Implementing Protocols via Declarative Event Patterns

Robert J. Walker Kevin Viggers
Department of Computer Science Department of Computer Science
University of Calgary University of Calgary
Calgary, Alberta, Canada Calgary, Alberta, Canada
rwalker@cpsc.ucalgary.ca viggers@cpsc.ucalgary.ca
ABSTRACT the specifications become scattered and tangled with the details

of the other requirements for the system, resulting in the proto-

This paper introducedeclarative event patterf®EPS) as a means : h . . !
col implementationgrosscuttingthe classes into which the sys-

to implement protocols while improving their traceability, com- has b d d it th f . .
prehensibility, and maintainability. DEPs are descriptions of se- tem as been decomposed. As a resu_t_, the software engineering
quences of events in the execution of a system that include the abil-ProPerties of systems—such as traceability, comprehensibility, and

ity to recognize properly nested event structures. DEPs allow a maintainability—tend to suffer. Errors can be introduced when an

developer to describe a protocol at a high-level, without the need to IMPlémentation must be produced that necessarily bears little re-

express extraneous details. A developer can indicate that speCiﬁcsemblance to the specification. Corrective maintenance is difficult

actions be taken when a given pattern occurs. DEPs are automati-"\/h_en t_he connection betwgen the spegifice}tion e_tnd the implemen-
cally translated into the appropriate instrumentation and automaton ttion 1s unclear and the implementation itself IS cqmplex. Al-
for recognizing a given pattern. Support for DEPs has been im- though some protocols are targets for standardization, stgndards
plemented in a proof-of-concept extension to the AspectJ Ianguagethems‘:‘lves change over time or are replaced, as exgmpllfled by
that is based on advanced compiler technology. A case study ischanges to FTP, HTTP, and CORBA. Thus, protocol implemen-
described that compares the use of DEPs in the implementation oftations will need to evolve elther because they are non-standard or
a protocol (FTP user authentication) to the use of a set of other Pecause the standards to which they adhere have evolved. Evolu-
approaches, both object-oriented and aspect-oriented tion is difficult and error-prone when the maintainer fails to under-

' ' stand the connection between the source they are changing and the

Categories and Subject Descriptors: D.2.3 [Software Engi- original protocol.

neeringl: Coding Tools and Techniques; D.2.Bdftware En- Aspect-oriented programming (AOP) promotes the separation

gineering]: Distribution, Maintenance, and Enhancement; K.6.3 and modularization of the crosscutting concerns in a system. To

[Management of Computing and Information System§ Soft- form a functioning system, the separated concerns and the base

ware Managementseftware development, software selection fynctionality of the system must still interact. This interaction can
1.5.5 [Pattern Recognitior]: Implementation. be specified by describing a sefjoii pointsin the base functional-
General Terms: Design, Human Factors, Languages. ity (either static points in the source code or points in the execution)
at which to add or replace behaviour. In most existing concrete
approaches to AOP, join point descriptions refer to properties of
individual join points in isolation, without reference to other join
points. Through descriptions of isolated join points, it is possible
to manually translate complex communication protocols into im-
1. INTRODUCTION plementations. However, such translation is less than satisfactory:

Every software system needs to provide and to adhere to protocols.@ haze of details surrounding the manual implementation of proto-
Protocols may take the form of static interfaces between objects, COIS can obscure the original intent of even simple protocols. As a
modules, machines, etc., or of specifications of the sequences off€sult, such AOP approaches can separate and modularize a cross-
actions or communications that can occur legally or illegally. Ex- cutting protocol concern but the resulting implementation remains
amples of protocols occur in every system, ranging in complexity POorly traceable, incomprehensible, and/or difficult to modify.
from the public interface to a class, to the collaboration between a _ Since protocols generally involve sequences of events, the idea
set of roles in a design pattern, to the permitted sequences of comihat one can desgrlbe protocols via specifications of their legal
mands and replies in a communication protocol, such as FTP [22]. races seems straightforward (e.g., [5, 7, 8, 11, 13]). However,
In realizing protocols, their specifications must be implemented all existing work along these lines falls into at least one of four

in combination with other functionality in a system. Details of Ccategories: (1) specification techniques without a means for direct
implementation [5, 14]; (2) verification and monitoring techniques
that can announce events or problems but not effect the correct, re-
Permission to make digital or hard copies of all or part of this work for sultant behaviour [7, 15]; (3) purely theoretical work [8, 11]; and
personal or classroom use is granted without fee provided that copies are(4) implementation techniques that fail to provide the software en-
not made or distributed for profit or commercial advantage and that copies gineering properties that we need [13, 9]. Most implementation
bear this notice and the full citation on the first page. To copy otherwise, to techniques require the developer to manually translate a descrip-

republish, to post on servers or to redistribute to lists, requires prior specific _. . . . g
permission and/or a fee. tion of the protocol into (a) instrumentation to announce the occur

SIGSOFT "04/FSE-1Z)ct. 31-Nov. 6, 2004, Newport Beach, CA, USA, fence of events within the base functionality, (b) the set of points
Copyright 2004 ACM 1-58113-855-5/04/001G55.00.

Keywords: Aspect-oriented programming, event patterns, context-
free grammars, traceability, comprehensibility, maintainability, in-
strumentation, parsing, context-sensitive join points.

159

within the base functionality at which to insert the instrumentation, mai n(args)

and (c) an event parser for identifying when the traces of interest

occur. While some work has examined the possibility of higher- conplex basic safe
level specification of trace parsing [7, 18], those approaches are not yd T~
sufficiently general and are difficult to create in practice. conpl ex |conplex | unsafe

In this paper, we introducdeclarative event patterndEPS)
as a practical means to implement protocols while improving their
traceability, comprehensibility, and maintainability. DEPs are de-
scriptions of sequences of events in the execution of a system, in-
cluding properly-nested event structures. DEPs allow a developer

to describe a protocol in a fashion that is succinct, without the need method calls and other events (such as field accesses, class loads
to express extraneous details. A developer can indicate that specific ! '

actions be taken when a given pattern occurs. DEPs are compiledOr object creation). The sequence of events in this system can be

into the appropriate instrumentation and event parsers for recogniz-!dentlfleol through a pre-order traversal of the ree. Such a sequence

. i o . is called atrace

ing a given pattern. As a result, modifying a protocol implementa- L . .

