
Testing Randomized Software by Means of Statistical
Hypothesis Tests

Ralph Guderlei∗, Johannes Mayer,
Christoph Schneckenburger†

Institute of Applied Information Processing
Ulm University

89069 Ulm, Germany
ralph.guderlei@uni-ulm.de

johannes.mayer@uni-ulm.de
christoph.schneckenburger@uni-ulm.de

Frank Fleischer
Medical Data Services/Biostatistics

Boehringer-Ingelheim Pharma GmbH & Co. KG
88397 Biberach, Germany

frank.fleischer@boehringer-
ingelheim.com

ABSTRACT

Software testing research has mostly focused on determinis-
tic software systems so far. In reality, however, randomized
software systems (i. e. software systems with random output)
also play an important role, e. g. for simulation purposes.
Test evaluation is a real problem in that case. In previous
work, statistical hypothesis tests have already been used,
but test decisions have not been interpreted. Furthermore,
those tests have only been applied if theoretic values on the
distribution of program outputs had been available and not
in case of golden implementations. In the present paper, we
propose a general approach on how to apply statistical hy-
pothesis tests in order to test randomized software systems.
We exactly determine the confidence gained through these
tests. We show that after passing a statistical hypothesis
test, it can be guaranteed that at least the tested charac-
teristics of the system under test are correct with a certain
probability and accuracy of the result. Our approach is also
applicable in case of golden implementations. Therefore,
knowledge about the outputs’ distribution is not necessary
in that situation, which is a great advantage. Two case stud-
ies are described that have been conducted in order to assess
the proposed approach. One of the case studies is based on
a software system for the simulation of stochastic geomet-
ric models (among others) that evolved from the GeoStoch
research project and is now used at France Télécom R&D,
Paris, in order to calculate costs for communication networks
and to plan new network structures.

∗Work supported by the Deutsche Forschungsgemeinschaft
in the research training group “Modellierung, Analyse und
Simulation in der Wirtschaftsmathematik”
†Work supported by a scholarship of the Wilken Foundation,
Ulm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOQUA ’07, September 3–4, 2007, Dubrovnik, Croatia
Copyright 2007 ACM 978-1-59593-724-7/07/09 ...$5.00.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software / Program Ver-
ification—Statistical methods; D.2.5 [Software Engineer-

ing]: Testing and Debugging—Testing tools; G.3 [Probabi-

lity and Statistics]: Reliability and life testing

General Terms

Reliability, Verification

Keywords

Test oracle, test evaluation, statistical hypothesis test, ran-
domized software

1. INTRODUCTION
Usually, software testing is conducted with deterministic

programs. In this case, the expected output can be com-
puted in advance or just-in-time according to the specifi-
cation. There are lots of approaches that can be used to
evaluate test results (cf. e. g. [3]). Although the output of
such programs usually is deterministic for a given input, the
oracle problem [28] is far from being solved for deterministic
software systems. The situation is even worse for random-
ized software systems. Those programs are characterized by
the property that their outputs are random, i. e. for a certain
input value, the output follows a certain well-defined (but
mostly unknown) probability distribution. In this case, it
obviously is not possible to compute one single expected
output value. Thus there is an oracle problem [28]. One
approach that has been employed so far is that of statistical
hypothesis tests [17, 18, 26]. However, an important aspect
is missing so far: It has not been considered what a passing
or failing statistical hypothesis test implies for the correct-
ness of the SUT. Due to the construction of the statistical
hypothesis tests, the probability that a correct implementa-
tion is falsely rejected has been specified (in [26]). However,
the much more important error probability that an incor-
rect implementation falsely passes has not been regarded.
This error probability has been controlled in [17, 18], but in
this case the other error probability has not been controlled.
Thus, there is no approach yet that allows to control the
error probability in each case.

The present paper proposes a general approach on how to
apply statistical hypothesis tests to software testing. One

46

major contribution is that the error probabilities are de-
termined for each case and thus an approach is developed
with arbitrarily small error probability gained by repetition
of statistical hypothesis tests. The probability of the cor-
rectness of an oracle decision can thus be explicitly stated
for a given accuracy of the comparison. This has not been
possible so far.

Two case studies have been conducted in order to evaluate
the approach. One case study is based on an implementa-
tion of the inverse probability distribution function of the
Gaussian distribution. With random input, this system can
be regarded as a randomized system. This seamingly trivial
study object has been chosen for two reasons: On the one
hand, due to its determinism, other testing approaches are
also possible and can be used to compare the fault detec-
tion effectiveness. On the other hand, since the expected
output distribution is Gaussian, tests for variance are also
possible. This enables us to compare the effectiveness of the
variability tests with that of the variance tests.

The second case study has been conducted with a module
of the GeoStoch software that is currently used by France
Télécom R&D, Paris. The GeoStoch system [12, 19] has
been developed at Ulm University, Germany. It implements
methods from stochastic geometry, spatial statistics, and im-
age analysis. There is an ongoing resarch project between
Ulm University and France Télécom R&D, Paris that is con-
cerned with the analysis and the modelling of network struc-
tures in the sector of telecommunication. In particular, ur-
ban street systems but also telecommunication networks on
a nationwide scale are investigated where the focus is on
the random geometrical structure as well as on cost char-
acteristics like shortest path lengths on these structures (cf.
[7, 8, 9]). Thereby, an efficient cost and risk analysis is
enabled that can provide helpful tools for France Télécom
with respect to the calculation of connection costs in already
existing networks or the planning of new network systems.
Naturally, due to the large amount of money and effort in-
volved in the operation and planning of telecommunication
network systems, it is a key necessity to check whether the
implementations in GeoStoch provide correct results, for ex-
ample with respect to the simulation of basic random geo-
metrical structures involved in the models.

