figure 2, for example, is the place
where any aspect regarding the mutual interaction of the
car’s components, doors and engine, should be modelled. It
may be observed that there are now two distinct loops, each
carrying information from module Car to and from mod-
ule Door and Engine. An event can be either directed from
the controller towards a component (double arrow lines), in
this case driving its actuator, or being emitted by the sen-
sor of the component towards the controller (single arrow
lines). In the former case the event denotes an action that
the component has to undertake, in the latter the event de-
notes a spontaneous action that already happened within
the component.

Module Car may be conceived as hosting an automaton
which acts both as parser and generator of the joint lan-
guage of the two components. The parsing and generating
mechanism may be thought as being implemented by tran-
sitions of such automaton which are triggered by events be-
longing to the sublanguage being parsed while, at the same
time, forwarding events belonging to the sublanguage being
generated (Figure 3).

close / on
S T

from module Doors

close

to module Engine

on

Figure 3: Module Car parses and generates the joint
language of modules Doors and Engine by a tradi-
tional Statecharts diagram, whose transitions are
labelled by events belonging to the modules in the
form of triggers and forwarded events

2.1 From Modules to Holons
The car taken as a whole interacts with the traffic lights

signals, producing its own set of events, for example start,
stop and fail which in turn form meaningful words once
interleaved with the alphabet of the traffic light, for example
“light-green, car-start” and “light-red, car-stop”.

Such events denote the external behaviour of the car, that
is the behaviour of the car taken as a whole observable from
outside. Conversely, the joint behaviour of the components
of the car (the doors and the engine in the example) will be
referred to as the internal behaviour of the car. Both be-
haviours have to agree, and therefore the related languages
have to be parsed and generated accordingly. It is there-
fore necessary to endow the automaton within the module
of additional modelling capabilities, in order to have the two
behaviours match in a meaningful way. In other words, the
languages of the car components have to agree with the lan-
guage of the car taken as a whole.

This requires a more elaborated syntax and semantics
than traditional Statecharts. Part-Whole Statecharts [8] al-
low to label a state transition with specific constructs in or-

der to account for internal and external events. Two differ-
ent transition typologies result, as shown in Figure 4. Syn-
chronisation amongst the internal and the external language
is achieved by allowing both internal and external events to
be present in the same state transition with specific opera-
tional meanings, which underly two different reactive mech-
anisms. For example, the transition of Figure 4 (a) models
an externally triggered behaviour. The car, seen as a whole,
is required to start by receiving event go from an exter-
nal module, and the doors and the engine are as a result
required of being, respectively, closed and turned on. Fig-
ure 4 (b) models instead an internally triggered behaviour.
In that case, the happening of an event within a component
(the opening of a door while moving) requires the engine
of being stopped and the car, seen as a whole, to emit an
undirected fail event towards an unspecified client module.

The need to take into account, at the same time and by
a single behavioural construct, an internal and an external
language, requires to introduce a new modular construct,
called holon, presented in the next Section.

triggered
from module d.Door

open

to module e:Engine
close

Fail
Safe

d.open <e.off>

fail

to unspecified
client module

Go

internal aspects
(implementation)

external aspects
(interface)

(b)

to module d:Doors
close

to module e:Engine
on

Go
<d.close, e.on>

go

triggered
from unspecified

client module

Stop

internal aspects
(implementation)

external aspects
(interface)

(a)

Figure 4: Part-Whole Statecharts is a state-based
formalism which is able, amongst other features, to
integrate internal and external behavioural aspects.
Two main reactive patterns are feasible, that is ex-
ternally (a) and internally (b) triggered transitions.
Events are syntactically distinguished into directed
and undirected ones.

3. THE HOLONIC FRAMEWORK
In the preceding sections we argued for constructs which

exhibit a “double behavioural nature”, that is they should
be able to account both for an internal language as well as
an external language. What we need are therefore modular
units which are able to conform to such a double nature.
Each module needs therefore four ports, two on the internal
and two on the external behavioural side. Such ports are
meant to be behavioural connection points to other mod-
ules. Modules should communicate one with the other by
connecting the internal ports of the module acting as compo-
nent to the external ports of the module acting as compound

36

entity. Each module should finally expose only its external
features, hiding the internal ones.

