
Validating UML Models Against Architectural Profiles

Petri Selonen
Tampere University of Technology

Institute of Software Systems
P.O. Box 553

FIN-33101 Tampere, Finland

petri.selonen@tut.fi

Jianli Xu
Nokia Research Center

P.O. Box 407
FIN-00045 Helsinki, Finland

jianli.xu@nokia.com

ABSTRACT
The Unified Modeling Language (UML) has become a
widely adopted standard in the software industry. While
UML has established itself in detailed software design, its us-
age as an architecture description language is still taking its
shape. In particular, there is a growing need for techniques
to define domain specific architectural constraints and con-
ventions in UML. We address this issue by adopting the con-
cept of UML profiles for architectural design. Architectural
profiles are specialized for describing and constraining soft-
ware architecture descriptions for a given domain. We argue
that these profiles represent an appropriate abstraction level
to elaborate architectural constraints and conventions. We
present a general schema for arranging architectural profiles
and a set of conformance rules that define how these profiles
are interpreted, constituting a profile definition language for
validating architectural design. We introduce a tool for per-
forming architectural validation and discuss the results of
our initial case studies.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Require-
ments/Specifications—methodologies, tools; D.2.2
[Software Engineering]: Design Tools and Techniques—
CASE, object-oriented design methods

General Terms
Design, Documentation

Keywords
UML, profiles, architectural validation

1. INTRODUCTION
Designing and describing software models using UML [9]

is a common practice in the software industry. UML is
increasingly used for architectural modeling as well: as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03, September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

general-purpose standard design notation, UML is a cred-
ible alternative to dedicated architecture description lan-
guages (ADLs). UML descriptions of software architecture
not only provide a standardized definition of system struc-
ture and terminology, but also facilitate a more consistent
and broader understanding of the architecture, and enable
more extensive tool support for architecture design. It is rel-
atively easy to proceed from a UML architecture description
into detailed system and component design, where UML and
OO programming paradigms are regularly used.
However, there is a lack of methodological support for

using UML for describing software architecture. Both our
experiences with software development practices at Nokia
[11], and the research of others [8, 3], suggest that there is
an urgent need of effective strategies and tools for supporting
software architects working with UML. One requirement is
the possibility of defining domain, product line, or platform
specific architectural conventions guiding the architects and
allowing conformance testing of architectural designs.
Medvidovic et al. [8] assessed three different strategies for

modeling software architectures with UML: (1) Use UML
”as is”, (2) customize the UML metamodel using UML’s
built-in extension mechanisms, and (3) extend the UML
metamodel to directly support the needed architectural con-
cepts. Because of the crucial requirement for standardiza-
tion in industrial software development, we adopt the second
strategy. It has a better capability of describing software ar-
chitecture compared to the first one; as it involves standard
UML, it can reap the benefits of existing UML tools, in
contrast to the third one.
In the approach described in this paper, architectural pro-

files play a key role in materializing the work context of soft-
ware architects. Architectural profiles are UML profiles that
are specialized for software architecture design process and
software architecture description. Generally, architectural
profiles determine the subset of UML used for architecture
description, as well as the necessary extensions for model-
ing architectural entities. More importantly, architectural
profiles define the structural and behavioral constraints and
rules of the architecture under design.
Architectural profiles can be used to drive, check, and au-

tomate the software architecture design process and the cre-
ation of all architectural views. We expect that architectural
profiles are particularly helpful for enforcing the conventions
of product-line architectures. Architectural profiles should
be followed in the process of architecture design in order to
guarantee that the resulting architecture design has neces-
sary properties and lacks undesirable ones. We believe that

58

architectural profiles are on an appropriate abstraction level
to elaborate architectural constraints.
In order to make use of architectural profiles in the way

discussed above, a practical technique to specify profiles in
UML is required. Unfortunately, presently UML itself gives
no guidelines on how to do this. Due to various possible
views on software architecture, and different purposes that
profiles can be used for, the profiles can take different forms.
In this paper we propose a technique for specifying profiles
within UML, aiming at a specification and tool-supported
enforcement of architectural constraints. In particular, we
show how profile specifications can be structured according
to different views on software architecture, and how a subset
of UML can be used as a profile specification language with
a precise interpretation. The interpretation is expressed as a
set of rules, each imposing a particular type of conformance
requirement on the model. An advantage of this approach
is that the designer can select a desired set of conformance
rules (or even a single rule) to be checked in the model.
UML CASE tools (e.g. Rational Rose [10]) typically fo-