tion requires that its DEP description be modified and re-compiled, ca-rl;oi(;i?n(t:iﬁ‘;otrt]ge F:Eﬁ;nss igf S:I%ng,'[gag(;d'g t?r? d?\;(igﬁ:tl'cg\'/grﬁ:‘ we
rather than directly modifying the scattered and tangled implemen- : patte 9 9 .
tation of event instrumentation and event parser. and parsingthe resulting lexemes to recognize patterns of multi-

We begin with a skeletal example of a protocol to motivate the ple events. _There are two issues invol_/gd in such ide_n_tific_ation:
problem, in Section 2. We have implemented a proof-of-concept |mplementat|oq of the means of recognition, and specification of
tool, described in Section 3, for the use of DEPs that extends theth?rpatterns .Of Interest. £ multiol il ul
AspectJ language [19] with advanced compiler technology [4, 3]. i otrlecggnlze gactjtertns o_tmu tlpTeh.ev.entts, an I?utt[?matodn WII u
In Section 4, we examine a case study involving the implementation Imately be needed at run-time. IS 1S trué whether a developer
of user authentication within an FTP server. This implementation mangglly_lmplements the automaton dlrectl_y orviaa high-level
is performed via four approaches, for comparison: Java, AspectJ specification, and whether the implementation details of the au-

the EAOPTool [13], and DEPs. Remaining issues and related work g??&gn_ﬁi;eug;i;atﬁr:riqnasr']t'ogisrcirﬁq;grne;dsa;r%i?téhgt;tyesﬁg_Or
are discussed in Sections 5 and 6, respectively. : Y '

This paper provides the following contributions. Declarative chine would suffice to recognize these patterns but not in the ex-

event patterns provide a mechanism for matching context-sensitive2)352%?;;?: Zhn%\ﬁ?{s;g eriw(i_g%:’réi% pr:iozpeedrlt)(/) rc;i?;?g]ii rétcfhseﬁnd
join points, beyond those provided by Aspect] or other AOP complex can utilize an efficient but darg1 erous algorithm. Recog-
approaches. We describe a proof-of-concept implementation of P 9 9 : 9

DEPs. We demonstrate that DEPs can improve the traceability, nlrtcl)or;rcl)f tr:]::te:a grogre;){hn::ézqﬁgﬁgés :fzﬁggggteet%raegﬁgg'wn r?z)t
comprehensibility, and evolvability of protocol implementations. properly p ! ’ .
suffice in general, but an automaton such as a pushdown will be

needed.
2. MOTIVATION To specify an execution pattern of interest, the developer must
To motivate the problems encountered in recognizing event pat- determine the pattern of interest and implement the automaton for
terns, consider a skeletal example of a protocol that is to be imple- recognizing it. A direct, manual implementation of the protocol is

conpl ex

Figure 1: A partial execution tree involving a protocol.

mented in a system that includes four methods of intebestic |, likely to suffer from the typical shortcomings of crosscutting con-
complex , safe , andunsafe . cerns: alack of traceability, comprehensibility, or evolvability—the
The behaviour o€omplex must differ depending on the state of software engineering properties of interest in this paper. Separating
the system, according to the following two constraints. (Haf and modularizing the protocol implementation should improve the
sic has been called, it will have established propertiesdbat- situation; however, the implementation will still be low-level, diffi-
plex must use. Ibasic has not been calle¢omplex is free cult to connect to the requirements, and difficult to modify for the

to define properties that are more tailored for its context. For ex- sake of debugging or evolution. There are two well-tested, high-
ample,basic may already have established a connection with a level mechanisms for specifying patterns of interest: regular ex-
remote service that was easy to locate but that provides relatively pressions (e.g., in the Unigep tool) and context-free grammars
poor quality of service; this service suffices for the fulfillment of (e.g., as used by parser generators). Since regular expressions are
basic . On the other hand, it might be preferable to spend more not capable of expressing patterns with proper nesting, like that of
resources locating a different remote service with better quality of our example protocol, we go the route of more general context-free
service for the sake afomplex if a connection does not already grammars (CFGs). Fortunately, a CFG specification can be kept
exist. (2) Thesafe andunsafe methods can be called ina mu- simple when a regular expression will suffice. And in generating
tually recursive structure, and the control flow may proceed from the pushdown automaton realizing the CFG, a given concrete sys-
either to callcomplex . If a call tosafe encloses a call toom- tem can be statically analyzed to limit the use of the pushdown
plex more closely than a call tansafe , thencomplex can whenever possible, thereby eliminating much run-time overhead.
perform its behaviour in an efficient manner that assumes safety Previous work describes static analyses that can be performed au-
properties. Otherwise, a less efficient mechanism will be used. Fortomatically (e.qg., [4, 24]). We now consider how these ideas can be
examplesafe andunsafe may involve locking and unlocking realized in practice.

resources in a transactional manner.

A possible execution tree through such a system is depicted in .
Figure 1. The boxed event highlights the only callcmmplex 3. DECLARATIVE EVENT PATTERNS:

that is safe but constrained by the properties previously established A PROOF-OF-CONCEPT TOOL

by basic . Only enough of the tree is shown to illustrate some We have created a proof-of-concept tool that allows the developer
of its structure of interest; a real tree would contain many more to specify a protocol (or any other behaviour) as a context-free

160

grammar plus a set of behaviours to perform when patterns of inter- historypc — history (tracecut)

t occur; these descriptions are givedeslarative event patterns tracecut — primitive tracecut| namedtracecutref
es ’ " . | orderedtracecut| ~ | $| (tracecut)
(DEPs)—descriptions of multiple-event patterns. | [tracecut] | tracecut+ | tracecutk

Our proof-of-concept tool permits a developer to augment their primitivetracecut — entry (pointcut) | (exit (pointcut)
Aspect] (version 1.1) source code with DEPs. The tool then trans- [(throwing | returning) [(Formal)]])
lates this augmented AspectJ source into standard AspectJ source, hamedtracecutref — — 1d (Actuals) - o
This output source implements (1) an event parser to recognize ~ O'deredtracecut — (tracecut) [{: semanticaction:}]

h declarative event pattern, (2) the instrumentation code that namedtracecut — - abstracttracecu| concretetracecut
ee_lc p ; . . abstracttracecut — abstract [Modifiers]
will announce the occurrence of particular events at run-time to the tracecutId (Formals) ;
event parsers, and (3) the specification of the join points where the concretetracecut — [Modifiers] tracecut Id
instrumentation must be injected. With this approach, we need only (Formalg [{ semanticdecls}]
instrument those points in the system that can generate events that o == disjunct; .
affect the state of the event parsers, and need not keep a permanent disjunct — orderedtracecut(| orderedtracecut)
record of those events. Figure 2: Grammar for our proof-of-concept tool.