Holons, by Arthur Koestler [3][4], have a double, “Janus
face”, nature, thus being able to host both an implemen-
tation and an interface as in Figure 5-(a), referred to as
internal and external aspects in the previous sections. The
interface allows to view and use the module as“part”, the im-
plementation allows instead to view the module as “whole”,
that to coordinate a number of other holons as parts.

The interest of the holonic approach in the context of a
novel software-engineering based theory of control consists
indeed in the feasibility of composing holons through partial
control loops. Each holon playing the role of whole coordi-
nates n different holons playing the role of parts through
n control loops. Holons within a holarchy cooperate in or-
der to achieve a global task by exchanging control events of
different typologies which travel along the lattice of control
loops established among them.

The ontological rationale behind such a choice is that, as
shown in Figure 1, a monolithic control software (the con-
troller) acts upon the environment, aimed at changing its
current set of properties, called collectively state. As the
state of the environment changes, events are generated (for
example temperature changes) and broadcast towards the
controller. Vice versa, the controller prescribes directed ac-
tions to actuators, for example turning a furnace on in order
to raise the temperature of the room. In other words, this
marks an asymmetry since the controller knows the con-
trolled entity, but not vice versa, in the sense that trivially
the temperature of the room only implicitly and indirectly
acts on the temperature controller. The proposed framework
mimics such an ontological property of controlled processes
by having controllers the capability to observe controlled
entities, not vice versa.

This paves the road for an effective software development
method, where modular reusability is of primary concern
and underlies the general principle of asymmetry in control.
Each modular artifact is in fact totally reusable since it has
to be designed in full generality without having to know the
module to which it has to be composed.

3.1 Invariant-Based Holonic Control
Monolithic control applications fulfill different tasks, each

possibly consisting in maintaining different logical invari-
ants.

Holons have an asymmetrical and complementary nature
by which they can be composed into holarchies, as in Fig-
ure 5-(b). Root modules can be seen as bare implementa-
tions, since they do not need to be further composed in the
context of a control application. Leaf modules are simple
interfaces, since they are the logical view of sensors and ac-
tuators. A holarchy can be thus defined as a set of holon
modules connected through control loops by which events
flow upwards and downwards. Events can be classified into
different typologies depending on the direction in which they
travel and to the target to which they are directed. The
framework presented is aimed at maintaining equivalently
control of such state invariants dispersed amongst separate
component holons within a hierarchy. Within a specific
module of the holarchy such invariants become state invari-
ants of the PW-Statechart governing it. Internal and exter-
nal aspects of the PW-Statechart hosted by a single holon
match the communication ports, by following the schema

External
feedback

Externally
requested
behavior

Component
feedback

Component
requested
behavior

Implementation

Interface

12

3 4

Implementation

Implementation

Interface

Implementation

Interface

Interface
Implementation

Interface

Interface Interface

(b)

(a)

Figure 5: (a) Holon modules present four logical
ports and are split into an implementation and an
interface part; (b) By connecting iteratively port 2
with port 3 and port 1 with port 4 it is possible to ob-
tain hierarchical structures called “holarchies”, con-
sisting of nodes connected by partial control loops.

depicted in Figure 5-(a).
Koestler conceived indeed holons as self-regulatory units [4].

Each holon node is designed for maintaining a limited set of
invariants which are not visible to its components. Modules
Doors and Engine, in the example, do not know that their
current joint state must fulfill a limited set of state invari-
ants. Such invariants are encoded in the holon which has
them as components. Only module Car indeed knows for
example that the opening of the door requires the engine to
stop.

A holarchy may be seen therefore as a directed acyclic
graph of self-regulatory nodes, each node maintaining its
own invariants by perturbing its components and being per-
turbed by other nodes having it as component. A state
invariant can be seen indeed as a “configuration” of compo-
nents.