The present paper is organized as follows: Section 2 dis-
cusses relevant related work with respect to testing random-
ized resp. non-deterministic software systems. Section 3 de-
scribes how to model randomized software systems by means
of random variables. After an introduction to statistical hy-
pothesis tests in Section 4, asymptotic hypothesis tests that
are useful to test software systems are presented in Section 5
together with the estimation of error probabilities and the
description of the repetition of tests. The two case studies
are described in Section 6. After a discussion of the meth-
ods and results in Section 7 followed by possible threats to
validity, the paper is concluded in Section 8.

2. RELATED WORK
Statistical hypothesis tests have been used in [26] in order

to test a part of a randomized system, namely UrbanSim.
However these tests require that the program outputs fol-
low a Gaussian resp. Poisson distribution. Therefore, those
tests cannot be applied in the more usual case of an unknown
distribution. Nevertheless, having Gaussian or Poisson dis-
tributed outputs and knowing the expected value of a correct

implementation, this approach allows to test the (possibly
multi-dimensional) mean of the program output against the
given expected value. An upper bound for the probability of
falsely rejecting a correct implementation is given. However,
the probability of the much more fatal error of not detecting
a bug is not assessed theoretically. Instead some empirical
analysis is presented with varying number of faults inserted
into the program under test. The number of failing tests
is analyzed for the buggy programs. Another problem of
the approach is that in case of the theoretical distribution
of the program output being unknown, the expected value
is tested assuming both Poisson and Gaussian distribution
at the same time. Hence if a test fails, it is not known
whether there is a bug in the program under test or whether
the wrong distribution has been assumed (or whether the
failure occured due to the given confidence of the test—a
general problem of any statistical test). Finally, the repeti-
tion of tests is described in the general guideline presented
on p. 222 of [26], but the evaluation of the outcome is rather
subjective: “If the frequency of failing is significantly higher
then α, . . .”—and it is not specified, what is meant by “sig-
nificantly” here.

Asymptotic hypothesis tests have been applied in [17,
18] in order to test image processing and analysis software.
There, the random variables modeling the (transformed)
program output have been compared with respect to their
mean values. In order to control the error probability for
falsely not rejecting a faulty implementation, the hypothe-
ses have been swapped such that the null hypothesis has
stated that the implementation is not correct. Thus, the
type I error is the more severe error, i. e. a faulty implemen-
tation passes. However, in this case, the other error prob-
ability has not been controlled. Furthermore, besides this
quite high error probability, it has not been mentioned how
to increase confidence by repetitions and how to apply this
approach in case of theoretical values being unavailable, but
“only” a golden implementation, i. e. an alternative/legacy
implementation.

The approach described in [17, 18] has been applied in
the context of credit risk in order to test a simulation soft-
ware [4]. The effectiveness of the tests have been assessed
by means of seeded faults. This study has shown that the
approach is quite useful to test randomized software that is
otherwise difficult to test.

A testing method called Monte Carlo testing [6, 21, 22]
is based on the same theoretical model as our approach (cf.
Section 3). Roughly speaking, Monte Carlo testing is testing
based on Monte Carlo simulation. The key element is a 0/1-
valued decision function t which represents the test result
for a single test run. In theory, the expected value E(t)
indicates whether the program passes the test. As E(t) is
unknown, the tests are executed multiple times and E(t)
is estimated using the empirical mean tn. Only theoretical
aspects of the approach are examined in the cited papers.
Therefore, we propose a concrete testing algorithm, assess
the confidence gained by the outcome of a test, and evaluate
the effectiveness of our approach in two empirical studies.

Another approach to deal with randomized software is
discussed in [2]. Bible et al. propose to make randomized
software deterministic, e. g. fixing the seed in case of pseudo-
random number generators. This approach works for regres-
sion testing, but only if the program is not refactored (e. g.
the algorithm changed for performance reasons). This ora-

47

Figure 1: General test setup with transformation of

outputs

cle only works for exactly the same program and not for a
semantically equivalent program that e. g. only acquires the
random numbers in another order. If no previous version of
the program is available, it will not at all be trivial to give
an oracle for such a deterministic program. Thus, using a
golden implementation is only possible if the golden imple-
mentation is nearly the same. Therefore, the Gold Standard
Oracle [3] cannot be used in most cases.

A completely different approach to the testing of non-
deterministic systems is based on non-deterministic finite
state machines (FSM) [10, 23]. In this approach, the spec-
ification of the system is modeled as a non-deterministic
FSM. The non-determinism in the system is often caused
by the allowance of multiple return values of the system for
some input values, a typical example are network protocols.
Then the IUT is tested against the FSM, usually by check-
ing whether the IUT reaches the same state as indicated
by the FSM for a given sequence of input data. Several
methods describe the generation of test input data from the
specification FSM. This FSM based approach has some lim-
itations. Complex systems are hard to model as a FSM
and algorithms based on FSMs often suffer from state space
explosion, which impedes the practical use.

3. MODELING RANDOMIZED SOFTWARE

SYSTEMS
For the testing approach proposed in the present paper,

the model introduced by Kozen [14] is an appropriate choice
and it is the basis of our model. The output of a program
P for an input i is a random variable Oi. For generality,
we can furthermore assume that the output has been trans-
formed by a (measurable) function T (·) in order to compute
a characteristic of the SUT which is to be tested. Although
Oi = T (O′

i) may be a transformed version of the original
output O′

i (cf. Figure 1), we’ll simply talk about the output
Oi in the following. Furthermore, we can model the out-
put of a deterministic program whose input is random in
the same way by a random variable Oi, where the input i
introduces the randomness to Oi. For the testing of such
a program against a specification S, it is useful to model
the specification also as a family of random variables, one
for each possible input. Then, the decision whether the pro-
gram P implements its specification S can be reduced to the
decision whether two random variables, namely Si and Oi,
are “equal” for each input i or not. Two random variables
can be defined as “equal” if the two random variables have
the same distribution function. A necessary (but not suffi-
cient) condition for this equality is that their mean values
and their variances (if existing) are equal.

