
An Experimental Evaluation of Approaches to Feature
Testing in the Mobile Phone Applications Domain

Laisa H. O. do Nascimento, Patricia D. L. Machado
GMF/DSC - Universidade Federal de Campina Grande (UFCG)

Caixa Postal 10.106 - 58109-970
Campina Grande - PB - Brasil

{laisa, patricia@dsc.ufcg.edu.br}

ABSTRACT
Software engineering is a discipline that cannot be applied
based solely on elegant theories. Real software production
requires software solutions that may apply a mixture of
engineering and ad-hoc practices in a systematic way. In
this sense, experimentation is staple for identifying the best
practices and solutions for a given software development
problem. This paper presents results from an experimen-
tal evaluation of the use of model-based testing and the
use of exploratory testing in the context of feature testing
for mobile phone applications. The study is based on the
Goal/Question/Metric paradigm. From the results obtained
and conclusions reached, an approach to feature testing is
proposed.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing strategies; D.2.8 [Software Engineering]: Met-
rics/Measurement—Process metrics

General Terms
Experimentation, Measurement, Software Testing

Keywords
Feature Testing, Model-Based Testing, Exploratory Testing,
GQM Paradigm

1. INTRODUCTION
In recent years, the development of mobile phone appli-

cations has become more and more complex: at the same
time that time-to-market decreases the development time it
increases the demand for the quality level of products. The
necessity of quality assurance intensifies the use of software
testing.

In this paper, we focus on the domain of interactive fea-
tures. This domain is characterized by applications, com-
posed of a number of features, that are highly interactive,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DoSTA ’07, September 4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-726-1/07/09 ...$5.00.

having their flow of execution guided mostly by external in-
put. These applications are often tested manually. Also,
the gap between specification and program is narrow, since
the logics are captured by external interactions. In this con-
text, feature testing (FT) is a crucial testing activity. A fea-
ture is a set of individual requirements that describes some
functionality. Alarm Clock, Phonebook and Messaging are
example of features usually found in mobile phone appli-
cations. A functional understanding of these applications
is more effectively achieved by investigating user interface
tasks behaviour.

Because features are usually developed and tested either
in isolation or within the context of a particular service [10],
FT is very important to help to reduce the number of defects
that escape from one phase to other during the development
and testing processes.

Along with the usual challenges to functional testing, FT
for mobile phone applications has some particularities:

• FT needs to be extensively executed - Due to the way
a feature is developed and integrated with different ap-
plications, it is fundamental that its behavior is in ac-
cordance with requirements. Thus, the feature has to
been thoroughly tested, maximizing defect detection.

• FT needs to be rapid - Time-to-market demands devel-
opment time to be minimized and, consequently, fea-
ture testing needs to be executed with minimum time
requirements.

• FT depends on deep requirements knowledge - FT is a
kind of functional testing, so it is necessary to acquire
an adequate level of knowledge of requirements and
also of the application domain to devise and execute
test cases. Moreover, it is usually necessary to know
potential applications behavior because the feature can
interact with others features.

• FT cases are executed several times - Feature test cases
can be re-executed several times during its develop-
ment cycle. Normally there is more than one test cycle
with variants of the same test suite.

Considering these aspects, what functional testing ap-
proach is more appropriate to be used in FT for mobile
phone applications? In attempt to answer this question, we
conducted an experimental evaluation of the use of Model-
Based Testing and the use of Exploratory Testing to test
mobile phone features. Both approaches present advantages
that make them potential candidates for FT. Nevertheless,

27

it is unclear which one is better suited for FT and what
are the forces that guide their successful adoption in the
mobile phone applications domain. The experimentation is
based on the Goal/Question/Metric paradigm. An evalua-
tion model is proposed for comparing the approaches. Also,
it applies the testing approaches to real features. From the
experimentation results obtained and conclusions reached,
an approach to feature testing is suggested.

The rest of the paper is organized as follows. In the next
section, we present examples of a feature requirement and a
test case. Sections 3 and 4 present the testing approaches
used in this study. Section 5 describes the experimentation
methodology used, while Section 6 presents the results ob-
tained. Finally discussions and conclusions are presented in
Sections 7 and 8.

