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ABSTRACT
In large scale software development ecosystems, there is a
common perception that higher developer involvement leads
to faster resolution of bugs. This is based on conjectures
around more“eyeballs”making bugs“shallow”– whose valid-
ity and applicability are not without dispute. In this paper,
we posit that the level of developer attention as well as its
extent of diversity influence how quickly bugs get resolved.
We report results from a study of 1,000+ Android bugs.
We find statistically significant evidence that attention and
diversity have contrasting relationships with the resolution
time of bugs, even after controlling for factors such as in-
terest, importance, dependency etc. Our results can offer
helpful insights on team dynamics and project governance.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Life cycle

General Terms
Experimentation
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1. INTRODUCTION
Background: As discussed at length in Raymond’s Cathe-

dral and the Bazaar, often the success of open source soft-
ware comes out of effectively harnessing the social processes
that underlie the highly interactive enterprise of open source
development [11]. Over the last decade and half, develop-
ment and maintenance of large scale open source systems
has become a predominantly collective enterprises involving
many individuals. Concomitantly, the conventional wisdom
has come to recognize the extent and variety of developer
involvement to be beneficial to development activities, most
notably bug resolution. The so called Linus’ Law [11], opin-
ions around it [5] and efforts at empirically validating it
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[10],[4], point to the subtleties around establishing whether,
and how much developer involvement helps in faster reso-
lution of bugs. In this paper, we argue that the variety
as well as extent of developer involvement stands to influ-
ence the resolution time of bugs. (Due to lack of space, the
study of reopened bugs is outside the scope of this work.)
We report results from investigating the following research
question on a corpus of 1,000+ Android1 bugs: How does
the extent and variety of developer involvement relate to the
resolution times of Android bugs?

Hypotheses: We refine the research question into the
following hypotheses:

• H1: Bugs which attract higher developer attention get
resolved faster.

• H2: Bugs which attract more diverse developer interest
get resolved faster.

Related Work: To understand the influences on bug
resolution time we consider the following established factors
influencing outcomes in software development: Dependency
between units of work is critical in determining how quickly
development activities are completed [3]. The importance of
a task, in terms of its priority or severity is also known to
be a key factor in ensuring its early closure [7], [3], [15]. The
level of project responsibility of the owner of a task plays
an important role in the timing of the task’s completion [3],
[15]. Additionally, in an open source project, community
interest plays a very important part in guiding debugging
activities. Large scale software development today is highly
interactive. A common mechanism of collaboration between
a large group of developers is co-commenting on units of
work. Commenting and responding to comments play a vital
role in knowledge circulation in the development ecosystem,
and influence the outcome of development activities [15].
This is not an exclusive list of factors influencing outcomes
in software development, but they are the most relevant in
the context of our study as established in literature.

Organization of the paper: In the next section we de-
scribe the methodology of our study, followed by an outline
of model development and threats to validity. The paper
ends with a discussion of results and conclusions.

2. METHODOLOGY
Collecting data: We collected the Android bug report

data from a publicly available online repository [12]. We
parsed the XML file and stored the data in a specifically
designed MySQL database to help easy querying. Each bug

1www.android.com
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has a unique bug identifier, along with the following fields:
title, status, owner, date opened, date closed, type, priority,
component, stars, reported by, description. Each comment
has the attributes - identifier of the bug commented upon,
commenter, date of comment, textual content of the com-
ments.

Cleaning and filtering data: Resolution time for each
bug was computed as the integral number of days between
date the bug was opened and the date it was closed. For our
analysis, we filtered the original data-set of 2,546 bugs by
only including bugs which have been commented by more
than one developer. From this set, bugs with missing at-
tributes or incorrectly recorded attributes (e.g. the opened
date being later in time than the closed date) were excluded.
Finally, the data-set was pruned to bugs which had a res-
olution time of one year or less. This was done under the
assumption that bugs which have not been resolved for more
than a year are unlikely to have attracted notable interest
in the community. The final data-set analyzed consists of
1,016 bugs, and 73 unique developers who own at least one
of these bugs. When we mention a “developer’s bugs” in
subsequent discussion, it means bugs which are owned by
that developer. The onus of resolving a bug rests with its
owner.