For the test of a program, this means that the SUT passes
the test if the expected value and the variance of the pro-
gram output is equal to the theoretic expected value and
the theoretic variance obtained by the specification. As the

program output is random, statistical hypothesis tests have
to be used to decide whether the two expected values and
the two variances are equal (with a certain probability).

4. BASICS OF STATISTICAL HYPOTHESIS

TESTS
The present paper applies statistical hypothesis tests in a

software testing context. Thus, only those aspects of statis-
tical hypothesis test theory are summarized in the present
paper which are indispensable for the paper’s purpose. Fur-
ther insight into statistical hypothesis tests and all related
theory is provided e. g. by [5].

Before applying statistical hypothesis tests to the respec-
tive random variables, two hypotheses H0 and H1 have to be
stated. H0 is called the null hypothesis and H1 is called the
alternative hypothesis. In principle, statistical hypothesis
tests can be conducted for all characteristics of a given dis-
tribution (as the expected value or the variance) or for the
distribution itself. The general aim of a statistical hypothe-
sis test is to decide whether a hypothesis (the null hypothe-
sis) has to be rejected or not. Since all statistical hypothesis
tests are based on randomness, they may lead to an incor-
rect decision. There are two kinds of errors possible. On the
one hand, the null hypothesis may be rejected although it
is correct. This is denoted the so-called type I error or the
α-error. On the other hand, the null hypothesis although
incorrect could not be rejected (denoted as the type II error
or the β-error). One major advantage of statistical tests is
the possibility to specify the error probabilities, i. e. having
at least some criteria about the significance of the decision.

The presented statistical hypothesis tests are based on the
assumption that the random variables are (statistically) in-
dependent and identically distributed (iid). Identical distri-
bution of the outputs means in our context that the software
under test should have no state. This at least applies to the
large class of software components which have this property
[27]. In case of being not sure whether the random variables
are (statistically) independent, a test for independence (e. g.
Fisher’s exact test) provides more confidence.

Normally, statistical hypothesis tests are constructed based
on the knowledge of the (theoretical) distribution of the pro-
gram output. However, this distribution is usually unknown.
Asymptotic hypothesis tests are a promising approach to
test at least some characteristics of the distribution. In most
cases, the idea is based on the Central Limit Theorem and is
independent of the underlying distribution. Therefore, our
analysis will concentrate on this attempt. Section 5.2.1 de-
scribes how prior knowledge (i. e. the expected value and the
variance) can be used in order to apply asymptotic hypoth-
esis tests. The case of a given gold standard implementation
is described in Sections 5.2.2 and 5.2.3.

Another possible class of tests are non-parametric statis-
tical hypothesis. One of them is the so-called Wilcoxon test
[29] which tests two samples for their equality. However,
since the required assumptions are weaker, the test provides
in general weaker results. Nevertheless, an empirical study
concerning non-parametric statistical hypothesis tests would
probably be worthwhile as well since this kind of statistical
hypothesis tests can be applied very generally.

5. ASYMPTOTIC STATISTICAL HYPOTH-

ESIS TESTS

48

5.1 Asymptotic Normal Distribution of the
Empirical Mean

In case of unknown distribution, the Central Limit Theo-
rem for independent and identically distributed random vari-
ables applied to the program outputs X1, ..., Xn says that
the empirical mean Xn = 1/n

Pn
i=1 Xi centered by the true

mean µ and scaled by the (true) standard deviation σ di-
vided by

√
n asymptotically follows a standard normal dis-

tribution. Experience has shown that for a sample size of
n > 30 this asymptotic distribution is already sufficiently
well approximated. Thus, at least the expected value of
a program’s output can be tested statistically. However,
it is in general difficult to test variances directly by using
an asymptotic distribution. Although S2

n = 1
n−1

Pn
i=1(Xi −

Xn) is an unbiased estimator for the variance that is asymp-
totically χ2-distributed, the convergence towards a χ2-distri-
buted random variable is too slow for practical use. Thus,
in the case of unknown distribution we opted for testing
another measure of variability (see Section 5.2.3).

5.2 The Approach of Asymptotic Statistical
Hypothesis Tests

Basically, there are two possibilities of how asymptotic
statistical hypothesis tests of an expected value can be ap-
plied. If a (theoretic) expected value is available as prior
knowledge, the output data mean can be statistically tested
against the given expected value (Section 5.2.1). The second
possibility is to statistically test the (empirical) output data
mean against the (empirical) output data mean of a gold
standard implementation (Section 5.2.2). In case of variabil-
ity there are the same possibilities in principle. However, it
seems to be rather unrealistic to have a given theoretic vari-
ability. Therefore, Section 5.2.3 only discusses the case of
testing variability against a gold standard implementation.

5.2.1 Testing against a Theoretic Expected Value

Assume a (theoretic) expected value µ0 is already known
for the program outputs. Then a necessary condition for the
correctness of the program under test is, that the unknown
expected value EXi of the random sample should be equal
to µ0. Therefore, a hypothesis test with the null hypothesis
H0 : µ = µ0 and the alternative hypothesis H1 : µ 6= µ0 (i. e.
µ = µ0 + δ, δ 6= 0) has to be conducted. Since in general
the variance resp. the standard deviation is unknown, the
Central Limit Theorem cannot be applied as described be-
fore. However, if σ2 is estimated by S2

n, the test statistic is
no longer standard normally distributed but follows a Stu-
dent’s t-distribution with n− 1 degrees of freedom. For real
program output data x1, ..., xn with arithmetic mean xn and
the empirical standard deviation sn, the null hypothesis will
be rejected if

˛

˛

˛

˛

xn − µ0

sn/
√

n

˛

˛

˛

˛

> tn−1,1−α/2,

where tn−1,1−α/2 denotes the (1− α/2)-quantile of the Stu-
dent’s t-distribution (with n − 1 degrees of freedom) and
α ∈ (0, 1) is to be chosen according to the desired probabil-
ity of a type I error of the statistical hypothesis test.