Module Car in Figure 6 has three invariants associated to
its states; state Stop for example is such that when the con-
trol is in the state then doors are opened and the engine
is stopped (C1), when in state Go doors are closed and the

37

t6
t7

t7

t6

t1

t2
Stop Go<d.close, e.on>

t3

Fail
Safe

c.stop

<d.open, e.off >

d: Doors e: Engine

<e.off >d.open

restart
<d.close, e.on >

go fail

c: Car

t5

e.overheating
<d.open>

close

Free Lock

opent1
t3

t4

Open Closed

t1 t2

t5

open

close

t2
onOff

offt1
t3

On

overheating

t4

d.open
d.close

open
close

fail

overheating e.on
e.off

fail
c.go

stop

green

Red Green

red
t1

Sec Emer
gency

t1

c.Go & tl.Green

tl: TrackLight

GTM

t4

t2

t3

Main

c.Stop & tl.Red

t2

t3

tl.red
<c.stop>

tl.green
<c.go>

c.fail
<tl.blink>

c.FailSafe &
(tl.Blink || tl.Red)

<c.restart>

t5

[tl.Green]

green
red

d.Open & e.Off d.Close & e.On d.Open & e.Off

c.restart
tl.blink

Blink
blink

tl.red

red

reset
<tl.red>

reset

Figure 6: The holarchy implemented by PW-Statecharts modelling the behaviour of the holon Car by its two
component holons (Doors and Engine) and of a GTM (Global Track Monitor) holon having Car and TrackLight
as components (adapted from [6]).

engine is running (C2). Finally, when in state FailSafe doors
are opened and the engine is stopped (C3). Observe that the
same state invariant may be associated to different states, for
example Stop and FailSafe share C1 and C3. The holon Car
moves along the three state invariants above. Each state in-
variant may be invalidated by both an external as well as an
internal stimulus. External stimuli change the current state
and the associated invariant (Figure 7-(a)). Internal stim-
uli come from autonomous state changes happening within
components. Invariants need then to be restored by sending
commands to components (Figure 7-(b)).

3.2 Partitioning Control Invariants
A holonic application maintains global state invariants by

the recursive composition of control over partial invariants.
Each partial invariant is such that it logically constrains the
states belonging to the component holons. For example,
when the control is in state Main in module GTM (Global
Track Monitor) of Figure 6, then invariant condition CGTM

2 =
c.Go∧tl.Green holds, meaning that module car is moving and
traffic light is green.

Control consists in comparing, at each clock step, whether
condition CGTM

2 holds compared to the global state of its
components. In this way, only components at the immediate
upper level have to be checked in order to verify whether
the desired invariant holds. In case a difference is noticed
between CGTM

2 and the current state of the components, for
example by the traffic light changing to red, either

1. current state invariant has to be restored by the global
track monitor GTM by sending a command to its im-
mediate upper level components Car and TrackLight;
this is not possible since the GTM would request the
light to switch back to green but the requested traffic
light behaviour is modelled through autonomous non
triggerable transition t3; or

2. the GTM module has to switch to a different state in-
variant which complies with the current global state
of the immediate upper level components, in the exam-
ple by moving from state Main to state Sec through
transition t3 in module GTM.

38

Closed
On

Open
On

d.open

Open Closed

Off

On

doors

en
gi

ne

Open
Off

Open Closed

Off

On

doors

en
gi

ne

Open
On

e.off

Go Fail
Safe

d.open <e.off>

failt6

t2

t3
C2C 0

2

C 0
2

C3

Off
Closed

Off
Open

d.close

Open Closed

Off

On

doors

en
gi

ne

Off
Closed

Open Closed

Off

On

doors

en
gi

ne

On
Closed

e.on

Stop Go
<d.close, e.on>

got2

t4

t2

C1 C 0
1

C 0
1

C2

(a)

(b)

Figure 7: (a) An external stimulus (event go) make
the holon change its current state from C1 = d.Open∧
e.Off to C2 = d.Closed ∧ e.On by forwarding additional
event stimuli towards its components, which modify
their configuration. (b) An internal stimulus (a door
is opened manually by event d.open) makes invariant
C2 = d.Closed ∧ e.On invalid and triggers a change of
state to the state having associated condition C3 =
d.Open∧e.Off, which becomes the new state invariant.
The holon then emits event fail towards the external
composition context.