cus on OO design and programming, and consequently on
low-level details and code generation. They can help the
architects to edit a UML model, check syntax of the model,
and manage the model to a certain degree. However, these
tools provide no means for checking whether a given UML
model conforms to certain architectural conventions and
constraints, specified as profiles. Since manual checking is
inefficient and error-prone, the success of a profile-centric
approach relies on adequate tool support. We present a tool
that performs model validation based on architectural pro-
file specifications.
We have applied the profile-based architectural validation

approach presented here to the validation of an industrial
system architecture based on a mobile device software plat-
form. The results have been positive in the sense that we
have been able to point out actual, previously undetected
conflicts with the conventions of the platform architecture.
The paper is structured as follows. In Section 2, we

present the general principles of UML architectural profiles
together with a chosen model structure and profile hierarchy.
In Section 3, we define a set of validation rules that define
the profile language used in the paper. Section 4 gives an
example of validating architectural views against profiles.
In Section 5, we introduce the tool implementation. In Sec-
tion 6, we discuss our case study. Section 7 presents related
work. Finally, in Section 8 we give concluding remarks.

2. UML ARCHITECTURAL PROFILES
AND MODEL STRUCTURE

2.1 General
The UMLModel Management package [9] (pp. 2-187 to 2-

204) specifies how model elements are organized into models,
packages, subsystems, and UML profiles. It defines Model,
Package, and Subsystem, all of which serve as grouping units
for other ModelElements. Models are used to capture dif-
ferent views of a software system. Packages are used within
a Model to group ModelElements. A Subsystem represents
a behavioral unit in a software system.

UML Profiles [9] (Sect. 4) are packages dedicated to group
UML extensions: predefined sets of stereotypes, tagged val-
ues, constraints, and icons to support modeling in specific

<<systemModel>>
Architecture Model

Architectural Profiles

<<profile>>
Conceptual

Profile

View Profiles

<<import>>

Architectural Views

<<appliedProfile>>

Domain Model
<<Mapping>>

<<appliedProfile>>

System Context Model

<<appliedProfile>>

<<import>>

Figure 1: The structure of an architectural model

domains. Profiles are not formally defined in UML. This
leaves us the space and flexibility to define our architectural
profiles. The architecture model structure used in our ap-
proach is based on the UML model management package
(see Figure 1).
Two widely accepted approaches for working with mul-

tiple architectural views are the ”4+1 view” model by
Kruchten [6] and the ”conceptual, module interconnection,
execution, and code” view model by Soni et al. [12]. In
practice we use a view model similar to the latter.
A Domain Model should be part of an architecture model;

the term domain refers to the problem domain while all other
parts of the architecture model belong to the solution do-
main. The Domain Model defines the key concepts and their
relationships in the domain, and serves as a guideline for
defining the corresponding UML extensions and conceptual
models in the Architectural Profiles of the solution domain.
The Domain Model in Figure 1 is included for model com-
pleteness; is out of the scope of this paper.

2.2 Architectural model structure
An architecture model structure includes three main

parts: Architectural Profiles, System Context Model, and Ar-
chitectural Views.
Architectural Profiles contain a Conceptual Profile and a

set of View Profiles. All view profiles depend on the Concep-
tual Profile. The Conceptual Profile defines the fundamen-
tal concepts (types) including the concepts mapped from
the domain model and the concepts introduced to imple-
ment these. These concepts are used throughout the entire
architecture design and description. The Conceptual Profile
should also contain a conceptual model that clearly speci-
fies the architectural style and the validation rules with class
diagrams and, if necessary, with OCL [9].
The architectural concepts specified in the Conceptual

Profile define the nature of the system; they exist during
the whole life cycle of a software architecture with differ-
ent forms at different stages. Hence all architectural views
should conform to the Conceptual Profile.

59

A view profile imports the Conceptual Profile and adds
new concepts that are specific to this view. If the view profile
has concepts that are in any form related with the concepts
in the imported Conceptual Profile (i.e., specialization, con-
tainment, implementation, etc.), the relationship must be
clearly described with UML associations. View profiles can
be divided into two parts: a stereotype definition part and
a constraint definition part. The former defines the stereo-
types used in the architectural profiles and views, while the
latter states the constraints that the views must conform to.
The stereotype definition part of a profile is given as

a UML class diagram consisting of classes and dependen-
cies between them. A class can either have stereotype
�metaclass� or �stereotype�. The name of the former
class must be a standard UML metamodel element that is
extended by the latter class. The name of the latter class de-
clares a new user-defined stereotype. All dependencies can
only be directed from a stereotype class into a metaclass
class. Alternatively, the stereotype definitions can be given
in a tabular form [9] (pp. 4-2 to 4-3).
The constraint definition part of a profile uses class and