5.2.2 Testing of Expected Value using a Gold Stan-
dard Implementation

If the (theoretic) expected value of the correct implemen-
tation is not available but a gold standard implementation

of the program being tested, the approach is quite similar.
In this case the hypothesis H0 : µ1 = µ2 will be statistically
tested against H1 : µ1 6= µ2. Again EXi = µ1 denotes the
expected value of the output of the implementation under
test whereas EYi = µ2 denotes the expected value of the
output random variables of the golden implementation. For
simplicity we assume that both samples have the same size.
Otherwise, the approach can easily be extended. As before,
for generality it is assumed that the standard deviation is un-
known. However, in this case we furthermore assume that
both theoretic standard deviations are equal and that the
random variables X and Y are independent, i. e. the sample
(Xi, Yi) is unconnected for any i ∈ {1, ..., n}. For xn and
yn describing the arithmetic means of the respective out-
put data samples, the joint empirical standard deviation is
here denoted as sxy,n =

p

(s2
x,n + s2

y,n), where sx,n and sy,n

are the respective single empirical standard deviations com-
puted as before. Thus, the null hypothesis will be rejected
if

˛

˛

˛

˛

xn − yn

sxy,n/
√

n

˛

˛

˛

˛

> t2(n−1),1−α/2.

5.2.3 Testing of Variability using a Gold Standard
Implementation

In the previous sections we have statistically tested whether
two expected values are the same (in a statistical sense).
As mentioned before it turns out that this approach is not
applicable for testing the equality of variances (if the dis-
tribution of the random variables describing the program’s
output is unidentified). Therefore a similar measure of vari-
ability defined as V b(X) := E|X−EX| is statistically tested
as mostly done in respective literature. Such defined, it is
possible to define random variables X ′

i := |Xi − EXi| and
Y ′

i := |Yi−EYi|. The random sample means X ′
n and Y ′

n and
the empirical standard deviation S′

xy,n can be determined as
before. The distribution can be derived from the previous
formulae. For real data, the null hypothesis is rejected if

˛

˛

˛

˛

x′
n − y′

n

s′xy,n/
√

n

˛

˛

˛

˛

> t2(n−1),1−α/2.

5.3 Estimating the Error Probabilities
In the previous section it has been discussed how statisti-

cal hypothesis tests can be conducted without knowing the
distribution of the program outputs. However, statistical hy-
pothesis tests without any knowledge about the error prob-
abilities of the test decision rule do not make any sense.
Therefore, the probability of both error types is estimated
in the following. Again, we first have a look at testing using
prior knowledge.

5.3.1 Error Estimation for Statistical Hypothesis
Tests using Prior Knowledge

In case of H0, i. e. µ = µ0 there may emerge the error that
the null hypothesis will be rejected erroneously (α-error).
However, by construction of the decision rule the probability
of this error will always be less than or equal to α.

In case of H1, i. e. µ = µ0+δ, δ 6= 0, the error estimation is
more complicated since the probability of a type II error also
depends on δ. The dependence of β on δ can easily be ex-
plained. For µ0 very close to the expected mean µ the prob-
ability of not rejecting the incorrect hypothesis H0 : µ = µ0

obviously is much greater than for µ0 much farther from µ.

49

Hence we may assume for the following computations that
|δ| is small. The probability of the β-error can be estimated
as follows:

β = P

„˛

˛

˛

˛

Xn − µ0

Sn/
√

n

˛

˛

˛

˛

≤ tn−1,1−α/2

«

= P

„

tn−1,α/2 ≤ Xn − µ

Sn/
√

n
+

δ
√

n

Sn
≤ tn−1,1−α/2

«

= P

„

tn−1,α/2 −
δ
√

n

Sn
≤ Xn − µ

Sn/
√

n
≤ tn−1,1−α/2 −

δ
√

n

Sn

«

= Tn−1

„

tn−1,1−α/2 −
δ
√

n

Sn

«

− Tn−1

„

tn−1,α/2 −
δ
√

n

Sn

«

≤ Tn−1

„

tn−1,1−α/2 −
δ
√

n

Sn

«

The last inequality describes how β can be estimated for
each δ using the Student’s t-distribution function Tn−1 with
n − 1 degrees of freedom. But since for practical testing it
is much more appropriate to compute δ for a given β-error,
some transformation of the latter formula is to be done. For
the last term being less than or equal to a fixed β̃, δ can be
computed such that the probability of a type II error is less
than or equal to β̃ for all δ with |δ| ≥ δβ̃ . With respect to
the respective quantiles this inequality implies that:

tn−1,β̃ ≥ tn−1,1−α/2 −
δ
√

n

Sn
⇔ δ ≥ Sn√

n
(tn−1,1−α/2 − tn−1,β̃)

This means that for a given β̃ the probability of a type
II error (β-error) is less than or equal to β̃ if |δ| ≥ δβ̃ =
Sn√

n
(tn−1,1−α/2−tn−1,β̃). Thus the error probability is in ev-

ery case less than or equal to max(α, β̃), no matter whether
H0 is rejected or not.

5.3.2 Error Estimation for Statistical Hypothesis
Tests using a Gold Standard Implementation

For testing of expected value using a golden implementa-
tion the error estimation is similar. Again in case of H0,
i. e. µ1 = µ2, the probability of a type I error denotes α by
construction of the decision rule.

In case of H1, i. e. µ2 = µ1+δ, δ 6= 0, Xn can be separated
into Xn = Zn − δ, where Zn follows the same distribution
as Yn. The probability of a type II error can be estimated
using the same approach as before and is less than or equal

to β̃ for δ with |δ| ≥ δβ̃ =
Sxy,n√

n
(t2(n−1),1−α/2 − t2(n−1),β̃).