2. FEATURE
Mobile phone applications are composed of features. A

feature is a clustering of individual requirements that de-
scribe a cohesive, identifiable unit of functionality [21]. These
requirements are described in documents that specifies the
behavior of a particular feature. For example, consider a fea-
ture named “Favorite Messages” that consists in move some
message from inbox folder to favorite messages folder. Fig-
ure 1 shows a fraction of a requirements document for this
feature.

Figure 1: A sample of feature requirements

An important characteristic of a feature is that its devel-
opment happens in an evolutionary manner. In practice,
a feature can evolve to another feature or it can have some
specific functionality described by other feature as a result of
interaction. This characteristic requires a good knowledge
of the feature requirements and the likely requirements of
the features to be affected. Because features are developed
in isolation and in an evolutionary way, FT is so important.

As mentioned before, FT is a kind of functional testing
that has some particularities. A feature test case is a tradi-
tional test case, with initial conditions, steps and expected
results (Figure 2). However, a FT test case needs to be ab-
stract since FT execution is usually manual. This is due to
the fact that mobile phone applications are highly interac-
tive. Also, most of the functionalities cannot be properly
checked by automated test cases as they require human in-
tervention. Moreover, their execution is not feasible, mainly,
due to technological barriers.

3. MODEL-BASED TESTING
Model-based testing (MBT) is a testing approach where

common testing tasks are based on a model of the appli-

Figure 2: An example of a feature test case

cation under test [16]. Basically, MBT is composed of the
following phases (Figure 3):

1. Model building - In this phase, a mental representation
of the system’s requirements is formed and mapped to
the model.

2. Test cases generation - Test cases are derived from the
model. The automation of this phase depends on the
nature of the model.

3. Test cases execution - Consists in running the test
cases generated previously.

4. Results analysis - Execution time and test cases results
are analyzed for model improvement.

One of the advantages of MBT is the possibility to autom-
atize test case generation because, as test cases are generated
automatically, the consistency between test cases and re-
quirements can be maintained effortless [12]. This is crucial
for mobile phone applications due the fact that feature re-
quirements are continuously changing to meet new demands
of integration with different applications of product families.
Besides, the automation can reduces the cost of the testing
process since it reduces the time of test cases creation [17].
Other advantage of using MBT is the possibility of reusing
development artifacts, particularly requirements documents
[4].

In the context of feature test for mobile phone applica-
tions, MBT, as it seems, is a promising approach, once the
time of the testing process can be reduced over automatic
test case generation, and feature test needs to be rapid. For
instance, Figueiredo et al [14] presents a model-based testing
approach to feature interaction testing where features and
interactions are specified as use cases that are translated
into models for test case generation.

Another point that favours the application of MBT in this
context is requirements coverage. Considering the hypothe-
sis that the model cover 100% of the requirements, the test

28

Figure 3: Model-Based Testing

cases generated automatically will probably cover too. This
fact guarantees that there are test cases for all requirements
described on requirements documents.

4. EXPLORATORY TESTING
The term exploratory testing (ET) was first published by

Kaner in his book Testing Computer Software to distinguish
exploratory testing and ad hoc testing. The ad hoc testing
is like a subtype of exploratory, where there are not anno-
tations to re-execute the tests [1]. ET can be defined as
a testing approach where design and execution of test cases
occur simultaneous. In other words, ET is any testing where
the tester controls the design while tests are performed and
uses the knowledge acquired to design better tests [3].

Exploratory testing complements other testing approaches
[18]. Some works have pointed out the advantages of its
use, like effectiveness, efficiency, and rapid feedback [2, 3].
However there are no scientific evidences about this [18].

Bach [2] presents a methodology to use exploratory testing
in test sessions. A test session can be defined as a pre-
determined time period where a tester tests the application
according to an objective, also pre-determined, and makes
a report with information about bugs, tester, and test time
among other details.

Considering the advantages of using ET, it seems that it is
a good approach to use in FT. By Using ET the tester uses
his skills. This fact increases the probability of detecting hid-
den faults more easily than using other testing approaches,

which can reduce the number of defects and improves the
effectiveness of FT.

Moreover, as mentioned before, feature test cases execu-
tion is usually manual due to the interactive nature of mobile
phone applications. This is particularly suitable for strate-
gies such as ET.