In both cases the only current global state which has to
be looked up or modified is the one resulting form the cur-
rent state of the components at the immediate upper level.
Control is thus exercised only by establishing a control loop
consisting of a single level of composition. By such schema
of control, commands travel upward while feedback travels
downward and is used to establish, incrementally, the cur-
rent state of the components. Feedback from components
may implicitly trigger state transition, that is, feedback con-
sists in information regarding their current state, not the
transitions which have to be triggered in the client holon.
For example in Figure 6 a change of state in the doors is
revealed by feeding back the event d.open which denotes in-
deed the change of state which happened. Holon Car reacts
to such an event by triggering a state transition since the
current state invariant no longer holds (in fact, doors must
be closed when car is running). Other client holons (that is
holons using the doors holon as component) may not need
to react to doors opening since they implement a different
application policy (for example doors may be both opened or
closed while the car is stopped). In other words, the same
change of state in a component is dealt with in different

ways, not foreseeable at design time.
Observe finally that since:
c.Go =⇒ (d.Close ∧ e.On)
We have that
c.Go ∧ tl.Green =⇒ d.Close ∧ e.On ∧ tl.Green
In other words each state invariant denotes one or more

configuration of leaf holons, as depicted in Figure 8. For
example CGTM

3 is equal to CCar
3 ∧ (tl.Red ∨ tl.Blink) which in

turn is equal to d.Open ∧ e.Off ∧ (tl.Red ∨ tl.Blink)

CGTM
2CGTM

1 CGTM
3

CCar
3CCar

1 CCar
2

Open Closed O↵ On

Red Blink

Figure 8: Each invariant in the Car as well as
the GTM (Global Track Module) denotes one or
more configurations of leaf (i.e. basic, unstructured)
holons.

3.3 Discussion and Further Research
Further research is needed in order to answer some notice-

able questions. For example: does the holonic perspective
provide some guidance for decomposing the control loop as
well as the overall behaviour? Which are the general re-
quirements imposed by the holonic perspective? Which are
its limits?

Holons do not provide any criterion for decomposing the
control loop, rather they support the decomposition or par-
titioning of control by simply hosting portions of behaviour
which is strictly necessary in order to implement the reactive
behaviour among a finite and limite number of components.
Events are generated as part of such a working behaviour
and are therefore dependent from it. In other words there is
no criteria for decomposing the main loop, each more com-
plex behavioural level is simply built upon previous less com-
plex levels. Each level emits events towards both more and
less complex layers. Event loops simply connect the different
layers and give rise to unforeseeable patterns of behaviour,
as in Figure 9. Further research is needed in order to under-
stand whether non terminating sequences of events may be
occasionally generated.

The overall behaviour of a monolithic control application
is devoted at maintaining a number of invariants. Each
holon acts as a self regulatory node in order to maintain
only some invariants. Once a mutual dependence is detected
among two holon entities, a third holon having such entities
as “parts” is required in order to host the mutual behaviour
and the mutual invariants. Invariants within a holon hence
constrain only to its component parts. In the example of Fig-
ure 6 holon subsystem Car is devoted at maintaining state
invariants which deal with the mutual interaction of its com-
ponent holons, i.e. doors and engine. Invariants are modelled
through state propositions. Each state proposition is a log-

39

Open Closed Off On

Stop Go Red Green

SecMain

redstop

open off

Open Closed Off On

Go FailSafe Green Blink

EmergencyMain

fail

open off

blink

(a) (b)

(*)

(*)

Figure 9: Two execution traces from the example of Figure 6. Observe that, by the proposed approach,
events propagate both upwards and downwards. Propagation origin is marked by (*).

ical formula which denotes the current state of the current
upper less complex level. At the same time each state of
such level is in turn constrained by another formula. As
shown in Figure 8 global invariants are maintained by main-
taining simpler invariants at each level. Further research is
finally needed in order to understand whether any system is
decomposable through a holarchy.