We begin by describing the syntax and informal semantics of our
proof-of-concept tool, in Section 3.1. Elements of the skeletal ex-
ample protocol we examined in Section 2 are used to illustrate the define constraints on the temporal or causal ordering of events, or-
use of the tool. We describe some details of implementation of the dered tracecuts may be defined as production rules. Each ordered
tool in Section 3.2. Remaining issues are delayed until Section 5. tracecut is an expression involving primitive tracecuts or references
to named tracecuts; concatenation, Kleene closure, disjunction, re-

3.1 Syntax and Informal Semantics cursion, and various forms of syntactic sugar are provided.

. . , . . An example of a primitive tracecut is shown in Figure 3. A trace-
In this section, we provide a brief overview of AspectJ and proceed ¢+ namechasicDEP is declared in the form of a production rule
to our DEP extensions that build upon it. Readers unfamiliar with

; that reduces to a primitive tracecut. This primitive tracecut specifies
:hehsyn(tjax and semantics of Aspect] 1.1 should refer to [25] for g ents involving entry to the methdmsic ; the argument passed
urther details. '

. . N . to this method is exposed in the formal parameter The ba-
AspectJ provides three constructs of interest in this paper: point- ¢;.pEP tracecut is then used withimefore advice. Thecom-
cuts, advice, and aspects. pdintcutis a specification of the set

. . X L . plexPC pointcut specifies the join points where thefore ad-
of points (calledoin pointg within the execution of a program or ;4 should apply, as long as the methmsic was entered at any

within its static source at which behaviour is to be added or re- time in the past. This advice is then able to make use of the value

F".aced: Aspect) defines a sethfmitive pointcutsfor captu_rir_lg _bound to the formal parameter. Rather than name this tracecut, we
join points such as method executions, field sets, or class initializa- could replace the reference basicDEP within the history

tions. Primitive pointcuts may be combined through conjunction i it with the explicit right-hand-side of the production rule.
(&&) and disjunction |() operators to build up more complex ex-

pressions. Pointcuts can be named to increase readability and taracecut basicDEP(int i) ::=

reuse their definitions. To add or replace behaviour at a set of join entry (execution (* *.basic(int)) && args (i));

points, a developer declaresiviceto operate on the appropriate ~ Pointcut — complexPC(: =

pointcut; advice can be declared that operates immediately before,be%’icu(ti'r?t” i)-(-complex(..));

!mmedla_ltely after, or in place of (“around”) ea(_:h join p0|n_t mgtch- complexPC() && history (basicDEP(i)) {

ing a pointcut declaration. The body of each piece of advice imple- ; Advice implementation making use of i

ments the behaviour to be inserted. Pointcuts can expose state fon

use within the advice body, such as the actual arguments passed in a

method call. The advice and pointcuts related to a particular cross- Figure 3: An example of a primitive tracecut.

cutting concern are collected within a class-like construct called an

aspect The AspectJ compiler “weaves” together aspects and base An example of an ordered tracecut is shown in Figure 4. The

functionality to effect the advice behaviour as specified. isSafe tracecut specifies a declarative event pattern where we
To this base, we have added two construdtacecutsand a want to recognize a nested sequence of calls involgafg and

history primitive pointcut. Each tracecut is a declarative event unsafe . Specifically, we want to ensure that the current event

pattern specification. Tracecuts can be named. MAik®ry is more tightly enclosed in an execution sdfe thanunsafe .

primitive pointcut takes a tracecut (or reference to a named trace- Two pointcuts are declared to capture executiorsafé andun-

cut) as an argument. Pointcuts that includetttsgory primitive safe . The completed tracecut captures all completed, prop-

pointcut may be advised like any other pointcut; the advice is exe- erly nested entry—exit pairs @afe orunsafe . The dollar sign
cuted when the declarative event pattern is matched by the patternmatches the end of the execution trace that has been encountered
of events in the actual execution. Figure 2 shows the syntax for our up to the current moment in the execution. Té8afe tracecut
extensions. Rules beginning with a capital letter correspond to the will thus match the execution at a given moment only if there is an
standard AspectJ or Java interpretations. unmatched entry teafe and no unmatched entriesuosafe .
Primitive tracecuts define the lexemes of declarative event pat- The context exposed within tracecuts can be assigned or manip-
terns, capturing individual events in the execution trace. Two prim- ulated in an optional semantic action block of Java code. For primi-
itive tracecuts are provided by the tool. Entrance into a join point tive tracecuts this typically involves modifying the state drawn from
can be captured through the use of émry primitive tracecut, the join point before assigning it to a formal parameter. Such com-
while exits from a join point can be captured through the use of putations can make use of temporary local variables, which are de-
theexit primitive tracecut. Both of these take a pointcut as an clared in a block on the left-hand-side of the production rule for a
argument, which can expose state to the advice implementationnamed tracecut declaration. These local variables can be bound to
through formal parameters, in the standard AspectJ fashion. To context exposed on the right-hand-side of the production rule. This

161

pointcut safePC(): execution (* *.safe(..));
pointcut unsafePC(): execution (* *.unsafe(..));
tracecut completed() ::=

(entry (safePC()) [completed()]
(entry (unsafePC()) [completed()]
exit (unsafePC()));

exit (safePC())) |

tracecut isSafe() =

entry (safePC()) completed()* $;

Figure 4: Capturing properly nested sequences.

is a standard feature of parser generators.

Figure 5 shows a situation in which a tracecut on the right-hand-
side of a production exposes context of the wrong type for our pur-
poses. Thentry primitive tracecut exposes thieteger argu-
ment passed to calls basic ; however, we need the named trace-
cut that we are declaring (namedgsicDEP) to expose a value of
typeint . Thus, we declare a local varialdeg of typelnteger
to capture the argument exposed from the calideic , and then
convert this argument to a@nt value within the semantic action

block.
pointcut basicPC(Integer arg):

call (* *.basic(Integer)) && args (arg);
tracecut basicDEP(int i) {: Integer arg : }ou=

entry (basicPC(arg))
{:i arg.intValue();
if (i & 1) /[* is odd number? */
fail /* reject this occurrence */

Figure 5: Using semantic action blocks.