Finally, another characteristic of ET is that the tester ac-
quires knowledge about the system during test execution.
As FT demands deep requirements knowledge, this charac-
teristic increases our feeling that ET is a good approach for
feature test.

5. EXPERIMENTAL METHODOLOGY
In this section, we present an experimental methodology

to evaluate testing approaches. The focus is on evaluating
the use of exploratory testing and the use of model-based
testing in feature testing for mobile phone applications.

Experimentation in Software Engineering is important to
discover how some techniques performs, discover its limi-
tations and understand how to improve them [6]. When
we wish to evaluate some technique or process, it is neces-
sary to follow some measurement model that provides the
mechanisms to conduct this evaluation. Some mechanisms
for defining measurable goals have appeared in the litera-
ture: the Software Quality Metrics Approach (SQM) [8],
the Quality Function Deployment Approach (QFD) [19], and
the Goal/Question/Metric Paradigm (GQM) [5, 7]. Because
GQM allows the evaluation of the object of study [5], we
choose its for defining our measurement model.

The GQM paradigm is a mechanism for defining and eval-
uating a set of operational goals using measurements [5, 7].
A measurement model is defined into three levels: concep-
tual (goal), operational (question), and quantitative (met-
ric).

We use the Goal Question Metric (GQM) paradigm for
defining our measurement model. Firstly, we defined our
goal: Evaluate the use of exploratory testing and the use
of model-based testing in feature testing for mobile phone
applications. After that, we defined the questions:

• What is the effort in using each approach?

• How efficient is each approach?

• How relevant are the detected faults when following
each approach?

• Do the approaches find the same faults?

Finally, we defined the metrics to be consider in order to
find out answers to these questions:

1. Effort - The effort in testing T involves the time re-
quired to apply the approach. Thus, T is calculated
as

T = Ts + Te + Ta,

where Ts is the time for setting up the phone, choos-
ing the feature, looking for requirements documents,
generating the model and the test cases when using
MBT, and defining test plan when using ET; Te is the
time for test execution; Ta is the time spent on results
analysis (not in metrics calculation).

29

2. Efficiency - The efficiency EFF is related to the ratio
of detected faults. So, EFF is given by

EFF =
Nf

T
,

where Nf is the number of faults detected during test
execution, T is the effort in testing.

3. Relevance - The relevance R of an approach in the
context of FT for mobile phone applications is associ-
ated with the relevance of faults detected using it. We
calculate R as follows:

R =
∑

Rf

Nf
,

where Nf is the number of faults detected during test
execution; Rf is the relevance of a fault according to
some criterion. We suggest the criterion bellow:

• 1 - A transparent problem is invisible to the cus-
tomer. Example: bad layout.

• 2 - A minor problem that does not impede the
user from accomplishing the desired function. Ex-
ample: error messages aren’t very clear.

• 3 - A moderate problem that impedes, but does
not prevent, the user from accomplishing the de-
sired function. Example: user data must be mod-
ified to work.

• 4 - A serious problem that produces intermittent
loss of function or degraded performance. Exam-
ple: can’t use major product function.

• 5 - A critical problem that renders the work prod-
uct unfit for use and/or unable to be serviced.
Example: system crash.

4. Faults similarity - The faults similarity FA
⋂

B is the
intersection between the set of faults detected using the
testing approach A and the set of faults detected using
the testing approach B. FA

⋂
B is calculated as

FA
⋂

B = FA

⋂
FB ,

where FA is the set of faults detected using A, FB is
the set of faults detected using B. Faults similarity can
also be defined as:

FA
⋂

B

NfA+NfB
∗ 100%,

where NfA is the number of defects detected using A,
NfB is the number of defects detected using B.

Finally, we determined the mechanisms to collect the met-
rics defined above. Since the testing approaches have differ-
ent tasks, we define a sequence of activities for each one. For
model-based testing the tasks are:

1. Feature selection - This task is composed by two sub-
tasks:

• Requirements documents searching - For choosing
a feature to conduct an experiment, it is necessary
that it has some characteristics (size, complexity).
These characteristics are analyzed by reading re-
quirements documents; however sometimes these
documents are not available.

• Phone setting up - After selecting the require-
ments documents, it is necessary to verify if there
is an available phone with this feature implemented
in its software. If there is no phone, another fea-
ture has to be chosen.