collaboration diagrams to specify the constraints, e.g., ar-
chitectural styles or patterns, or the relationships allowed
among certain types of elements. The classes used in con-
straint class diagrams are called anonymous instance classes.
An anonymous instance class represents any instance class
of the corresponding stereotype associated with it, i.e. it
represents any instance class of a given stereotype. A name
may be added after three dots “. . . ” to increase the read-
ability of the model.
Concrete software architecture is described with a Sys-

tem Context Model and several Architectural Views. The
System Context Model defines the system border and de-
ployment environment, typically showing how the system
or subsystem connects to other (sub)systems through inter-
faces it implements or depends on.
Architectural Views package contains all the UML models

describing the software system itself. A view should use
only the subset of UML elements and extensions defined in
the corresponding view profile(s), and follow the rules and
constraints of the view profile. What views are needed in the
system description may vary from case to case, depending
on what main architectural concerns the architects are going
to tackle.
A view can only be described with the subset of UML

elements and extensions defined in the corresponding view
profile(s) that it applies, following the rules of the corre-
sponding profiles. This approach intentionally limits the
verboseness of UML; we believe that this is necessary in or-
der to achieve simpler, and thus clearer and more concise
semantics for architectural modeling.

2.3 Architectural view and profile types
The architectural profiles and views are hierarchical. Fig-

ure 2 shows the dependency hierarchy of the architectural
profiles and views used in this paper. In the following, we
describe the architectural view types. The profiles are de-
fined correspondingly.
A structure view (profile) shows the hierarchical decom-

position of the system into subsystems and components,
and describes the logical relations among them in the cor-
responding top-level view or sub-views. A structure view is
defined using a class diagram.

conformance rules and
profile hierarchy

specification and interpretation
of a profile definition language

architecture
profiles (conventions)

specification of architectural
conventions in a profile
language

are validated against

are interpreted according todefines a language for

defines a language for

architecture designarchitectural
views

Figure 3: Outline of an architecture validation pro-
cess

A behavior view (profile) shows the realization of the main
use cases as high-level interaction diagrams (i.e., sequence
and collaboration diagrams) that are specified in the system
requirements. On a more detailed level, a behavior view
describes the realization of scenarios, unveiling the internal
behaviors or activities of the system.
A resource allocation view (profile) shows the system at

run-time. It shows the assignment of the components of the
system to threads and processes. Stereotypes for threads,
processes, and the communication means among the runtime
entities, are defined in the corresponding view profile.
The other two view types are build view (profile) and man-

agement view (profile). A build view is a view of the system
at build-time. The view should give the system builders a
clear picture of what the entire system is built from, and if
possible, a ”makefile” for building the executables should be
automatically generated from it. A management view is for
the project managers to manage the development work. The
view shows the responsible team or people for a subsystem
or a component. Both build views and management views,
together with their corresponding view profiles, are omitted
in this paper, since they are not fundamentally relevant to
the software architecture. There could also be other views
concerning issues such as fault-tolerance and security.

3. VALIDATION RULES

3.1 Basic concepts
Figure 3 shows a general schema for arranging an archi-

tectural view validation process. Essentially, the profile hi-
erarchy together with a configuration of conformance rules
establishes a language for defining architectural profiles. A
set of architectural profiles in turn describes the conventions
and constraints for architecture design, i.e., it defines a lan-
guage for defining architectural views.
The rules can be divided into three categories: (1) profile

conformance rules, (2) view consistency rules, where views
must be mutually consistent, and (3) profile consistency
rules, where profiles must be mutually consistent. These
categories are shown in Figure 4.
One simple example of a model consistency rule is to re-

quire that operations called in a behavior view must be de-
fined in a structure view, either by the base class of the
instance whose operation is called, or by an interface the
class implements. Another example would be that every
link and its end instances in a behavior view must have a

60

Figure 2: Dependencies between architectural views and profiles

view 1

conformance

vi
ew

 c
on

si
st

en
cy

profile consistency

view N

profile 1

profile M

metalevel boundary

Figure 4: Rule categories

base association and base classifiers, respectively. While im-
portant, this paper omits further discussion on consistency
and focuses on profile conformance rules. For discussion on
UML and model consistency, see e.g. [7].
Since architectural profiles and views reside at different

metamodeling levels, we must define when a model element
in a view is an instance of an element defined in a profile.
This inter-model correspondence relationship is defined for
the most important elements as follows:

1. Two classifiers correspond to each other if their stereo-
types are the same.

2. Two relationships (i.e., dependency, association) corre-
spond to each other, if their stereotypes are the same
and there exists a bijective mapping between all the
participating classifiers from one relationship to an-
other, such that these classifiers correspond to each
other.