It is also possible to apply semantic actions to conditionally re-

joint across all parsers. This may involve some code bloat, but
token generation for each parser does not normally need to be
ordered. We have conducted initial investigation into the use of
general LR recognition coupled with the Sétinger’s token ap-
proach [3] as a means of allowing a join point to simultaneously be
a member of multiple terminal classes. Such an idea remains to be
incorporated in future approaches.

Eachhistory primitive pointcut is translated into ah prim-
itive pointcut that tests the state of the corresponding automaton.
If a given communication history pattern has occurred, the corre-
sponding automaton will be in an accepting state; otherwise, it will
not be in accepting state.

The semantic stack of each parser provides a means of storing
the exposed context of a pattern as it is recognized. Primitive trace-
cuts obtain state directly from their join point bindings; the tokens
generated at each join point store the exposed state of the event
and carry it to the parser. More complex traces derive their state
from the individual tracecut occurrences in a trace pattern. When
an ordered tracecut is recognized by the parser, operations on the
semantic stack are executed to combine state placed on the stack.

With primitive tracecuts, their associated semantic actions deter-
mine how state exposed at the join point is assigned to the tracecut
state and even if the primitive tracecut should be recognized. These
semantic actions execute every time an occurrence of the primitive
event is encountered during execution. With ordered tracecuts, se-
mantic actions are executed immediately after the preceding trace-
cut pattern is recognized. An ordered tracecut may use this oppor-
tunity to manipulate state from its constituent parts. As mentioned
earlier, tracecuts may also reject the occurrence of the pattern based
on some semantic condition, causing the parser to return to its ini-
tial state.

4. CASE STUDY: FTP AUTHENTICATION

ject event occurrences. In the example, we enforce a semantic conWe now consider a case study that we have conducted involving the

straint on the class of events selected bylibeicDEP tracecut:

i must be an even number. Rejection is indicated by the use of the
identifierfail , which also causes execution of the semantic block
to end. An explicitreturn or falling off the end of the semantic
block indicate no semantic failure for a match.

3.2 Tool Implementation

development and extension of a server for the File Transfer Proto-
col (FTP). FTP defines, among other details: (1) a set of commands
that a client may send to a server, (2) a procedure for authenticating
the user who is interacting with the client, and (3) the effects of
authentication or lack thereof on the remainder of the functionality
of the protocol.

User authentication involves two FTP commands issued by a

Our proof-of-concept tool translates aspects augmented with DEPsclient. TheUSERcommand passes an argument that supplies the

into standard AspectJ. We consider here a few details of how the

user name to the server. TRASScommand passes an argument

tool generates instrumentation and the event parser. Further detailghat supplies the user’'s password to the server. The FTP specifica-

can be found elsewhere [26].

For eachhistory primitive pointcut for which advice is ap-
plied, the tool attempts to construct a pushdown automaton. This
automaton will parse the context-free grammar specified by the
target tracecut given as the argument to thiatory primitive
pointcut. These automata are implemented as optimized, table-
driven LR parsers [20, 2, 4].

The target tracecut can make reference to other tracecuts. The
transitive closure of these references defines the production rules

for the automaton implementing the target tracecut. The leaves of
the transitive closure consist of primitive tracecuts.

Each primitive tracecut is translated into AspectJ advice; each
entry becomedefore advice, while eaclexit becomesf-
ter advice. During the execution of the woven system, the oc-
currence of an event matching a primitive tracecut will cause one
or more tokens to be generated, each of which will be sent to a
different automaton for recognition.

The tool applies token-generation advice for each parser (and
hence, each DEP) even if the pointcuts for this advice are not dis-

162

tion (RFC 959 [22]) makes two statements regarding the sequenc-
ing of these and other FTP commands:

[The PASY command must be immediately preceded
by the user name command.

Servers may allow a neWdSERcommand to be en-
tered at any point This has the effect of flushing
any user, [and] password ... information already sup-
plied and beginning the login sequence again.

The session is authenticated at a particular moment if and only if
the most recent occurrence of tiSERcommand is immediately
followed by aPASScommand, thiPASScommand is the most
recently issued, and the password supplied in#$Scommand

is valid for the user name supplied in th#8ERcommand. This is a
simple pattern match on the execution trace that can be expressed as
the regular expression below (\iep syntax); a password check
must be performed in addition.

USER PASS [USER,PASS]* $

The finite state machine for user authentication is shown in Fig- Context maintains state regarding the session and connections,
ure 6; it can be derived through careful analysis of the FTP spec- such as the IP address and the file type. Each FTP command was
ification and corresponds to the regular expression above. Thisimplemented in a separate subclass (via the Command design pat-
state machine must possess three stataauthenticated, awaiting tern); each is responsible for parsing its own arguments and sending
Password, anduthenticated. The state machine begins in state U. its own responses. The appropri@@@emmandsubclass is selected
Receipt of dUSERcommand causes a transition to state P regard- by the Interpreter by parsing the command string received
less of the current state. Receipt dPASScommand in states U or ~ from the client.CommandFactory creates or caches instances of
A causes a transition to state U. A transition to state U also occurs Commandsubclasses.
if the password contained in tHASScommand is invalid. How- The base design was then extended to add the user authentication
ever, if aPASScommand is received in state P that contains a valid feature, one version for each of four approaches: Java (Section 4.1),
password, the server transitions to state A. And finally, receipt of Aspect] (Section 4.2), EAOPTool (Section 4.3), and our proof-of-
any other FTP command while in state P causes the system to re-concept tool for DEPs (Section 4.4). In Section 4.5, we compare
vert back to state U. Receipt of other FTP commands in states U the resulting implementations for their effects on traceability, com-

and A cause no change. prehensibility, and evolvability.
OLEIMNG oercommand 4.1 FTP Authentication in Java
Authentication required additions to several classes in the base de-
USER sign. A PasswordCommand was added to th€ommandhi-

erarchy. TheUserCommand had to be altered to reply “Pass-
word needed” to the client. Ar\uthenticationMonitor
class was added to monitor and record those events involved