At the end of this task, the feature has been selected.

2. Model generation - The behavioral model generation
consists in mapping the functional requirements for a
formal or semi-formal notation that represents the fea-
ture behavior. This task can be automated. For in-
stance, Cabral [9] presents a method to generate formal
specification from requirement documents.

3. Test cases generation - From the behavioral model de-
fined previously, the test cases are generated. This
task can be automated, depending on the nature of
the model. Cartaxo et al and Nogueira [11, 13] present
tools to generate test cases automatically from LTSs 1

and CSP 2 models respectively.

4. Test cases execution - Consists in executing the test
cases. A logger tool can be used to capture logs that
can help in results analysis.

5. Results analysis - This task concerns analysis of test
cases execution results. The metrics defined previously
are calculated.

Considering that in exploratory testing we do not generate
the behavioral model, the following tasks are suggested:

1. Feature selection - This task is performed in the same
way as for model-based testing

2. Test plan definition - Consists in reading documents
and writing test plans. The test plan defines test ses-
sions (see Section 4 for more details about test session
content).

3. Test plan execution - This task consists in executing
the test sessions defined in the test plan. A logger tool
can be used to capture the traces that can help in test
cases re-execution and in results analysis.

4. Results analysis - Consists in reading the test sessions
annotations and reporting the defects found. The met-
rics defined previously are calculated

Tables 1 and 2 show the tasks and the metrics that will
be collected at the end of the application of each approach.

1Labelled Transition Systems (LTSs) provide a formalism to
specify, model, analyze and reason about system behaviour
[15].
2Communicating Sequential Processes (CSP) is a formal
specification language primarily designed to describe the be-
havior of concurrent and distributed systems [20].

30

Table 1: Tasks when using model-based testing and
metrics to be collected.

Task Metric

Feature selection Ts

Model generation Ts

Test cases generation Ts

Test cases execution Te, Nf , Rf

Results analysis T Ta, EFF , R, FA
⋂

B

Table 2: Tasks when using exploratory testing and
metrics to be collected.

Task Metric

Feature selection Ts

Test plan definition Ts

Test plan execution Te, Nf , Rf

Results analysis T , Ta, EFF , R, FA
⋂

B

6. EXPERIMENTAL EVALUATION
In this section, we describe an experiment to evaluate two

testing approaches: model-based testing and exploratory
testing, in the context of feature testing for mobile phone
applications. The goals of this experiment were to validate
and to improve the measurement model used and to quickly
evaluate the use of these testing approaches in feature test-
ing. Therefore, as a preliminary experiment, we chose a
small sample of features. The experiment was performed
by one person with knowledge about how MBT and ET are
used in feature testing.

The methodology defined in Section 5 was used to conduct
this experiment. First, we applied the tasks suggested to
model-based testing and collected the necessary data. After,
we applied the tasks suggested to exploratory testing and
also collected the data. Finally, we analyze the results and
calculated the metrics defined previously.

We chose two small features, each one having two re-
quirements documents. These requirements documents have
about twenty pages each. The chosen features are common
in mobile phone applications, but due to their secrecy, we
do not show their details.

Tables 3 and 4 show the data collected. Once the annota-
tions obtained applying ET need to be analyzed and validate
(verify if the detected faults were really faults for example),
Ta is not equal to 0. Using MBT, there was generated 11
test cases for feature A and 7 test cases for feature B.

Table 3: Data collected using MBT.
Ts (min) Te (min) Ta (min) Nf

Feature A 127 10.44 0 0
Feature B 146 22.15 0 0

Tables 5 and 6 summarize the obtained results. For fea-
ture A (Table 5), the testing approaches did not detect prob-
lems, however we can see that the effort applying ET is
smaller than applying MBT. Analyzing the results for fea-

Table 4: Data collected using ET.
Ts (min) Te (min) Ta (min) Nf

Feature A 78 37 13 0
Feature B 77 39 12 1

ture B (Table 6), we can notice that ET detected one fault
with associated relevance equals to one. Moreover, in this
case the effort in using ET was smaller than using MBT.