<<metaclass>>
ModelElement

<<stereotype>>
A

<<stereotype>>

<<A>>
...

Figure 5: Stereotype conformance

3. Two instances correspond to each other if their stereo-
types are the same and their base classifiers correspond
to each other.

4. Two links correspond to each other if their stereotypes
are the same and there exists a bijective mapping be-
tween all the participating instances from one link to
another, such that these instances correspond to each
other.

We will refer to these definitions when defining the actual
conformance rules in Subsection 3.2.

3.2 Conformance rules
A conformance rule defines how a particular structure in

a profile is interpreted, dictating how a view is validated
against it. A conformance rule is evaluated between a view
and a profile. We present five examples of profile confor-
mance rules that can be applied between profiles and views.

3.2.1 Stereotype conformance

Definition 1. Every stereotype in a view must be defined
in a stereotype definition profile belonging to the profile hi-
erarchy. Every classifier in a view must have a stereotype.

The left-hand side of Figure 5 shows a stereotype defini-
tion profile with a standard UML metaclass ModelElement

61

<<A>>
...

<>
...

<<A>>
a

<>
b

0..*

0..*

Figure 6: Relationship conformance

and a new, user-defined stereotype, �A�. The right-hand
side shows a class belonging to an architectural view whose
stereotype conforms to the profile. This rule is applied to
both profiles and views; with profiles, the rule declares con-
sistency.
The ModelElement metaclass is defined abstract by UML

and thus stereotypes based on it cannot themselves appear
in architectural views. Typical — and more useful — base
classes for user-defined stereotypes include Package, Subsys-
tem, Class, Interface, and Association.

3.2.2 Relationship conformance

Definition 2. Every relationship (i.e., association, depen-
dency) in a view is required to have a corresponding rela-
tionship in a profile belonging to the profile hierarchy.

The left-hand side of Figure 6 shows a constraint profile
that allows an association between elements having stereo-
types �A� and �B�. The right-hand side shows a con-
forming architectural view with a corresponding association
between classes �A� a and �B� b.

3.2.3 Multiplicity conformance

Definition 3. The number of associations each classifier
in a view participates in must fall in range of the multiplic-
ities defined by the corresponding association in a profile
belonging to the profile hierarchy.

The right-hand side of Figure 7 shows two associations
leaving from class �B� b, one to �A� a1 and the other to
�A� a2. The number of these associations conform to the
multiplicity ranges defined by the corresponding association
on the left-hand side constraint profile.
Multiplicity conformance also implies the existence of clas-

sifiers. If there exists a classifier in a view, and a correspond-
ing classifier in a profile participates in an association having
all lower multiplicity bounds of the other ends greater than
zero, a corresponding association and participating classes
must exist in a view belonging to the view hierarchy. The
structure in the left-hand side of Figure 7 generates such
a constraint: the existence of a classifier with stereotype
�B� requires the existence of two assocations and their
end elements with stereotypes �A�, but not vice versa.

3.2.4 Interface conformance

Definition 4. For every interface in a view, if there exist
a corresponding interface and a (set of) realizing class(es)

<<A>>
...

<>
...

<<A>>
a1

<>
b

2

0..1

<<A>>
a2

Figure 7: Multiplicity conformance

<<A>>
...

<>
...

<<A>>
a

<>
b

Figure 8: Interface conformance

in the profile hierarchy, some corresponding realizing class
must also exist in a view belonging to the view hierarchy.

The left-hand side of Figure 8 shows a constraint profile
allowing a realization relationship between classes having
stereotype �B� and classes having stereotype �A�, and
at the same time requires an instance of �A� to have (at
least one) realizer. The right-hand side shows a conforming
architecture view with a corresponding realization relation-
ship between �B� b and �A� a.

3.2.5 Link conformance

Definition 5. Every link in a (behavior) view must have
a corresponding link in a (behavior) view profile belonging
to the profile hierarchy.

The left-hand side of Figure 9 shows a behavior view pro-
file that defines a link between instances of classes �A�
and �B�. The right-hand side shows a behavior view with
a corresponding link.

: ...B b : B

1: op()

a : A: ...A

Figure 9: Link conformance

62

<<A>>
...

<>
...

<<C>>
...

1..* 1..*

Figure 10: Relationship indirection

3.3 Auxiliary definitions
In addition to the conformance rules, we give two auxiliary

definitions. These definitions are not rules by themselves,
but rather “preprocessing” constructs for generating addi-
tional, or removing existing, constraints on model elements
before starting the actual validation scheme.