Generating the bug similarity network: In a large
scale software development enterprise such as Android, when
a bug is raised, its title and textual description are used to
decide how similar it is to other bugs that were raised earlier
[8]. On the basis of this judgment, the ownership of a bug is
most likely to be given to a developer who has resolved sim-
ilar bugs earlier. Thus the critical step of assignment own-
ership is based on evaluating the similarity between bugs.

To detect how similar bugs are to one another, we used
a Latent Dirichlet Allocation (LDA) based approach. LDA
considers a document to be a mixture of a limited number
of topics, with each word in the document attributed to
one of these topics [2]. Given a corpus of documents, LDA
discovers a set of topics, the set of keywords associated with
each of the topics and the mixture of these topics for each
document in the corpus. To build the LDA based topic
models, we have used the collapsed Gibbs sampling method
[13].

In our case, the set P of title and description for all bugs
in our data-set has been used as the text corpus (each doc-
ument in this corpus is a stemmed set of keywords obtained
from a bug’s title and description) from which LDA dis-
covers a set of topics Γ = {τ1 · · · τk}. From a text corpus
LDA creates two sets of probability distributions. One of
these sets models topic mixture over documents (denoted as
Θ = {θp|p ∈ P}) and the other set models keyword mixture
over topics. For a bug p, we get a probability distribution
θp over topics, and for a given topic, we get a probability
distribution of keywords. In LDA, these two are taken to
be Dirichlet distributions with parameters α and β respec-
tively. Arriving at the optimal number of topics for a given
corpus is an empirical process based on repeated trials. We
need to vary α, β, the number of iterations (N) and the
number of topics (K) to get the log likelihood value for the
model which indicates its highest level of effectiveness [16].
Iterating over these parameters several thousand times, we
selected 30 topics for our study. Beyond this number, the in-
stances of repetitions in the keywords across the topics were
going up substantially, thus indicating a low possibility of

identifying further distinguishable topics. Having obtained
the probability distribution over topics for each bug, we cal-
culate the similarity between all pairs of bugs in our data-set
using the symmetric Kullback Leibler Divergence (KLD) [9].
KLD is a distance measure between two probability distri-
butions, given by the following equation, where p̄ and q̄ are
probability distributions or normalized feature vectors:

KLD(p̄, q̄) =
∑
i

p(i)log(
p(i)

q(i)
) +

∑
i

q(i)log(
q(i)

p(i)
)

We define a Bug Similarity Network (BSN), whose vertices
(nodes) are bugs [4]. In BSN, two bugs are connected by an
edge (undirected link) if they are similar to one another
by the LDA and KLD based measure explained above. As
we are interested in detecting the most significant level of
similarity between bugs (to reduce false positives), we only
connected two bugs by an edge in BSN if the corresponding
KLD value was in the 96th percentile or above.

Examining hypotheses: To examine the hypotheses
presented earlier, we develop multiple linear regression mod-
els as described next.

3. MODEL DEVELOPMENT
Independent variables: To validate the first hypothesis

(H1), we need to identify a metric that captures developer
attention on a bug. As mentioned earlier, commenting is
a critical aspect of collaborative software development. We
can reasonably assume that the number of comments on a
bug is a reflection of the level of attention the bug receives
from the development community. However, a bug may be
commented many times by a small group of developers, in-
cluding the bug’s owner. To validate the second hypothesis
(H2), we need to capture the level of diversity in the inter-
est generated around a particular bug; this can be measured
from the number of unique developers who do not own the
bug, but comment on it. Thus, as independent variables in
our model, we take Attention and Diversity as measured
from the number of comments on a bug and the number of
unique non-owner commenters on a bug, respectively.

Dependent variable: In both hypotheses H1 and H2, we
are concerned with how quickly a bug gets resolved. Thus, as
the dependent variable we consider TimeToResolve, which
is calculated from the resolution time of each bug.

Control variables: The objective of building statistical
models is to investigate how the independent variables At-
tention and Diversity relate to the dependent variable Time-
ToResolve in the light of our hypotheses. But to establish
such relationships unambiguously, we need to control for the
peripheral influences on the dependent variable. These in-
fluences are reflected in the control variables. Based on ear-
lier discussion, we consider Dependency, Importance, Re-
sponsibility, and Interest as our control variables. These
are calculated in the following ways.