Table 5: Experiments results Feature A.
MBT ET

Effort (min) 137.44 128

Efficiency (
Nf

h
) 0 0

Relevance ⊥ ⊥
Faults similarity ∅ ∅

Table 6: Experiments results Feature B.
MBT ET

Effort (min) 168.15 128

Efficiency (
Nf

h
) 0 � 0.46

Relevance ⊥ 1
Faults similarity ∅ ∅

During the execution of the tasks, we used internal Mo-
torola tools for getting log files and generating test cases
automatically from the model. Table 7 shows which tasks
were automated.

It is important to remark that for MBT we cover 100%
of the requirements. Regarding the features implementation
coverage, ET covered more states than MBT. Actually, this
leads to uncover one fault. The feature implementations
considered in the experiment had already been tested by
other teams and the defects had been fixed.

This explains why only one fault has been detected. Our
goal when choosing stable features was to access the ability
of the approaches in uncovering escaped defects from their
usual testing cycle, once escaped defects are a real problem
in feature testing.

7. ANALYZING RESULTS
Although the study was performed on a small sample,

our feeling is that, in an initial phase, exploratory testing
is more indicated than model-based testing for feature test-
ing, considering the mobile phone application domain. We
had many difficulties to formalize the requirements when
applying MBT because, most of the time it is necessary to
have a previous knowledge about the application behavior
and the requirements documents did not have information
about this behavior. So, as ET can increase the knowledge
about the application behavior, we believe that its use in an
initial phase can be more effective and feasible.

The effort in applying exploratory testing is clearly smaller
than the effort in applying MBT. In our experiment, we use
the template presented in Cabral [9] to generate the model

31

Table 7: Task automation applied in the experiment.

Model-Based Testing
Task Automatic

Feature selection No
Model generation Yes

Test cases generation Yes
Test cases execution No

Results analysis No

Exploratory Testing
Task Automatic

Feature selection No
Test plan definition No
Test plan execution No

Results analysis No

automatically when applying MBT. This way, we needed to
specify the requirements again using the presented template.
If the requirements were already defined using the template,
the effort in applying MBT will decrease.

Actually, a single fault was detected by applying ET only.
Although this detected fault does not offer basis for gen-
eralization, our feeling is that ET is more suitable for FT
than MBT. However, ET does not support properly the re-
execution of test cases, since they are not documented as for
MBT.

Therefore, in a second moment, the use of model-based
testing seems to be more interesting due to the many cycles
that compose a feature testing. By using MBT, the test
cases can be automatically generated and updated, decreas-
ing the costs of the testing process and making it easier for
specific test cases to be selected based on certain criteria.

Figure 4 summarizes our idea for a feature testing ap-
proach. In an initial phase, exploratory testing is applied
and execution logs are saved automatically. These logs can
be used to help to construct a model of the feature. Then,
during further test cycles, model-based testing is applied.
The contributions of exploratory testing are basically the
execution logs and the knowledge acquired during test ses-
sions. The former can contribute to complete or to improve
the formal model, whereas the latter can contribute in the
description of requirements using a controlled natural lan-
guage (CNL), that makes it possible for an automatic map-
ping of requirements to a formal model [9]. Because feature
testing needs to be rapid, automatic test cases generation
provided by model-based testing is an useful characteristic
along test cycles.

This approach is a junction of two testing approaches, so
probably there is no major costs associate with its use, once
the steps are applying the activities from MBT and from
ET. Besides this, some phases can be automated. While
the tester is doing exploratory testing, a logger tool gets
the log. This log contains information about the system
state during test execution and can complement the formal
model. The model generation can be automatic using a CNL
to specify the requirements. The test cases can be generated
automatically using some tool that receives the formal model
as input.

The evaluation of this approach can be conducted through
experiments to verify if its use increases the number of de-

Figure 4: Feature testing approach

tected faults and decreases the effort needed in a testing
process. The results can be compared with the results of
using other approaches.

8. CONCLUSIONS
This paper presented the results of an experimental eval-

uation of two testing approaches for feature testing: model-
based testing and exploratory testing. We presented an ex-
perimental methodology based on GQM paradigm to de-
fine a measurement model to evaluate the two testing ap-
proaches. After that, we conducted an experimental evalua-
tion using the presented methodology. At first instance, ex-
ploratory testing produced better results than model based
testing. Finally, based on metrics and initial impressions
collected from the experiment, we proposed a combined ap-
proach to feature testing by using exploratory testing and
model-based testing.