PASS and password valid for user in determining the current authorization state ofSassion .
(AuthenticationMonitor combines elements from the State
any other command and Mediator design patterns.)
Since the occurrence of any FTP command can effect a transi-
Figure 6: FSM for authentication implied by RFC 959. tion within the monitor in some states, every class inGoenmand

hierarchy had to be modified to notify the monitor of the occur-
Initially, we designed and implemented in Java an FTP server fénce of an FTP command event. ThasswordCommand class
providing the Minimum Implementation subset as specified by Was manually instrumented to report occurrenceBAgSevents,
RFC 959. This base design (Figure 7) ignored the presence of theUserCommand reportedUSERevent occurrences, and all other
remainder of the FTP specification, including the user authentica- COmmandsubclasses reporté€all HERevent occurrences.
tion protocol. TheServer listens at a port for connection attempts ~_ F19ure 8 shows the implementédithenticationMonitor

by clients, which result in the creation of a nGession and its class. Anonymous classes are used to represent the three authenti-
associatedControlConnection and TransferContext cation states described earlier. The monitor is initially in state U.
TheControlConnection is used to send commands to and re- Each state class must implement a method to react to each of the

three recognized event kinds. The implementation will cause a
transition to another state when appropriate.

In addition to reporting the occurrence of events, most FTP com-
mands (excepd SERPASS or QUIT) must be authenticated prior

ceive responses from the server. Th&taConnection is a po-
tentially transient connection opened to transfer filegnsfer-

[[server }-->] serverexception | to operation. Therefore, 6 of the 9 subclasses infGbhmmanchi-
FileStructure * ‘ erarchy had to be further altered to check that the user had been
! DataConnection ‘ J7 logged in. If not, a reply of “User not logged in” had to be
¢ ﬁ Structure ‘ ;ent to the cIi_ent. For most commar_1ds_, this involved the ins_,er-
| session &> Transtercontext tion of a few lines of code at the beginning of t_he corresponding
; Type ‘ perform .method on thaCommandsuprass; this 9ode calls the
ControlConnestion | isAuthenticated method ofAuthenticationMonitor
Vi \L ASCIIType * . . .
‘ SessionException ‘ ‘ Interpreter * 42 FTP Authentlcat|0n N ASpeCtJ
¢ ImageType * The AspectJ extension (Figure 10) followed an approach to user
‘ Command H CommandFactory ‘ authentication similar to that in the Java extension. A single aspect
was created, along witAuthenticatorMonitor andPass-
[bataportcommand | wordCommand classes equivalent to those added for the Java ex-
TypeCommand ‘ tension. X)
[StuctureCommand | Rather than manually instrumenting ea@bmmandsubclass to
NoopCommand_| report particular event occurrences to methentlcatlon-
% VodeGommand ‘ Monltqr » We were fible to use _Aspectq to instrument the corre-
RemeveComma ‘ sponding join points in a generative fashion. Four named pointcuts
% LogoutCommand ‘ were declared to capture occurrences of FTP commands: one for
USER one forPASS one forQUIT, and one for all commands
Streconmana_| exceptUSERor PASS (other); an additional named pointcut
M (needAuthentication) captures join points where user au-
thentication is required. Three pieces luéfore advice were
Figure 7: Base design for the FTP server. declared to instrument the base code. Each of these notifies an

163

AuthenticationMonitor state machine that an event of po- vice for observation instrumentation, we provide a single trace-
tential interest has occurred; the monitor was implemented identi- cut. This tracecut declares two local variablaame and pwd.

cally to that in the Java extension. The tracecut matches occurrences of the patteiser* pass

Three pieces of around advice were declared to alter the responsether *” where the passed user name and password are an au-
of a Commandbased on the currertuthenticationState . thentic pair. This latter test is specified as a semantic action block;
The first of these alters the behaviourldéerCommand: the re- if it fails, the parser is informed that the event sequence does not

ceipt of USERcauses a “Password needed” reply to be sent. The match and that the start state should be re-entered, ready for new
second advice alters invalid command executions so that a “Not events. The$” matches the current end of the trace prefix.

logged in” reply is sent instead of servicing the request. The third Finally, there are two pieces afound advice that correspond
advice captures a dummy reply issuing fremsswordCommand closely to those in the original AspectJ aspect. The only differ-
as a convenientjoin point to add the following functionality. Within ence is that these ones make use of the tracecut withistary

the Pending state, if an invalid password is received as the argumentpointcut instead of thé statements in the original. THas-

to aPASScommand, a reply to this effect must be sent. tory pointcut matches all join points where the DEP specified as

o an argument matches the current trace prefix.
4.3 FTP Authentication in Event-Based AOP

Event-based AOP (EAOP) [12, 13] monitors the occurrence of par- 4.5 Comparlson
ticular events in the execution of a system. The developer specifiesWhile various details of language syntax and tool support could be
a set of join points in the source code of a program. When these critiqued, we are interested in the more fundamental properties of
points are reached, events are emitted to an event monitor that operthe ability of each technique to achieve traceability, comprehensi-
ates as a coroutine to the main program. The monitor passes thes®ility, and evolvability. Table 1 summarizes our comparison. An
events to developer-defined subclasses of a library class éedled entry has been added for a putative FSM generation technique in
pect . Each subclass must be implemented to parse the incomingwhich the developer must declare the states of the FSM explicitly,
stream of events to recognize some pattern of interest. When aand the state transitions are specified as regular expressions. Such a
pattern is recognized, developer-specified behaviour occurs. As atechnique corresponds to the approach of some of the related work
result, the equivalent of AspectJ advice may be applied to complex we shall discuss in Section 6.
sequences of events. Manual instrumentation for the purposes of generating events
Part of the implementation of the FTP user authentication exten- necessarily requires scattering and tangling details in the base code,
sion in EAOP is shown in Figure 9. The developer must define the since the points where events are generated occur widely over the
points in the base functionality that are to emit events when they are system. As a result of such scattering, an implementation must as-
executed. Library and tool support for this instrumentation process sume that all its parts will check and make use of the authentication
has been added to the EAOP tool. We do not show the code thatstate of the session in the appropriate manner. Each event poten-
specifies the instrumentation points; it is conceptually equivalent to tially causing a transition in the finite state machine representation
the AspectJ pointcut definitions described earlier. must be announced to the monitor; therefore, the base design must
We added amiuthenticationMonitor subclass to moni- be manually instrumented to announce those events to the monitor.
tor and to capture events in the base FTP functionality. In order to If any part performs this duty incorrectly, the user authentication
recognize the pattern of events related to user authentication, theprotocol would be violated. Detecting and correcting the source of
developer must provide a method caltefinition within the such an error would be (and was) difficult. Only the Java-extended
subclass that parses the events. With some difficulty, one can iden-version had this trouble.
tify that the necessary authentication sequence through the finite Most of the approaches required manual implementation of the
state machine of Figure 6 is implemented in this method. The state event parser, which necessarily obfuscates the patterns of interest;

is recorded in the pair of local variableserCall andpass- however, manual implementation permits the greatest expressibil-
Call : when both areull , the state idJnauthenticated; when ity since a Turing-equivalent language is available. In practice, this
userCall references an object, the state is awaitiRragsword; expressibility is more a burden than a boon. But all the techniques

and when both local variables contain object references, the state iscan make use of the Turing-equivalence of the underlying base lan-