The degree of a bug in BSN is the number of other bugs
it is connected to via edges. As an established network met-
ric, the degree of a vertex is a measure of the extent of its
connection [1]. Bugs which are connected to many other
bugs can be expected to have a higher level dependency on
other parts of the system. We thus measure Dependency of
a bug from its degree in BSN. The Importance of a bug is
reflected in the priority field of Android bug reports. Each
bug has a single owner – the developer who is responsible for
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Table 1: Descriptive statistics of model variables
Mean Stdev Skewness Kurtosis

TimeToResolve 3.25 1.78 0.38 1.03
Dependency 5.79 2.74 0.41 0.13
Importance 0.7 0.08 1.12 9.7

Responsibility 130.15 109.99 0.81 -0.77
Interest 1.15 0.21 0.86 15.66

Attention 1.71 0.67 0.49 -0.34
Diversity 1.19 0.87 0.39 -0.51

resolving it. How much a developer can focus on a particular
bug is dependent on the extent of his/her overall ownership
responsibility of other bugs. Thus the Responsibility con-
trol variable for a particular bug is measured from the total
number of bugs owned by the owner of that bug. Finally,
to get a sense of how much interest a bug has generated in
the Android community, we consider the “stars” field of bug
report. It is “used in order to represent the number of people
following a bug” [6]. For a bug, Interest is derived from the
number of stars accumulated by the bug.

We recognize that Dependency, Importance, Responsibil-
ity, and Interest are not the only factors with notable influ-
ence on the resolution times of Android bugs. We considered
several other factors in our preliminary analysis, but finally
selected these to arrive at the most parsimonious model us-
ing multiple linear regression. Other modeling approaches
such as Poisson regression, and negative binomial regression
were considered but not pursued with, as our dependent
variable is not a typically count measure, and its mean and
variance are not close to another.

Model assumptions and variable transformations:
Multiple linear regression rests on the assumptions of lin-
earity, normality, and homoscedasticity of the residuals, and
lack of multicollinearity between the independent variables.
The residual properties were verified using histogram, Q-Q
plot and scatter plot of the standardized residuals. After in-
specting the descriptive statistics of the model variables, the
following transformations were applied to the corresponding
raw measurements, to ensure closer conformance to normal-
ity – natural logarithm for TimeToResolve, square root for
Dependency, natural logarithm for Importance, eighth root
for Interest, natural logarithm for Attention, and natural
logarithm for Diversity. The descriptive statistics for the
transformed variables used in the model are given in Ta-
ble 1. Among the variables, Importance and Attention had
a relatively high correlation (around 0.55), which is expected
as high priority bugs tend to get commented more. Since the
Variance Inflation Factors (VIF) of all variables were found
to be below the upper limit of 10 in both the base and re-
fined models (which are described below), no notable mul-
ticollinearity was detected [14]. On the basis of the above
evidence, we conclude that assumptions of multiple linear
regression hold within reasonable limits in our analysis [14].

Model description, validation, and results: Column
I of Table 2 presents parameters of the base model, consid-
ering only the effects of control variables on the dependent
variable, while column II gives details the refined model that
also includes the independent variables. Superscripts of the
coefficients give the range of their p values, as specified in
the table’s caption. The p value for each coefficient is cal-
culated from the t-statistic and the Student’s t-distribution.
In the table’s lower portion, model overviews are provided:

Table 2: Results of regression for the effects on bug
resolution time.(Superscripts ’∗∗∗’, ’∗∗’, ’∗’, ’†’ denote
p ≤ 0.0001, p ≤ 0.001, p ≤ 0.01, p ≤ 0.05, respectively)