3.3.1 Relationship indirection

Definition 6. Every relationship (i.e., dependency, associ-
ation) can exist either directly or via an interface. For every
classifier depending on an interface, and every classifier re-
alizing this interface, there exists an implicit corresponding
relationship between the using classifier (client) and the re-
alizing classifier (supplier) with identical characteristics (e.g.
multiplicities).

This definition is used by the other rules for generating
indirect dependencies not explicitly defined in a profile. The
definition is applied to profiles in the profile hierarchy. Fig-
ure 10 shows a constraint profile defining how an �A�
class uses a �B� class through a �C� interface. By de-
pendency indirection, there exists an implicit association be-
tween the �A� class and the �B� class with the same
multiplicity range (1..*, 1..*). One typical usage scenario for
this operation is to allow the existence of direct component
to component dependencies for generating more abstract di-
agrams.

3.3.2 Stereotype generalization

Definition 7. Each element inherited from a user-defined
stereotype is subject to, or inherits, the constraints placed
upon its parent in the profile hierarchy.

This operation extends the definition of how a stereotype
definition part of a profile can be constructed by allowing
the user to define new subconcepts based on higher-level
user-defined stereotypes. This operation is useful when e.g.
the user wants to define common constraints for a set of
structurally equivalent, but semantically separate, model-
ing concepts. Figure 11 shows an example of stereotype
generalization definition, where a subconcept represented
by stereotype �B� is derived from concept represented by
stereotype �A�. As a result, all constraints placed on el-
ements having stereotype �A� are inherited by elements
having stereotype �B�.

4. EXAMPLE: AN IMAGE RECOGNITION
SYSTEM

This section gives an example of validating architectural
views against a set of profiles. Figure 12 shows a deployment
view of the example system. The system runs in Application

<<metaclass>>
ModelElement

<<stereotype>>
A

<<stereotype>>

<<stereotype>>
B

<<stereotype>>

Figure 11: Stereotype generalization

Mobile Device

Application unit DSP

Cellular unit

Network node

Bus
Radio link

Subsystems:
Image recognition for X-ray
Multimedia
Camera
NSP Communications

Cellular
protocols

Image Recognition
Service

Bus

Bus

Figure 12: Deployment diagram of example system

unit node of Mobile device and is connected to DSP and Cel-
lular unit nodes via two buses. The Mobile device is further
connected to Network node via Radio link. The example is
modified based on a current case study on one of Nokia’s
product platforms. It is simplified and generalized for the
purposes of this paper, but still complex enough to demon-
strate our approach. Figure 14 shows the context model of
the example system. The system, “Image recognition for X-
ray”, is an application developed for mobile terminals with
an attached camera.
The system implements an image recognition service: af-

ter a picture is taken using the integrated camera compo-
nent, it is converted into a suitable format and sent over to
a network node that tries to recognize the image. The result
is propagated back to the user. For space limitations, the
stereotypes defined in the conceptual profile and structure
profile are given in tabular form in Table 1. The table shows
the base classes and the new stereotypes based on them, as
defined in conceptual and structural profiles.
The conceptual profile for the example system is given

in Figure 13. The profile defines higher-level architectural
entities and their inter-relationships in the architecture de-
sign. Figure 15 shows a structure view of the architecture.
Architecture violations are marked with numbers from one
to four:

1. The stereotype used by �Session� “Socket server IF”
is not defined in the stereotype definition profiles, thus
violating the stereotype conformance rule.

2. As a consequence of item 1, the dependency between
�Server� “ImageRecogServer” and �Session�
“Socket server IF” is invalid and violates the relation-
ship conformance rule.

63

... A Msg Server
<<Msg Server>>

... A Client MH class
<<Msg Handler>>

... A Server MH class
<<Msg Handler>>

... A Skt SrvrSession IF
<<SrvrSession>>

... A Socket Server
<<Socket Server>>

... A App class
<<Application>>

... A API Impl class
<<API Impl>>

... A API
<<API>>

1..*1..* 1..*1..*

... A SrvrSession IF
<<SrvrSession>>

1

0..1

1

0..1

... A Client
MH API

<<API>>

... A Server class
<<Server>>

0..*

0..*

0..*

0..*

0..* 0..*0..* 0..*

0..*0..*

Figure 13: An example Conceptual Profile

Image recognition for X-ray
<<Domain Subsystem>>

(from Structure View)

Camera
<<Platform Subsystem>>

Multimedia
<<Platform Subsystem>>

+ Multimedia Server

Image Recognition
Service

<<subsystem>>

Network messaging
<<Messaging Subsystem>>

+ Message Server

Network Communications
<<Communication Subsystem>>

+ NT Socket Server

Image Recognition API

recognizePicture()
getImage()

(from ImageRecogServer Co...