The respective errors for asymptotic hypothesis tests of
variability against a golden implementation are calculated
following the same approach where Xi is replaced by X ′

i

and Yi by Y ′
i .

5.4 Towards Correct Decision
So far, the construction of the oracle implies that the

decision of the oracle is correct at least with probability
1 − max(α, β̃) no matter whether H0 is rejected or not (if
δ = 0 or |δ| ≤ δβ̃). Thus, in order to obtain a powerful

oracle, it seems to be a good choice to choose α and β̃ very
small. However, in case of β̃ being small, δβ̃ is quite large.

Consequently, in order to have a tight decision rule, β̃ can-
not be chosen too small accepting the disadvantage that the
error probability is distinctly too high for practical applica-
tion.

It is important to notice that our approach describes a
typical randomized algorithm for a problem that belongs
to the (randomized) complexity class BPP [25]. Therefore,
probability amplification can be applied to reduce both error
probabilities arbitrarily. The oracle is repeated R times—
also repeating the test runs (with new random inputs in
case of a deterministic SUT)—and the majority of outputs
(only “pass” and “no pass” are possible) determines the final
output. Hence, it remains to compute the number R of
reruns necessary for a given error probability. Let R be an
odd number, Y1, . . . , YR be iid random variables that take
the values 0 and 1 (the value 0 can be interpreted as an
incorrect decision and 1 as a correct one) with probabilities

1 − p and p, respectively, and let S :=
PM

i=1 Yi. Then

P(S ≤ (1 − ν)Rp) ≤ e−
ν2Rp

2 ,

which is called the Chernoff Bound [25], holds for each ν ∈
[0, 1]. Suppose α = β̃ = 1/3 is chosen. The probability of
an incorrect decision after R reruns (i. e. P(S ≤ R/2), since
R is odd) can be bounded as follows:

P(S ≤ R/2) = P

„

S ≤
„

1 − 1

4

«

R
2

3

«

≤ e−
R
48 ,

where ν = 1/4 has been chosen. Thus the error probability
decreases exponentially with the number R of reruns. For
example, in the case of 501 reruns, the probability of a wrong
decision is less than 3 · 10−5. If an error probability of at
most q should be achieved, R has to be chosen such that

e−
R
48 ≤ q holds, i. e. R ≥ −48 ln q resp. R ≥ 2⌈−24 ln q⌉+ 1,

since R must be odd.

5.5 Our Proposed Approach
We now will briefly describe how the methods presented

can be used in a testing approach. Choose the sample size
n > 30 and the number of reruns R ≥ 2⌈−24 ln q⌉+1, where
q is the desired overall error probability of the algorithm.
The error probabilities α and β̃ are chosen 1/3 as mentioned
before. Then, the approach based on prior knowledge is as
follows:

1. The following algorithm must be repeated R times:

(a) Execute the program under test n times and com-
pute the sample mean xn and the sample variance
s2

n.

(b) If the inequality in Section 5.2.1 holds, increase
the counter of rejections by one.

(c) Compute δ as described in Section 5.3.1.

2. If there are at least R/2 rejections, the test fails. Oth-
erwise, it passes.

This allows us to compute the maximum δmax over all δ’s
(for each repetition). Thus we can say that the approach
correctly makes a pass/fail decision for the SUT with re-
spect to the tested characteristics (expected value and vari-
ability) of the possibly transformed output with probability
1 − q (up to the accuracy δ). Implementations whose out-
put only differs by less than δmax (on average) are allowed
to be classified as either correct or incorrect (with respect
to the tested characteristics). It is straightforward to apply
the above approach also in case of a golden implementation
(and also to testing the equality of variabilities).

50

6. EMPIRICAL STUDIES
Two empirical studies have been conducted in order to

assess the proposed approach. The first study is designed in
order to compare our approach to other testing approaches.
The second study investigates a part of a large software sys-
tem that is used at France Télécom R&D, Paris.

6.1 Empirical Study 1: Apache Commons Math
The subject of the first study is an implementation of

the inverse cumulative distribution function (cdf) Φ−1 of
the standard normal distribution taken from the Apache
Commons Math library [1]. The implementation under test
(IUT) is written in Java and consists of about 800 LOC
(including all invoked methods). The following well-known
implication is used for the statistical hypothesis test:

X ∼ U(0, 1) ⇒ Φ−1(X) ∼ N (0, 1)

That means that if the random variable X is uniformly dis-
tributed on the interval (0, 1), Φ−1(X) is a standard nor-
mally distributed random variable.

As the inverse cdf is a deterministic function, the proposed
statistical testing methods are not necessary for testing the
implementation. However, this enables us to compare our
approach with other testing methods. Furthermore, the fact
that the output of the IUT is normally distributed makes it
possible to compare the test for the equality of variabilities
against a test for the equality of variances (cf. [5]).

We have chosen the number R of reruns as 501 which im-
plies an error probability of less than 3 · 10−5. All other
parameters are chosen as specified in Section 5.5. The sam-
ple size n is varied in order to test with several accuracies δ
(determined mainly through n, cf. Section 5.3.1).

Mutation analysis is used to measure the effectiveness of
the proposed method. For details on mutation analysis refer
to [13, 24]. As the implementation is written in Java, the
tool muJava [15] has been used in order to generate 1280
mutants. A smoke test revealed that 39 mutants do not ter-
minate within 20 s and 349 mutants terminate by throwing
an exception.

As the implementation is a deterministic function, the
original implementation can be used as a golden implemen-
tation and thus test results can be decided without error.
Two different sampling techniques are used to generate the
input. On the one hand, an evenly spaced lattice on the
interval [0, 1) has been chosen and on the other hand ran-
dom testing has been conducted, i. e. the input was sampled
uniformly distributed on (0, 1). Thereafter, the output of
the mutants has been compared to the output of the orig-
inal implementation. For each approach 1000, test inputs
are generated and passed to each mutant and to the original
implementation. Using the lattice-based sampling, 208 mu-
tants have been killed; 204 mutants have been killed with the
use of random testing. All of the mutants killed by random
testing are also killed by the lattice sampling approach.