“ready to be authenticated” as the actual password check must beguage when pressed.

performed. The declarative expression of event patterns is non-existent to
To modify the behaviour of the base program according to the poor for most of the approaches. Java and EAOPTool have none,

authentication state, the developer must provide composition spec-requiring the use of the base language to manually implement the

ifications that are conceptually equivalent to Aspect] advice dec- pattern recognition algorithms. AspectJ possesses onlgfithe

larations. We found that the EAOPTool had a number of short-

comings in terms of the usability of its composition specifications; App In | Pa | DE |Tr | Un | EvV
however, these shortcomings could presumably be overcome with Java man| man| L L L L
additional development effort. As these details are not pertinent to Aspect | gen | man| L-M | M | L-M M
our discussion and would clutter the code snippet significantly, we EAOPTool | gen | man| L L L M
do not show them. FSMgen.| gen | gen| M M M | M-H
DEPs |gen|gen| H | H| H H

4.4 FTP Authentication via DEPs
The application of DEPs towards the implementation of the FTP Table 1: Comparison of different extension approaches. Ta-
authentication protocol required the addition of a single DEP- ble entries indicate marual vs. gererated or Low, Medium,
augmented aspect to the system, shown in Figure 11. The fiveOr High; categories are: means of Istrumentation; means

pointcuts we used here are identical to those found in the original of creating Passer; and resulting Declarative Expressibility,
AspectJ aspect of Figure 10. Traceability, Understandability, and Evolvability, specifically

In place of the combined state machine implementation and ad- regarding event patterns.

164

public class AuthenticationMonitor { class AuthenticationMonitor extends Aspect {

/* State and transition definitions */ /* Protocol context */
private abstract class AuthenticationState { boolean isAuthenticated = false ;
public void observePasswordCommand(String pwd) {}
public void observeUserCommand(String usr) {} /* EAOP Aspect entry point */
public void observeOtherCommand() {} public void definition() {
} MethodCall userCall = null
MethodCall passCall = null ;
AuthenticationState unauthenticatedState = Event e = null
new AuthenticationState()
public void observeUserCommand(String usr) { while (true) {
state = pendingState; e = nextCallEvent();
userName = usr; while (lisUserCommand(e)) {
} e = nextCallEvent();
h
AuthenticationState authenticatedState = while (isUserCommand(e)) {
new AuthenticationState() { userCall = (MethodCall)e;
public void observePasswordCommand(String pwd) { e = nextCallEvent();
state = unauthenticatedState; }
userName = null;
if (isPasswordCommand(e) && userCall != null) {
public void observeUserCommand(String usr) { passCall = (MethodCall)e;
state = pendingState; String usr = (String)userCall.args[0];
userName = usr; String pwd =
} (String)((MethodCall)passCall).args[0];
h if (Authenticator.isValid(usr, pwd))
isAuthenticated = true ;
AuthenticationState pendingState = } else
new AuthenticationState() { isAuthenticated = false ;
public void observePasswordCommand(String pwd) { passCall = null ;
if (Authenticator.isValid(userName, pwd)) { userCall = null ;
state = authenticatedState; }
} else { } else {
state = unauthenticatedState; isAuthenticated = false ;
} passCall = null ;
userCall = null ;
public void observeOtherCommand() {
state = unauthenticatedState; /I Some other details elided
}
public void observeUserCommand(String usr) { }
userName = usr;
/* Event classification methods *
h public boolean isPasswordCommand(Event e) {
return ((e instanceof MethodCall) &&
/* Protocol context */ ((MethodCall) e).method.
private AuthenticationState state = getDeclaringClass().getName().
unauthenticatedState; equals("PasswordCommand"));
private String userName = null ; }
/* Mediation method */ public boolean isUserCommand(Event e)
public boolean isAuthenticated() { return ~ ((e instanceof MethodCall) &&
return (state == authenticatedState); ((MethodCall) e).method.
} getDeclaringClass().getName().
equals("UserCommand"));
/* Observation methods * }
public void observeOtherCommand() {
state.observeOtherCommand(); public boolean isCallEvent(Event e) {

return (e instanceof MethodCall);
public void observeUserCommand(String usr) {
state.observeUserCommand(usr);
/* Block on next event and

public void observePasswordCommand(String pwd) { filter out non-call events */
state.observePasswordCommand(pwd); public MethodCall nextCallEvent() {
} Event e = null ;
} boolean ok = false
while (‘ok) {
/* Extensive modifications to base functionality e = nextEvent();
are necessary but not shown... */ ok = isCallEvent(e);

e
Figure 8: Partial authentication extension in Java. retrn (MethodCalhe;

}
pointcut and its closely related variants; we discuss it further in Sec- N)
. Event emitter instrumentation not shown
tion 5. For FSM-based generators, properly nested events cannol; py; conceptually equivalent to the
be recognized. DEPs possess the highest degree of declarative ext Aspectd pointcut definitions
pressibility of event patterns amongst the approaches investigated.) N
. .. Action language specification not shown

The traceability of most of the AOP approaches is improved by ;, conceptually equivalent to the
the separation of the authentication protocol from the base func- // Aspectd behaviour modification advice
tionality. However, the traceability of the event pattern remains
poor in all the approaches except DEPs. Traceability of these pat- Figure 9: Partial authentication extension in EAOP.