<<API>>Camera API

snapPicture()
getPicture()

(from Camera)

<<API>>

Client MH API

createMessage()
getMessageContent()

<<API>>
Multimedia Service

bitmapToJPEG()
JPEGToBitMap()

(from Multimedia)

<<SrvrSession>>

Socket server IF
(from Network Communications)

<<Session>>

Multimedia Server
(from Multimedia)

<<Server>>

Camera Server
(from Camera)

<<Server>>

NT Socket Server
(from Network Communications)

<<Socket Server>>

Client MH
(from Network messaging)

<<Msg Handler>>

Message Server
(from Network messaging)

<<Msg Server>>

Server MH
(from Network messaging)

<<Msg Handler>>

Message Server IF

sendMsg()
receiveMMS()

(from Network messaging)

<<SrvrSession>>

Figure 14: An example System Context Model

Table 1: Example stereotype definitions
Conceptual profile Structure profile
Base Class Stereotype Base Class Stereotype
Class �Application� Subsystem �Domain Subsystem�

�Msg Server� �Platform Subsystem�
�Socket Server� �Messaging Subsystem�
�Server� �Communication Subsystem�

Utility �Msg Handler� Package �App Component�
�API Impl� �Server Component�

Interface �API� Association �Message�
�SrvrSession� �FunctionCall�

64

Camera API

snapPicture()
getPicture()

(from Camera)

<<API>>

Multimedia Service

bitmapToJPEG()
JPEGToBitMap()

(from Multimedia)

<<SrvrSession>>

Client MH API

createMessage()
getMessageContent()

(from System Context Model)

<<API>>

Socket server IF
(from Network Communications)

<<Session>>

Image recognition for X-ray
<<Domain Subsystem>>

ImageRecogApp

viewMsg()
requestComplete()

(from ImageRecogApp Comp)

<<Application>>

ImageRecogServer
(from ImageRecogServer Comp)...)

<<Server>>

ImageRecog API Impl

requestCompleted()

(from ImageRecogServer Comp)

<<API Impl>>

ImageRecog SrvrSession

recognizePicture()
converted()
getImage()

(from ImageRecogServer Comp)

<<SrvrSession>>

Image Recognition API

recognizePicture()
getImage()

(from ImageRecogServer Comp)

<<API>>

Client MH
(from Network messaging)...)

<<Msg Handler>>

1
2

3

4

Figure 15: An example structure view

3. By the multiplicity conformance rule, interface
�API� “Client MH API” requires an association to
a class having stereotype �Application�. This as-
sociation is not present and consequently violates the
rule.

4. By the interface conformance rule, interface �API �
“Camera API” should have a realizing class. The re-
alization in Figure 14 between �Server� “Camera
Server” and �API� “Camera API” is invalid and
therefore violates the rule.

Otherwise the structure view conforms to the conceptual
profile: the remaining relationships presented in Figure 15
are conforming and thus legal dependencies and realization
relationships between classes, utilities, and interfaces.

5. IMPLEMENTATION
In order to evaluate the techniques described in this pa-

per, a tool, artDECO, implementing the validation rules
was developed. The operations are implemented on top of
a tool-independent UML processing platform, xUMLi [1].
The platform enables users to build various kinds of UML
model processing facilities as individual components, and
combine and use them from integrated CASE tools. The
platform conforms to the UML metamodel version 1.4 and
is currently integrated with Rational Rose.
The profile hierarchies are stored as package hierarchies in

a local Rose repository. The architecture checking tool uses
xUMLi to import the necessary UML models from Rose.
Each architecture model is checked against the validation
rules, implemented as xUMLi components using the plat-
form’s OCL interpreter. The results are presented to the
user in a simple graphical dialog and in a complementary
textual format (in XML). The user can browse the archi-
tectural mismatches resulting from different operation cat-
egories. As the user selects a particular mismatch, the di-
agram containing the corresponding element is opened in
Rose and the element itself is selected. This allows the user

Figure 16: Screenshot of the artDECO tool

to quickly discover and browse through the non-conformant
structures and correct them if necessary.
Figure 16 shows a screenshot of the artDECO tool running

on top of Rational Rose. The results from applying the
rules are shown in a dialog, and the corresponding window
is shown together with the element selected.