In the first part of the present study, the statistical hy-
pothesis tests are based on theoretical mean and variance
known for the outputs. Table 1 shows the number of killed
mutants for various sample sizes n and consequently various
accuracies δmax (which is also the maximum over all δmax

for mean, variance, and their combination). The second and
the third column contain the number of mutants killed by
the statistical hypothesis test for true mean and variance,
respectively. The fourth column indicates how many mu-

Table 1: Results of the statistical hypothesis tests

against theoretical values for Study 1

n Mean Variance Mean & Variance δmax

50 74 106 148 0.199
100 85 114 159 0.140
200 95 139 186 0.099
300 97 141 189 0.081
500 107 148 194 0.063

1000 111 150 194 0.044
1500 111 150 194 0.036

Figure 2: Sample realization of a PLT

tants have been killed by the combination of both tests. A
mutant is said to be killed by a combination if it is killed
by at least one method. Note that the results of the tests
are independent even if they are obtained using the same
inputs.

In addition to the statistical hypothesis tests for the theo-
retical values, statistical tests using a golden implementation
have also been conducted. Samples generated by mutants
and others generated by the original implementation have
been compared. The results are depicted in Table 2. The
table shows the number of mutants killed by the statistical
hypothesis tests for the mean, variances, linear variability,
and combinations thereof.

6.2 Empirical Study 2: GeoStoch
In the second part of the study, a more complex imple-

mentation is examined. It is a part of the GeoStoch library
[12] developed at the Institute of Stochastics and the Insti-
tute of Applied Information Processing at Ulm University.
This software system is used at France Télécom R&D for
the modelling and cost calculation of their telecommunica-
tion infrastructure. The subject of the study is an imple-
mentation of a simulation algorithm to generate so-called
tessellations [16], i. e. mosaics, in our case so-called Pois-
son line tessellations (PLT), a sample realization is shown
in Figure 2.

A tessellation is a sequence of disjoint (w. r. t. their in-
teriors) bounded polygons that completely cover the whole
plane (or a sampling window). The PLT is a random mosaic
in the sense that the lines are randomly chosen within the
plane.

51

Table 2: Results of the statistical hypothesis tests against a gold standard implementation for Study 1

n Mean Variance Variability Mean & Variance Mean & Variability Variance & Variability All δmax

50 50 94 93 137 136 102 145 0.274
100 67 108 146 150 149 151 153 0.205
200 83 119 170 164 172 175 177 0.140
300 91 140 178 189 187 183 190 0.112
500 95 145 189 193 194 189 194 0.086

1000 105 147 192 194 194 192 194 0.063
1500 105 149 192 194 194 192 194 0.052

In contrast to the first study, the implementation is not a
deterministic function on random input. The randomness is
introduced by the program itself. Therefore, deterministic
testing cannot be applied. The program has an input pa-
rameter γ that describes the mean total length of edges per
unit area in the Poisson-line tessellation model. The output
of the program is a spatial structure, so it is challenging to
verify the output. To simplify the evaluation of the program
outputs, a set of four characteristics λ1, . . . , λ4 is computed
from the output and then, these characteristics are tested
for expected value resp. variability. This approach is also
known as Heuristic Oracle [11]. The theoretical values for
λ1, . . . , λ4 are known in explicit form [16, 20] and do only
depend on γ:

λ1 =
1

π
γ2 (mean number of vertices per unit area)

λ2 =
2

π
γ2 (mean number of edges per unit area)

λ3 =
1

π
γ2 (mean number of cells per unit area)

λ4 = γ (mean total length of edges per unit area)

The GeoStoch library is written in Java and the code exam-
ined in this study consists of 1200 LOC. Based on the IUT,
2362 mutants have been generated using MuJava. 1926 mu-
tants could be compiled. In the study, γ = 0.05 has been
chosen and the number of reruns has been fixed to R = 501.

A simple smoke test revealed that 36 mutants do not ter-
minate within 30 s of execution time and 570 mutants termi-
nate by throwing an exception. The asymptotic statistical
hypothesis tests are based on the formulae for the charac-
teristics. The first four tests have to decide whether the
mean of the computed characteristics are equal to their the-
oretical values, the next four tests check the mean values
of the characteristics computed against the mean values of
the characteristics computed from the output of the original
implementation, and the last four tests compare their linear
variabilities.

The results of the tests of the mean characteristics against
the theoretical values are shown in Table 3. The first col-
umn shows the sample size, in the next five columns, the
number of mutants killed by the tests w. r. t. to the single
characteristics and their combination are presented. In the
last column, the accuracy δmax is given. Here, δmax is the
maximum of all δ’s for all characteristics and mutants.

The results for the tests against a golden implementation
are presented in Table 4. Here, only the combined results
over all λi are shown. In the second column, the combina-

Table 3: Results of the statistical hypothesis tests

against theoretical values for Study 2

n λ1 λ2 λ3 λ4 All δmax

100 56 58 56 56 64 0.00506
200 58 60 60 58 63 0.00387
300 59 61 61 61 66 0.00328
500 60 62 62 60 66 0.00250

1000 61 62 62 61 66 0.00180

Table 4: Results of the statistical hypothesis tests

against a gold standard implementation for Study 2

n Mean Variability All δmax

100 58 57 58 0.00766
200 55 56 57 0.00537
300 58 65 65 0.00451
500 60 63 66 0.00347

1000 60 63 66 0.00251

tion of the numbers of mutants killed by the tests for equal
means for each of the four characteristics is presented. In
the third column, the combination of the number of mutants
killed by the tests for equal linear variabilities is given. The
combination of these results is presented in the fourth col-
umn. As before, δmax in shown in the last column.

