
Energy-Aware Design Patterns for
Mobile Application Development (Invited Talk)

Abhijeet Banerjee
National University of Singapore, Singapore

abhijeet@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore, Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Developing energy-efficient application is crucial for mobile plat-
forms such as smartphone and tablets, since such devices operate
on a limited amount of battery power. However, until recently most
of the smartphone applications have been developed in an energy-
oblivious fashion. This is increasingly becoming a concern due to
the fact that smartphone applications are progressively becoming
complex and energy-intensive, whereas the battery technology is
unable to keep up. Existing studies have proposed a number of
testing and re-factoring techniques that can be used to increase the
energy-efficiency of such applications, after the development has
been completed. However, we feel that maximum level of energy-
efficiency can be achieved only if energy-efficient design practices
are used in the software development process.

In this study, we propose a set of energy-aware design patterns,
specifically targeted at smartphone applications. These design pat-
terns can be applied to huge number of real-life scenarios for energy-
efficient information gathering and processing, within the smart-
phone application. We also present some examples of design pat-
terns for application development for the Android platform.

Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Design Tools and Techniques

Keywords: Mobile Apps; Energy-Aware Design Patterns

1. INTRODUCTION
A recent report from a technology research and advisory firm

estimated that the total revenues from mobile apps grew from $18
Billion in 2012 to $26 Billion in 2013 [1]. The report also ob-
served that in 2013 the number of application downloads increased
to 102 Billion. These numbers indicate that the market for mobile
application is growing at a very rapid rate. Such growth presents
opportunities as well as challenges to mobile application devel-
opers. To excel in a such a competitive market, application de-
veloper must ensure that their applications are of better quality.
Quality of an application can be judged based on a number of fac-
tors such as functionality, performance, energy-efficiency, etc. We
feel that energy-efficiency is a crucial factor for mobile applica-
tion development because mobile devices (like smartphones) oper-
ate on a limited amount of battery power. However, until recently
most of the mobile applications have been developed in an energy-
oblivious fashion. Exiting studies [2] have uncovered the presence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile’14 , November 17, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3225-5/14/11 ...$15.00.

Figure 1: Design Patterns for Energy-Aware Application Development

of energy-inefficiencies in a number of real-life smartphone appli-
cations. Some of the more recent works [3] have proposed energy-
aware testing frameworks to uncover energy-inefficiencies in mo-
bile applications. In this study we propose a four-pronged approach
for energy-aware mobile application development. Our approach
consists of four design patterns (Figure 1) (i) Energy-aware design
practices for energy-heavy hardware components (ii) Optimal de-
sign choices for information gathering and transmission (iii) Trade-
offs between energy consumption and Quality-of-Service and (iv)
Increasing energy efficiency by using asynchronous tasks.

1.1 Energy-Aware Design Practices for Energy
Heavy Hardware Components

Existing studies [2] have suggested that use of I/O components
and power management utilities play an important role in influenc-
ing the energy consumption behaviour of a smartphone applica-
tion. Experiments in our previous work [3] have lead us to believe
that not only do such components/utilities play an important role
in influencing the energy consumption behaviour of the device but
their misuse can lead to serious energy-inefficiencies. It is worth-
while to know that smartphone operating systems (like Android) re-
quire an application to acquire a hardware resource (such as sensor,
GPS receivers, camera, Wifi) before it can start using the resource.
Often application developers would acquire the required resource
much before the information gathered from that hardware resource
is needed. This causes excessive but avoidable power consumption.
For instance, in Android to use the camera, an application must first
acquire it and only then it can start the video preview. Interestingly,
we observed that while the camera was acquired (but the preview
not started) the additional power consumption was approximately
47% more than the idle power consumption whereas starting the
preview increases the power consumption by an additional 10% (to
a total of 57%) only. Energy-inefficiencies can also manifest as a
result of misuse of power management utilities. For instance, An-
droid provides a set of power management utilities, such as Wake-
locks, using which the power-state transitions of the device can be
controlled. Suboptimal usage of such power management utilities
also leads to excessive, avoidable power consumption.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the author/owner(s).