6. CASE STUDY
The toolkit and our approach have been evaluated using a

system very similar to the one described in Section 4. This
case study focused on designing the architecture of “X-ray
image application system” on one of Nokia’s product plat-
forms. Most architectural profiles used in this case study are
common to all application systems on the same platform.
The set of common profiles is configurable to emphasize dif-
ferent requirements. Product-specific architectural profiles
can also be added to validate the architecture design of a
certain product.
The case study consisted of two subsystems and had con-

nections to five other subsystems. The set of profiles con-
tained 11 diagrams and 78 classifiers, while the set of views
contained 14 diagrams and 101 classifiers. The model was
constructed by a person who was familiar with the architec-
tural conventions of the platform, imitating the work of a
typical designer.
The tool was able to find 39 architectural mismatches in

the case study. Table 2 lists the rules, the mismatch types,
and the number of mismatches found in this case study.
While the quantitative data merely displays anecdotal evi-
dence, it still goes on to show that even a system of a rela-
tively small size can contain a considerable amount of profile
violations.
Not surprisingly, an overwhelming number of mismatches

involve relationships. These mismatches are expected to
emerge in situations where the architects want to connect el-
ements without paying enough attention to the architectural
styles and constraints imposed by the profiles (e.g. interface-
based decoupling of entities).
The evaluated system followed the Nokia guidelines for

architecture design and was based on existing product line
architecture models. Consequently, the system had real-life
characteristics. The profile hierarchy and the set of confor-

65

Table 2: Architectural mismatches found
Rule Mismatch type No
Stereotype conformance Missing stereotype 2
Relationship conformance Illegal dependency 12

Illegal association 5
Multiplicity conformance Multiplicity out of range 5
Interface conformance No realizing class 1

Illegal realizing class 4
Link conformance Illegal link 6

mance rules were specifically designed to meet the require-
ments of the target system architecture provided by Nokia.
Still, we argue that the given conformance rule configuration
is useful also with a general software development process.
The underlying generic principles and the technical solutions
of the tool make it possible to reconfigure artDECO for an
alternative architectural process.
Even though the system itself was relatively small, it be-

came evident that validating the architectural views using
the rules by hand was much too laborious. To give an esti-
mate, according to our experience it takes an average of two
hours to check the system by hand for an individual familiar
with the rules, profiles, and architectural views; still, a sig-
nificant portion of the mismatches will remain undetected.
Suitable tool support seems to be a prerequisite for system-
atically enforcing the validity of the system under design.
We believe there hardly exist any universal architectural

profiles that could be used to validate arbitrary software ar-
chitecture. The profiles should be specific to product lines
or even single products in order to produce practical and
valuable architecture model validation results. However, our
toolkit and approach to profile construction and model vali-
dation are general enough to be applied in different domains
and different product lines. The set of profiles is expected
to stay relatively stable even if the checking process is per-
formed for a larger architecture model.

7. RELATED WORK
While there exists relatively small amount of research on

using the UML profile mechanism for architectural valida-
tion, a considerable effort has been placed on defining re-
lations between ADLs and UML, focusing on mapping the
concepts of the former into the visual notation of the latter.
This is usually done by either using the standard extension
mechanisms or by altering the UML metamodel itself, the
main motivation being the possibility of using the existing
UML CASE tools with ADLs.
Zarras et al. [13] define the concepts of a general ADL

using a UML profile. After mapping the primary ADL con-
cepts (component, connector, configuration) into UML no-
tational elements, a base profile is defined that can be fur-
ther extended to match specific architectural styles or views.
Another example is presented by Hudaib and Montangero
[4], who use UML profiles to map the core concepts of an ar-
chitectural specification language, based on temporal logic,
to UML. This allows the usage of formal specification and
analysis tools on UML models. An example of an approach
that modifies the UML metamodel is presented by Kandé
and Strohmeier [5].
Egyed [2] discusses mapping ADL specifications into UML

models using a view integration process. He also defines con-

formance and consistency relationships, but between UML
models, not between profiles and views. He aims at mapping
and integrating ADL models into a UML system model by
defining mapping, transformation, and differentiation pro-
cedures.
The main difference of our approach is that we are not

defining a single profile. Instead, with a profile hierarchy
and a set of validation rules, we establish a language for
defining profiles. Our approach focuses on giving support for
configurable validation processes that can be customized to
support the constraints and conventions of a given product
line or domain. In addition, our approach relies solely on
UML.