In addition to the statistical tests, deterministic tests have
been obtained by fixing the seed of the random number gen-
erator. In our case, the random number generator is a sep-
arate class which can be influenced without modifying the
IUT and since mutants of a program are examined, the orig-
inal implementation can be used as a reference implemen-
tation with the same internal structure. For the test, 1000
outputs were generated for each mutant and compared to
the outputs of the original implementation. In total 139
mutants have been killed with this method.

7. DISCUSSION
In the first empirical study, the proposed tests are very

successful. Almost 95% of the mutants which are killed by
the original implementation (i. e. the original implementa-
tion has been used as a perfect oracle for random and lattice-
based testing) could also be killed by the statistical hypoth-
esis test approach. It has to be noticed that increasing the
sample size also increases the number of killed mutants. This

52

can be observed up to a sample size of n = 500. This can
be explained by the fact that statistical hypothesis tests be-
come more powerful when the sample size increases. In this
case, mutants whose results differ only slightly from the the-
oretical values are killed. But even with a high sample size,
some mutants cannot be killed by the statistical testing ap-
proach. Therefore, statistical testing should be combined
with other testing strategies in case of deterministic SUTs.

The statistical hypothesis test for the theoretical variance
kills more mutants than the statistical test for the theoreti-
cal mean does. Additionally, the results of the combination
of the two methods clearly show that both tests kill (at least
partially) different mutants, as the number of mutants killed
by the combination is noticeably larger than the number of
mutants killed by only one of the methods. Therefore, test-
ing only for one characteristic does not seem to be sufficient.

In the tests against a golden implementation, the test for
equal linear variabilities is the most effective one. A closer
examination of the data has shown that this test kills the
same mutants as the test for equal variances. Therefore, it
can be assumed that the test for equal linear variabilities is
a good substitute for the test for equal variances.

In the second study, the results are less favourable. Only
47% of the mutants which are detected with fixed seed are
killed using the original implementation as a perfect oracle.
This is probably due to the fact the the complex output has
been reduced to a set of four numerical characteristics.

In contrast to the first study, the number of mutants addi-
tionally killed by the test for equal linear variabilities is very
low. This can be explained by the high correlation of the
mean and variance in this case. The examined character-
istics should follow a Poisson distribution, where the mean
and the variance are equal.

Comparing the number of killed mutants to the total num-
ber of mutants may lead to the conclusion that only a small
number of mutants could be killed, even by deterministic
testing. This may be caused by the loss of information in the
computation of the characteristics. Therefore, other tests
either based on other characteristics or based on the (non-
transformed) program output may be more successful.

A drawback of the statistical testing approach is a high
consumption of resources, at least about 250,000 program
executions are necessary to obtain a stable test result. How-
ever, the use of statistical methods allows to draw conclu-
sions about the correctness of the program, as the chosen
confidence level α, the sample size n, and the number of
reruns determine the probability of a wrong test decision.
Therefore, when the SUT passes a test, it can be assumed
that the tested characteristic is equal to the characteristic
of the specification (with the accuracy δ). But note that
the program may behave different for other than the tested
characteristics.

As mentioned, the proposed approach can also be applied
to deterministic programs with random input. In this case,
the usual problem of random testing also applies: The tests
will only cover branches and paths that are easy to cover.
Other branches and paths will not be covered and thus not
be tested. However, other distributions that are more likely
to trigger other paths can be used too in our approach. De-
spite of that, our approach is a suitable first test approach
that should be applied in combination with other testing
strategies in case of a deterministic SUT.

Threats to Validity

At present, the number of studies is too small in order to
propose statistical hypothesis tests as a general approach to
testing randomized software. However, several other studies
have shown that it is a useful tool (cf. [4, 17, 18, 26]).

The effectiveness of our approach has mainly been com-
pared to that of random testing with a (deterministic) per-
fect oracle (cf. Study 1). It may be argued that other meth-
ods are more effective (than random testing and lattice-
based testing). That may be true, but our choice was prag-
matic and we think that it is fair to compare the approach
with random testing since randomness is also involved in our
approach.

We cannot guarantee that the outputs of the mutants of
our first empirical study follow a normal distribution. Thus,
the power of our statistical hypothesis test comparing the
variances is uncertain.

Finally, the outcome of our studies depends on the use-
fulness of mutation analysis, which is however generally ac-
cepted as a good means for evaluation purposes.

8. CONCLUSION
Most testing approaches available are intended for deter-

ministic software systems. However, there are lots of systems
that produce random output (e. g. programs for random sim-
ulation). In this case, classical testing approaches are not
applicable. For instance, the expected results cannot be
precomputed for test data, since there are several outputs
possible. Furthermore, several executions of the same or
equivalent software systems will produce different outputs.
Thus, the Gold Standard Oracle [3] is also not applicable.

The present paper has proposed a testing approach based
on statistical hypothesis tests. This approach makes it pos-
sible to test randomized software. It can be applied in case
that theoretical values are known w. r. t. the characteristics
of the distribution of outputs. This is however not the only
application. We have also shown how this method can be
used with a golden implementation. Thus, no knowledge
about the distribution of outputs is required in this case.
We have furthermore investigated what kind of knowledge
can be obtained by executing our approach. We are able to
specify and to control the error probability of the decision
with respect to the tested characteristics, where the accu-
racy of the comparison can explicitely be determined. Our
approach thus makes it possible to exactly determine the in-
formation gained about the correctness of the implementa-
tion under test. This failure and correctness estimation and
the extension of the approach to golden implementations
are the novel contributions of our paper—besides the new
empirical studies—compared to previous work on the appli-
cation of statistical hypothesis test in order to test software
[17, 18, 26].