DeMobile’14, November 17, 2014, Hong Kong, China
ACM 978-1-4503-3225-5/14/11
http://dx.doi.org/10.1145/2661694.2661698

15

(a) (b)

Figure 2: (a) Energy-Aware Information Gathering (b) Energy-inefficiency Due to Asynchronous Power Loss

1.2 Optimal Design Choices for Information
Gathering and Transmission

In context of mobile applications, certain kind of information can
be obtained/transmitted over multiple hardware components. For
instance, modern smartphones have multiple network components,
such as Wifi, 3G and GSM. The decision to choose a network com-
ponents should be based on a number of factors such as transmis-
sion size, frequency of transmission, delay tolerance, etc. Existing
studies [4] have observed that for smaller transmissions Wifi is less
energy efficient than GSM because the energy consumed for es-
tablishing the connection in Wifi is often higher than that of GSM.
However, energy efficiency of Wifi increases dramatically with big-
ger transmission sizes. Comparatively, the cost of establishing the
connection in 3G is low, however 3G transmission has a high over-
head due to Tail Energy [4]. In general, Wifi is energy-efficient for
large transfer sizes, 3G is efficient for small transfer sizes as long
the transfers take place within the Tail Energy duration and GSM
is more energy-efficient than 3G but offers a lower data transfer
rate. Another such scenario where an applications can choose be-
tween hardware components is in location estimation. The location
can be either be estimated through GPS based locations updates or
through Wifi based locations updates. GPS based updates are more
precise than Wifi based updates but consumes more power than the
later. Such design choices heavily depend on the application sce-
nario and must be made by the developer before the development of
the application begins. Additionally, since such application specific
requirements are seldom explicitly written in the application code,
therefore suboptimal energy behaviour due to such design choices
are very hard to detect using automated testing techniques only.

1.3 Trade-off between Energy-Consumption
and Quality-of-Service

Applications intended for smartphone platforms are often real-
time but non-mission-critical in nature. Therefore, subtle deviation
in the Quality-of-Service(QoS) are often acceptable. Since most
of the energy consumed on mobile devices is spent on informa-
tion gathering or information processing, there can be two ways in
which QoS can be traded for energy-efficiency.

(i) Frugal information gathering: As the name suggests, this ap-
proach involves collecting as less information as possible to achieve
the pre-defined QoS. For instance, in Android, applications can
gather information from a variety of sensors (such as accelerom-
eter, gyroscope etc) with the varying update rates such as SEN-

SOR_DELAY_FASTEST, SENSOR_DELAY_GAME, SENSOR_DELAY_NORMAL,

SENSOR_DELAY_UI. Faster updates rates, as expected, provide more
precise information but incurs a heavier energy consumption. Other
components such as GPS receivers also allow the developer to spec-
ify the minimum frequency of location updates. Such flexibility can
be exploited to dynamically adjust the QoS/energy-efficiency of the
device. The idea (as shown in 2(a)) is to maintain the desired QoS
while minimizing the energy consumption. Another way of fru-
gal information gathering is to share information between multiple
components within an applications. For example, many real-life

Android applications [3] require location information for the ap-
plication functionality as well as to show location-based advertise-
ments. In such scenario location information can be shared between
both the components, instead of fetching the information twice.

(ii) Approximated information processing: Several types of ap-
plications such as games, video/audio players, data compression/
decompression tools are computationally intensive. Such applica-
tions derive much of their functionality from energy-intensive loops
and functions. For such cases, applications can be equipped with
energy-saving features such as runtime loop perforation and func-
tion approximation [5]. The choice of the using a particular energy
saving feature should be made at runtime based on the battery sta-
tus of the device and the desired QoS.

1.4 Increasing Energy Efficiency by Using
Asynchronous Tasks

Android applications are executed on a single thread, by default.
This means that all the components of the application have to ex-
ecute on the same thread. This however can create not only per-
formance issues but energy-inefficiencies. For example, (as shown
in Figure 2(b)) assume there is an application that executes user-
interface (UI) actions, resource acquires/releases as well network
operation on the same thread. In such a scenario, if the network op-
erations are delayed, all subsequent operations, including release of
resource is delayed thereby causing energy-inefficiency indirectly.

Android provides a mechanism named AsyncTask (asynchronous
task), to overcome delay to the UI thread due to time-consuming
tasks. Android website explains that "AsyncTask enables proper
and easy use of the UI thread." However, one can use AsyncTask
to achieve a better UI performance as well as remove energy inef-
ficiencies. This can be achieved by executing all time consuming
tasks as AsyncTasks. This frees the main UI thread for user inter-
action as well as provides the opportunity to release any acquired
resources and cancel all AsyncTasks instantly, whenever the user
exits the application. For example in the Figure 2(b), if the net-
work access were initiated as an AsyncTask, when the user exits
the application the resource can be released instantaneously.

2. ACKNOWLEDGEMENT
The work was partially supported by a Singapore MoE Tier 2

grant MOE2013-T2-1-115 entitled "Energy aware programming".

3. REFERENCES
[1] Gartner. {www.gartner.com/newsroom/id/2592315}.

[2] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?:
fine grained energy accounting on smartphones with eprof. In EuroSys, 2012.

[3] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury. Detecting
energy bugs and hotspots in mobile apps. In FSE (to appear), 2014.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy
consumption in mobile phones: a measurement study and implications for
network applications. In SIGCOMM, 2009.

[5] W. Baek and T. M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In PLDI, 2010.

16