I II
Base model Refined model

Intercept 0.945 2.126∗∗

(0.655) (0.676)
Control variables
Dependency −0.04∗ −0.045∗

(0.02) (0.02)
Importance −0.32 −0.382

(0.652) (0.642)
Responsibility 0.002∗∗ 0.001∗∗

(0.001) (0.000)
Interest 2.397∗∗∗ 1.327∗∗

(0.463) (0.509)
Independent variables
Attention −0.427∗

(0.195)
Diversity 0.671∗∗∗

(0.15)
N 1016 1016
R2 0.0394 0.071
df 1011 1009
F 10.37 12.93
p < 0.001 < 0.001

N is the number of data points used in building the model,
in our case the number of bugs. R2 is the coefficient of deter-
mination – the ratio of the regression sum of squares to the
total sum of squares; indicator of the goodness-of-fit of the
regression model in terms of the proportion of variability in
the data-set that is accounted for by the model. df gives the
degrees of freedom. F is the Fisher F-statistic – the ratio
of the variance in the data explained by the linear model
divided by the variance unexplained by the model. The p
value for the overall model is calculated using the F-statistic
and the F-distribution, and it indicates the statistical signif-
icance of the model. For the coefficients as well as the over-
all regression, if p ≤ level of significance, the corresponding
result is taken to be statistically significant, based on null
hypothesis significance testing.

From columns I and II of Table 2, we notice that both the
base and refined models are statistically significant overall,
and by adding the independent variables, the R2 value in-
creases by 81% from the base to refined models and the F-
statistic also increases. Thus the independent variables have
increased the explanatory power of the model. We highlight
the influence of the model variables in the Discussion and
Conclusions section.

4. THREATS TO VALIDITY
This is a study of existing data, rather than a controlled

experiment. Therefore, correlation does not imply causa-
tion in the statistical models we developed. Threats to con-
struct validity is concerned with whether model variables
are measured correctly. In this paper, an approach based on
LDA has been used to detect bug similarity. There are other
approaches such as cosine similarity which may be simpler,
but they do not take into account clusters of keywords that
may occur together. Since BSN is an undirected network,
the direction of dependence between bugs can not be inferred
from it. The calculation of the dependent variable assumes
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that the elapsed time between bug opening and closure de-
notes the actual time taken to resolve the bug. Calculation
of the independent variables is based on the acts of com-
menting on bugs by developers; there may be other ways to
measure levels of attention and diversity. We recognize the
existence of these threats, but they are consistent with sim-
ilar studies [15]. Internal validity establishes that a study
is not affected by systemic errors and biases. As we only use
data from Android, this threat is mitigated in our study.
External validity ensures the generalizability of results.
We have studied only one data-set in this paper. Also, the
R2 values of the models indicate that there may be several
other factors relating to the resolution times of bugs which
have not been considered. We plan to include them in our
future work. Thus we recognize our results are not gener-
alizable as yet. A study demonstrates reliability when the
results are reproducible. Our results are reproducible, given
access to the Android data-set.

5. DISCUSSION AND CONCLUSIONS
The results from the regression models given in Table 2,

can be used to validate our hypotheses. We see that the in-
dependent variable Attention has a statistically significant
relation with the dependent variable TimeToResolve. From
the negative sign of the coefficient, it is evident that higher
level of attention is associated with lower resolution times
and vice-versa. Hence, hypothesis H1 is supported. How-
ever, the other independent variable Diversity has a statis-
tically significant relation with TimeToResolve; but higher
levels of diversity is seen to associate with higher resolution
times. Hence hypothesis H2 is contradicted.

These results have a number of implications. We find
evidence that a bug which attracts more developer attention
– in the form of comments – is likely to be resolved faster;
but a bug which has more diverse involvement – in the form
of different commenters – is likely to take more time to be
resolved. More attention brings in a range of perspectives
on resolving a bug; it also introduces the potential for a lack
of alignment in the bug resolution process. This tension is
inherent in the variety of views that intermingle as many
individuals work together. Understanding and addressing
this tension is essential for harnessing the full power of social
processes that underlie software development in the large
today. At the individual level, these insights can lead
to an awareness about the issues in involving many peers
for an assigned task. For project governance, these can
facilitate the setting up and maintenance of communication
channels between and across teams. Since many large scale
software projects today are distributed, these results can
aid resource and work allocation across geographies at the
organizational level.

In conclusion, this paper highlights a duality around the
effects of developer involvement on bug resolution times. Re-
sults from studying 1,000+ Android bugs offer insights on
how it is important to be cognizant about the benefits and
pitfalls of interactive activities in large scale software devel-
opment.
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