We have presented the results of two empirical studies.
The first one has been conducted with a module of an open-
source software library, namely Apache Commons Math.
The second one is based on an implementation taken from
the GeoStoch library being used at France Télécom R&D,
Paris. We have compared statistical hypothesis tests with
deterministic tests using mutation analysis. The results of
our studies are encouraging. The proposed approach was
able to kill many of those mutants that have also been
detected by the deterministic (w. r. t. the test evaluation)

53

testing approaches. Thus, statistical hypothesis tests seem
to be a very useful tool for testing randomized software.
They should however be complemented by other testing ap-
proaches, such as testing with fixed seed, if applicable. This
combination is especially necessary in case of testing de-
terministic implementations under test with random input,
which can also be done with the proposed approach.

The empirical studies presented are only a first evaluation
of the approach. It will be necessary to conduct more studies
in order to assess the proposed approach in more detail.

9. REFERENCES

[1] Apache Software Foundation. Apache Commons Math
homepage. http://jakarta.apache.org/commons/math.

[2] J. Bible and G. Rothermel. A unifying framework
supporting the analysis and development of safe
regression test selection techniques. Technical Report
99-6011, Oregon State University, 1999.

[3] R. V. Binder. Testing Object-Oriented Systems.
Addison-Wesley, 1999.

[4] J. Bohrmann. On random testing and test oracles in
the context of credit risk. Diploma thesis, Faculty of
Computer Science, Ulm University, 2006.

[5] G. Casella and R. L. Berger. Statistical Inference.
Wadsworth Group, Duxbury, CA, USA, 2002.

[6] A. Di Pierro and H. Wiklicky. Probabilistic abstract
interpretation and statistical testing. In Proceedings of
the Second Joint International Workshop on Process
Algebra and Probabilistic Methods, Performance
Modeling and Verification, volume 2399 of Lecture
Notes in Computer Science, pages 211–212.
Springer-Verlag, 2002.

[7] C. Gloaguen, F. Fleischer, H. Schmidt, and
V. Schmidt. Simulation of typical Cox–Voronoi cells
with a special regard to implementation tests.
Mathematical Methods of Operations Research (ZOR),
62(3):357–373, 2005.

[8] C. Gloaguen, F. Fleischer, H. Schmidt, and
V. Schmidt. Fitting of stochastic telecommunication
network models via distance measures and
Monte–Carlo tests. Telecommunication Systems,
31(4):353–377, 2006.

[9] C. Gloaguen, F. Fleischer, H. Schmidt, and
V. Schmidt. Modelling and simulation of
telecommunication networks: Analysis of mean
shortest path lengths. In R. Lechnerova, I. Saxl, and
V. Benes, editors, Proceedings of the 6th International
Conference on Stereology, Spatial Statistics and
Stochastic Geometry, pages 25–36. Union of Czech
Mathematicians and Physicists, Prague, Czech
Republic, 2006.

[10] R. Hierons. Testing from a nondeterministic finite
state machine using adaptive state counting. IEEE
Transactions on Computers, 53(10):1330–1342, 2004.

[11] D. Hoffman. Heuristic test oracles. Software Testing
and Quality Engineering Magazine, 1(2), 1999.

[12] Inst. of Stochastics, Ulm University. GeoStoch
homepage. http://www.geostoch.de/.

[13] K. N. King and A. J. Offutt. A fortran language
system for mutation-based software testing. Software
Practice and Experience, 21(7):685–718, 1991.

[14] D. Kozen. Semantics of probabilistic programs.
Journal of Computer and System Sciences,
22(3):328–350, 1981.

[15] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: An
automated class mutation system. Software Testing,
Verification, and Reliability, 15(2):97–133, 2005.

[16] R. Maier and V. Schmidt. Stationary iterated
tessellations. Advances in Applied Probability,
35:337–353, 2003.

[17] J. Mayer. On testing image processing applications
with statistical methods. In Proceedings of Software
Engineering 2005 (SE 2005), volume P-64 of Lecture
Notes in Informatics, pages 69–78, Bonn, Germany,
2005. Köllen Druck+Verlag GmbH.

[18] J. Mayer and R. Guderlei. Test oracles using
statistical methods. In Proceedings of the First
International Workshop on Software Quality (SOQUA
2004), volume P-58 of Lecture Notes in Informatics,
pages 179–189, Bonn, Germany, 2004. Köllen
Druck+Verlag GmbH.

[19] J. Mayer, V. Schmidt, and F. Schweiggert. A unified
simulation framework for spatial stochastic models.
Simulation Modelling Practice and Theory,
12(5):307–326, 2004.

[20] J. Mecke. Parametric representation of mean values
for stationary random mosaics. Mathematische
Operationsforschung und Statistik Series Statistics,
15:437–442, 1984.

[21] D. Monniaux. An abstract Monte-Carlo method for
the analysis of probabilistic programs. In Proceedings
of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 93–101.
ACM Press, New York, NY, USA, 2001.

[22] D. Monniaux. Abstraction of expectation functions
using Gaussian distributions. In Proceedings of the 4th
International Conference on Verification, Model
Checking, and Abstract Interpretation, volume 2575 of
Lecture Notes In Computer Science, pages 161–173.
Springer-Verlag, 2002.

[23] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann,
and W. Grieskamp. Optimal strategies for testing
nondeterministic systems. SIGSOFT Software
Engineering Notes, 29(4):55–64, 2004.

[24] J. Offutt and R. H. Untch. Mutation 2000: Uniting
the orthogonal. In Proceedings of Mutation 2000:
Mutation Testing in the Twentieth and the Twenty
First Centuries, pages 45–55, 2000.

[25] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1995.

[26] H. Sevcikova, A. Borning, D. Socha, and W.-G. Bleek.
Automated testing of stochastic systems: A
statistically grounded approach. In Proceedings of the
ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2006), pages
215–224. ACM, 2006.

[27] C. Szyperski, D. Gruntz, and S. Murer. Component
Software – Beyond Object-Oriented Programming.
Addison-Wesley / ACM Press, 2nd edition, 2002.

[28] E. W. Weyuker. On testing non-testable programs.
The Computer Journal, 25(4):465–470, 1982.

[29] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80–83, 1945.

54