The next steps will then be to re-apply the methodology
to other features to improve our measurement model and
validate our reflections about the use of exploratory testing
and model-based testing in feature test. Also, we need to
conduct an experimental evaluation of the suggested feature
testing approach. For this, the evaluation model will be
extended to take the existence of a number of testing cycles
into account.

9. ACKNOWLEDGMENTS
This work has been developed in the context of a research

cooperation between Motorola Inc., CIn-UFPE/Brazil and
UFCG/Brazil. We thank the entire group for all the sup-

32

port, criticisms and suggestions throughout the development
of this research. This work is also supported by FAPESQ/
CNPq (Projeto 060/03 e Processo CNPq 550466/2005-3).

10. REFERENCES
[1] C. Agruss and B. Johnson. Ad hoc software testing: A

perspective on exploration and improvisation.
http://www.testingcraft.com/ad hoc testing.pdf, 2000.
Accessed in May 28th, 2007.

[2] J. Bach. Session-based test management. Software
Testing Quality Engineering magazine, vol. 2(no. 6),
2000.

[3] J. Bach. Exploratory testing explained.
http://www.satisfice.com/articles/et-article.pdf, 2003.
Accessed in May 28th, 2007.

[4] D. L. Barbosa, H. S. Lima, P. D. L. Machado, J. C. A.
Figueiredo, M. A. Juca, and W. L. Andrade.
Automating functional testing of components from
uml specifications. Int. Journal of Software Eng. and
Knowledge Engineering, 2007. To appear.

[5] V. R. Basili. Software modeling and measurement: the
goal/question/metric paradigm. Technical report,
College Park, MD, USA, 1992.

[6] V. R. Basili. The role of experimentation in software
engineering: past, current, and future. In ICSE ’96:
Proceedings of the 18th international conference on
Software engineering, pages 442–449. IEEE Computer
Society, 1996.

[7] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. Encyclopedia of
Software Engineering, 1:528–532, 1995.

[8] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In ICSE
’76: Proceedings of the 2nd international conference
on Software engineering, pages 592–605, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press.

[9] G. Cabral and A. Sampaio. Formal specification
generation from requirement documents. In SBMF
2006: Proceedings of the Brazilian Symposium on
Formal Methods, pages 217–232, 2006.

[10] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: a critical
review and considered forecast. Comput. Networks,
41(1):115–141, 2003.

[11] E. G. Cartaxo. Geração de casos de teste funcional
para aplicações de celulares. Master’s thesis, COPIN -
Universidade Federal de Campina Grande, 2006.

[12] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton,
C. M. Lott, G. C. Patton, and B. M. Horowitz.
Model-based testing in practice. In ICSE ’99:
Proceedings of the 21st international conference on
Software engineering, pages 285–294, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

[13] S. de Carvalho Nogueira. Geração automática de casos
de teste csp orientada por propósitos. Master’s thesis,
CIn - Universidade Federal de Pernambuco, 2006.

[14] A. L. L. de Figueiredo, W. L. Andrade, and P. D. L.
Machado. Generating interaction test cases for mobile
phone systems from use case specifications. SIGSOFT
Softw. Eng. Notes, 31(6):1–10, 2006.

[15] R. G. de Vries and J. Tretmans. On-the-fly
conformance testing using SPIN. 2(4):382–393, Mar.

2000.

[16] I. K. El-Far and J. A. Whittaker. Model-based
software testing. Encyclopedia on Software
Engineering, 2001.

[17] A. Hartman and K. Nagin. The agedis tools for model
based testing. In ISSTA ’04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software
testing and analysis, pages 129–132, New York, NY,
USA, 2004. ACM Press.

[18] J. Itkonen and K. Rautiainen. Exploratory testing: A
multiple case study. In ISESE 2005: Proceedings of
the International Symposium on Empirical Software
Engineering. IEEE Computer Society, 2005.

[19] M. Kogure and Y. Akao. Quality function deployment
and cwqc in japan. Quality Progress, 1983.

[20] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice Hall, 1998.

[21] C. R. Turner, A. L. Wolf, A. Fuggetta, and L. Lavazza.
Feature engineering. In IWSSD ’98: Proceedings of the
9th international workshop on Software specification
and design, page 162. IEEE Computer Society, 1998.

33