165

public aspect AuthenticationMonitor { public aspect AuthenticationMonitor {

/* State and transition definitions, protocol /* Observation pointcuts */
context, and mediation method all identical pointcut user(String usr):
to Java extension, so not repeated... */ execution (*
UserCommand.perform(String, Session))
/* Observation pointcuts */ && args (usr);
pointcut user(String usr):
execution (* pointcut pass(String pwd):
UserCommand.perform(String, Session)) execution (*
&& args (usr); PasswordCommand.perform(String, Session))

&& args (pwd);
pointcut pass(String pwd):

execution (* pointcut other():
PasswordCommand.perform(String, Session)) execution (* Command+.perform(String, Session))
&& args (pwd); && luser(*) && !pass(*);
pointcut other(): pointcut quit():
execution (* Command+.perform(..)) execution (*
&& luser(*) && !pass(*); QuitCommand.perform(String, Session));
pointcut quit(): pointcut needAuthentication(Session s):
execution (* other() && !quit() && args (s);
QuitCommand.perform(String, Session));
/* Event pattern detection */
pointcut needAuthentication(Session s): tracecut isAuthenticated()
other() && !quit() && args (s); {: String name, String pwd D} o=
entry (user(name)) entry (pass(pwd))
/* Behaviour modification */ {: if (! Authenticator.isValid(name, pwd))
void around (Reply r): fail
cflow (user(String)) 1}
&& args (r) entry (other())* $;
&& call (* * ControlConnection.send(Reply)) {
proceed (new NeedPasswordReply()); /¥ Behaviour modification */
void around (Session s)
needAuthentication(s)
void around (Session s): needAuthentication(s) { && !'history (isAuthenticated())
if (lisAuthenticated()) { ControlConnection cc = s.getControlConnection();
ControlConnection cc = s.getControlConnection(); control.send(new NotLoggedInReply());
cc.send(new NotLoggedInReply()); }
} else {
proceed (s); void around (Reply r)
cflow (pass(*)) && args () &&
} call (* * ControlConnection.send(Reply))
&& !'history (isAuthenticated())
void around (Reply r): proceed (new LoglInFailedReply());
cflow (pass(*)) && args () && }
call (* * ControlConnection.send(Reply)) { }

if (lisAuthenticated())

) g{sgee? (new LoginFailedReply(); Figure 11: Full authentication extension using DEPs.

proceed (r);
through the tracecut declarations just how a history is to be satis-

} fied. Context variables on the other hand are disconnected from
/* Observation instrumentation %/ their intent. Although their name may offer an expectation as to
before (String usr): user(*) && args (usr) { their purpose, confirming, refuting, or modifying that purpose re-
state.observeUserCommand(usr); quires delving through potentially complex implementations. This
E;efore (String pwd): pass(*) && args (pwd) { increases the probability that a developer will effect changes to
state.observePasswordCommand(pwd); a system when their understanding of it is insufficient. On the
l})efore 0: other() && quit) (other hand, a tracecut—being a more direct implementation of a
state.observeOtherCé?nmand(); concept—reduces the likelihood of such an error.

} The evolvability of an approach is limited when it causes scatter-
} ing and tangling of event instrumentation or obfuscation of proto-
cols in implementing the event parser. Thus, the evolvability of the

Figure 10: Partial authentication extension in AspectJ. Java approach is poorest, and that of Aspect] and the EAOPTool

is intermediate. The FSM-based generator and DEP approaches
terns suffers because they must be explicitly and manually trans- generate the parser from a high-level specification that is simpler
lated into a set of states in conjunction with the events that causeto modify. The modifiability of the FSM-based approach is re-
transitions. Parser generators, on which our proof-of-concept tool duced because it is relatively difficult to define a new FSM man-
is based, do not require that states be explicitly identified, but can ually should the requirements change, i.e., evolvability is coupled
generate them based on the interacting patterns of interest (i.e., prowith comprehensibility. Our own experience with defining finite

duction rules) as described by the developer. state machines from informal specifications, as well as the experi-
The use of tracecuts improves comprehensibility over the use of ence of others [30], supports this contention.

context variables (such as tligAuthenticated field in the We were able to represent the regular expression for user au-

EAOP version and theserName andstate fields in the As- thentication directly with the use of declarative event patterns as

pectJ version) or the explicit states that had to be identified in the provided by our proof-of-concept tool—no translation to other rep-
finite state machine represented in Figure 6. The developer can seeesentations or models was required. Authentication becomes a

166

simple statement on patterns of events, resulting in simplification recognizing this pattern requires that nesting of method entry and
and localization of the state specification as compared to the otherexit events be accounted for (otherwise, the first exit from a deeply

solutions. recursive execution ofafe would be interpreted as exiting the
control flow of the outermostafe).
5. DISCUSSION The difference betweeaoflow and other pointcuts is signifi-

) -] S cant. Since theflow pointcut must recognize properly nested
In this section, we consider a number of remaining issues Sur- method entries and method exits, it must recognize a context-
rounding the concept of declarative event patterns and our proof- free |anguage that is non-regular. Hence, its implementation re-

of-concept implementation. quires the use of a stack. (Static optimizations can sometimes

Pointcuts versus tracecutRather than provide DEPs atop ~ '€duce the use of the stack [4, 24].) Neverthelefiow can
AspectJ, we could have chosen a different base or to start from only be used to eXpress I|m|t_ed_ con_text-free languages—e.g., note
scratch. We chose to extend Aspect] both to take advantage Ofthat, for example, it cannot distinguish between the call sequences
its existing features and to simplify comparisons. However, the safe —unsafe —complex andunsafe —safe —complex ,
combination of AspectJ and DEPs is imperfect. While all AOP Wh'_Ch VV_OUld b? problematic in the skeletal example protocol de-
approaches operate on the basis of a join point model, join point scgbed 'E Selgtloan. that thadl intcut i i .
models differ between different approaches. In AspectJ, dynamic ne should realize tha ow pointeut Is not nécessary in

join points are effectively points in the control-flow graph of a pro- an "?‘b_s"'”‘e SEnse. One C(.Md impler Eilﬂw_ by |nd|V|_duaIIy
gram. In declarative event patterns, dynamic join points are event advising the entries and exits and manually implementing a stack.

occurrences. The fact that tracecuts and pointcuts are combined ianov¥Iever, ;suc(:jh a manugl '?péems ntatlofn dw?li':d cau;e thde purpos?
expressing declarative event patterns brings into question the nature! oW 1o disappear benind a haze of details scatlered amongs

of the relationship between the two and whether both are necessary.""d;{'Ce aDnd i':lutc;_mata. Tkttﬁoz\; pomt(:l:_t IS atul_gfler-lg\{el szc'fr']'. h
The AspectJ join point model does not easily support multi-point cation. Declarative event patterns continué this trend towards nigh-

patterns because its join points are not well-ordered. To see this,!evel specificati(_)_n, thereby improving comprehensibility, traceabil-
consider again the example from Section 2 where the metafed ity, and evolvability.