8. CONCLUDING REMARKS
Based on our initial experiences, the techniques described

in this paper were found promising. Tool-supported vali-
dation of architectural design can significantly reduce the
number of architectural mismatches, thus avoiding design
errors that would deteriorate the architecture and possibly
lead to costly re-engineering tasks in the later development
phases.
For the time being, the rules are structural in nature. As

such, the rules are nevertheless significant in practice. Issues
like behavioral patterns are beyond the approach described
here. While the rules originally stem from pragmatic needs,
the approach is already quite general, configurable, and ex-
tensible. Topics for our future research include, for example,
constructs not used so far by the rules (e.g. general OCL
constraints, meta-attributes), and the use of the UML di-
agrams types not addressed in this paper. It is also our
goal to further explore, classify, and categorize the concepts
integral to the profile-centric approach.
During year 2003, we will perform two large-scale industry

case studies in collaboration with Nokia’s business units to
further evaluate our approach. Our targets are two main
product lines of Nokia Mobile Phones, at the level of both
a product line, and a specific product. For this purpose,
we are aiming at integrating our techniques with software
development processes at Nokia.
The next version of the validation tool will support freely

configurable architectural validation, allowing the architects
to define a relevant set of conformance rules and a model hi-
erarchy for a process of choice. The goal of our work is to
develop a general-purpose, profile-based architecture mod-
eling and validation approach with adequate tool support.

9. ACKNOWLEDGEMENTS
The authors wish to thank Jani Airaksinen for the imple-

mentation of the artDECO tool, Kai Koskimies and Tarja
Systä for their valuable comments, Antti-Pekka Tuovinen

66

for the initial case study material and view definitions, and
the PRACTISE/UML team at Tampere University of Tech-
nology and the ART project team at Nokia Research Center.
This work has been financially supported by the Academy
of Finland (UML++ project).

10. REFERENCES
[1] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen,

P. Selonen, and T. Systä. xUMLi: Torwards a
Tool-independent UML Processing Platform. In
K. Osterbye, editor, Proceedings of the Nordic
Workshop on Software Development Tools and
Techniques, 10th NWPER Workshop, pages 1–15.
Copenhagen, Denmark, IT University of Copenhagen,
August 2002.

[2] A. Egyed and N. Medvidovic. Extending Architectural
Representation in UML with View Integration. In
R. France and B. Rumpe, editors, Proceedings of the
Second International Conference on the Unified
Modeling Language, UML’99, pages 2–16. Fort
Collins, CO, USA, Springer, October 1999.

[3] C. Hofmeister, R. Nord, and D. Soni. Describing
Software Architecture with UML. In P. Donohoe,
editor, Proceedings of Working IFIP Conference on
Software Architecture, pages 145–160. San Antonio,
Texas, USA, Kluwer Academic Publishers, February
1999.

[4] A. Hudaib and C. Montagero. A UML Profile to
Support the Formal Presentation of Software
Architecture. In Proceedings of 26th International
Computer Software and Applications Conference
(COMPSAC 2002), Prolonging Software Life:
Development and Redevelopment, pages 217–223.
Oxford, England, IEEE Computer Society, August
2002.

[5] M. M. Kandé and A. Strohmeier. Towards a UML
Profile for Software Architecture Descriptions. In
A. Evans, S. Kent, and B. Selic, editors, Proceedings
of UML 2000 - The Unified Modeling Language,
Advancing the Standard, Third International
Conference, volume 1939 of Lecture Notes in
Computer Science, pages 513–527. York, UK,
Springer, 2000.

[6] P. B. Kruchten. The 4+1 view model of architecture.
IEEE Software, 28(11):42–50, November 1995.

[7] L. Kuzniarz, G. Reggio, J. Sorrouille, and Z. Huzar.
Proceedings of the Workshop on Consistency
Problems in UML-based Software Development.
Blekinge Instutute of Technology Research Report
2002:06, 2002.

[8] N. Medvidovic, D. Rosenblum, D. Redmiles, and
J. Robbins. Modeling software architectures in the
Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology (TOSEM),
11(1):2–57, January 2002.

[9] OMG. Omg unified modeling language specification,
version 1.4, september, 2001. On-line at
http://www.omg.org.

[10] Rational Software Corporation. Rose Enterprise
Edition, 2003. On-line at
http://www.rational.com/products/rose.

[11] C. Riva, J. Xu, and A. Maccari. Architecting and
Reverse Architecting in UML. In A. Brown,
W. Kozaczynski, P. Kruchten, and G. Larsen, editors,
Proceedings of ICSE 2001 Workshop for Describing
Software Architecture with UML, pages 88–93.
Toronto, Ontario, Canada, IEEE Computer Society,
May 2001.

[12] D. Soni, R. L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. In Proceedings
of International Conference on Software Engineering
ICSE 1995, pages 196–207. Seattle, Washington, USA,
April 1995.

[13] A. Zarras, V. Issarny, C. Kloukinas, and V. K.
Kguyen. Towards a Base UML Profile for Architecture
Description. In A. Brown, W. Kozaczynski,
P. Kruchten, and G. Larsen, editors, Proceedings of
ICSE 2001 Workshop for Describing Software
Architecture with UML, pages 22–26. Toronto,
Ontario, Canada, IEEE Computer Society, May 2001.

67