4. CONCLUSIONS
Distinguishing between internal and external events re-

quires to adopt new behavioural constructs. Such constructs
may in turn be hosted by a suitable module, which provides
communication facilities by which modules are connected
one with the other. Internal aspects of the module imple-
ment the activity of the system by coordinating its com-
ponents, external aspects model instead the activity of the
system seen as a whole. Connecting internal aspects of a
module to external aspects of a component module allows
to implement a partitioned form of control by establishing
control loops which decompose the main loop. Each control
loop is simply devoted at controlling its immediate composi-
tion level, that is at controlling holons which in turn controls
their own component holons, and so on.

One of more invariants coexist within a holon state-based
behaviour. Such invariants are state propositions associ-
ated to the states of the state machine. Once such proposi-
tions are invalidated, regulating events are sent to its com-
ponents in order to restore them. In case no restoring action
is possible, the state machine performs a transition to an-
other state whose invariant is compatible with the internal
changes, making them self-regulatory units as in Koestler’s
vision. Modules can be moreover verified directly at design
time by visiting their state invariants along their finite and
limited state diagram and composed at any time within a
holarchy without having to check them again.

The more appealing benefit of adopting the holonic per-
spective is therefore related to the capability of reducing
the overall complexity by modular units, together with the
feasibility of composing off-the-shelf verified modules.

5. REFERENCES
[1] D. Coleman, P. Arnold, S. Bodoff, C. Dollin,

H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: the Fusion Method.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1994.

[2] G. Delaval, S. Mak-Karé Gueye, E. Rutten, and
N. De Palma. Modular Coordination of Multiple
Autonomic Managers. In 17th International ACM
Sigsoft Symposium on Component-Based Software
Engineering (CBSE 2014), page 291, Lille, France,
June 2014.

[3] A. Koestler. Beyond atomism and holism - the
concept of the holon. Perspectives in Biology and
Medicine, 13(2):131–154, 1970.

[4] A. Koestler and J. R. Smythies. Beyond reductionism;
new perspectives in the life sciences. Macmillan New
York, 1970.

[5] C. Ma and W. Wonham. Nonblocking supervisory
control of state tree structures. Automatic Control,
IEEE Transactions on, 51(5):782–793, May 2006.

[6] L. Pazzi. Modeling systemic behavior by state-based
holonic modular units. In J. Dingel, W. Schulte,
I. Ramos, S. AbrahŃo, and E. Insfran, editors,
Model-Driven Engineering Languages and Systems,
volume 8767 of Lecture Notes in Computer Science,
pages 99–115. Springer International Publishing, 2014.

[7] L. Pazzi and M. Pradelli. Part-whole hierarchical
modularization of fault-tolerant and goal-based
autonomic systems. In Dependable Control of Discrete
Systems, 2009. DCDS ’09. 2nd IFAC Symposium on,
pages 175–180, 2009.

[8] L. Pazzi and M. Pradelli. Modularity and part-whole
compositionality for computing the state semantics of
statecharts. In Application of Concurrency to System
Design (ACSD), 2012 12th International Conference
on, pages 193 –203, june 2012.

[9] P. J. Ramadge and W. M. Wonham. Modular feedback
logic for discrete event systems. SIAM Journal on

40

Control and Optimization, 25(5):1202–1218, 1987.

[10] P. J. Ramadge and W. M. Wonham. Supervisory
control of a class of discrete event processes. SIAM
Journal on Control and Optimization, 25(1):206–230,
1987.

[11] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 1998.

[12] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[13] J. C. Willems. The behavioral approach to open and
interconnected systems. Control Systems Magazine,
pages 46–99, 2007.

41