is calling the methodomplex . A straightforward interpretation Avoiding further language extensionSEPs are general

of this situation might be thaafe executes beforeomplex . purpose, since they can express arbitrary context-free patterns of
However, consider applyingefore —andafter —advice to the events. Without them, one could encode specific patterns in new
execution of each of these methods, which should execute re- primitive pointcuts and extend AspectJ with these additions. How-

spectively immediately before and immediately after each of the ever, DEPs allow the expression of other multi-point patterns with-
methods. Théefore advice omsafe would execute before that oyt requiring further language extensions for each new pattern of

oncomplex , but theafter advice would execute in the reversed jpterest.

order. In other words, thexecution pointcut does not describe Adding the ability to define parameterized tracecuts would per-

a discrete event but an interval, from a trace-based perspective. mjt the encoding and reuse of commonly-occurring patterns. These
This difference does not matter much when join points are con- generic patterns would effectively define new operators in terms of

sidered in isolation. In multi-point patterns, we can see 3 possi- stryctural and temporal properties of traces. Tflew pointcut

ble solutions. (1) A more elegant realization of DEPs would re- s 3 hard-coded example of what a generic pattern could define. Its

place AspectJ's join point model in favour of one based on discrete gefinition would be similar to the example shown in Figure 4.
events. This would require a significantly different language from

AspectJ, thereby eliminating the benefit gained from the efforts at Closed universe of tokens our example tracecuts in Sec-
developing Aspect] as an industrial strength approach. (2) Elimi- tion 3.1, theisSafe andcompleted tracecuts are assumed to
nating the discrete event model of DEPs in favour of the control- operate on a closed universe of events that consist only of entries
flow graph-based model of Aspect] would likely require support and exits to thesafe andunsafe methods. Only the primitive

for join point patterns based on some interval logic. It is unclear tracecuts in the transitive closure of the target tracecut will send
whether such an approach would maintain the intentionality pro- tokens to the corresponding event-parsing automaton.

vided by DEPs. (3) Pointcuts and tracecuts can both be supported, This approach has advantages and disadvantages. On the one
as we have done. This solution requires that they be conjoined in hand, this allows us to simplify the expression of DEPs: we do not
a tightly controlled and slightly clumsy fashion, i.e., isolation of need to make mention of token types that the pattern does not care
tracecuts inside thiistory primitive pointcut, and isolation of ~ about. On the other hand, we then need to make explicit mention
pointcuts inside thentry andexit primitive tracecuts. Solu- of any tokens that we definitely do not want to occur. For example,
tion 3 struck the best balance for our research purposes, but mayconsider the tracea b c. If we specified a target tracecut con-

not be the best solution in the long term. sisting of the sequenca c, this pattern would match this trace:
.) our automaton would not care abduevents.
The cflow and related pointcutsAspectd provides the A means is needed to specify the universe of tokens to be con-
cflow(' pc) pointcut to detect join points that occur while the exe- sidered by an automaton when the universe of tokens differs from
cution remains within the control flow of another pointcue) For those explicitly mentioned in the transitive closure of the target
example, the pointcut tracecut. Complementation would then be unambiguously defined
cflow (execution (* *safe() and a complement operator could be added to the syntax. These

extensions are currently unrealized but straightforward.
would capture all events that occurred whilife remained on the

call stack. Note that recognizing tlexecution pointcut does

not suffice to recognize theflow pointcut; for the latter, the be-
ginning of the execution must be recognized and the absence of
the ending of thesameexecution must also be recognized. Thus,

Run-time efficiencyrhe space requirements of the approach
depend on two things: (1) the number of points in the system
at which event-generating instrumentation must be inserted, and
(2) on the amount of data that must be stored at run-time to encode

167

the state of the pattern recognition automata. The LR parser tech-6. RELATED WORK

nology that we employ limits unnecessary use of the stack thereby \/arious techniques make use of event traces or historical references
improving efficiency, but at the cost of a larger automaton memory for purposes other than implementation. For example, in formal
footprint.) _ N o specification techniques, such as trace assertion [5]; or run-time

We are currently implementing additional optimizations based yerification and monitoring techniques, such as intrusion detec-
on static detection of definite or infeasible paths, at which time we tjgp [27] and event-triggered decision support systems [9]. Col-
will collect benchmark data on space and efficiency. combet and Fradet [8] describe a theory behind the enforcement of
trace properties for the sake of detecting security violations; this
work is restricted to regular languages and does not address issues
of comprehensibility. Reiss and Renieris have described a tech-
nigue for compressing voluminous execution traces as they are col-
lected, through an encoding based on CFGs and construction of
automata [23]. Declarative event patterns use similar techniques
but specifically for the purposes of high-level implementation.

The work of De Pauwet al. [10] attempts to automatically

iscover emergent patterns in executions, rather than specify be-
haviour that should execute when expected patterns occur.

Feather and colleagues have investigated a variety of techniques
related to DEPs. Gist is a specification language that permits the
use of historical references [14]; however, Gist is not automatically
Dynamic definition of event patternshe dynamic intro- compilable and thus is insufficient as a means of implementation.
duction of code could pose difficulties for our technique in some Fickas and Feather have investigated requirements-based, run-time
situations. If the new code contained DEPs that required accessmonitoring of programs in dynamic environments [15]. Their work
to details of the current trace prefix that were not being stored by has culminated in the Formal Language for Expressing Assump-
an automaton already present, these DEPs could not be evaluatedions (FLEA) and its inclusion in TriggerWare, a commercial in-
conservatively. This weakness would be equally present in a sys-frastructure for decision support systems [9]. TriggerWare supports
tem not using DEPs, as the existing code would need to have keptrun-time monitoring of instrumented programs and the recording of
track of state that might only be of interest to the dynamically intro- complete execution traces; it requires manual intervention to evolve
duced code. Further research is needed to address this issue, witthe configuration of these systems. Despite its otherwise rich lan-
or without DEPs. guage for describing complex events, FLEA does not support the

. . . detection of properly nested event structures but is limited to se-
Formal specifications and logic-based implementa- guencing. In contrast, DEPs do not require complete execution
tions. We have used the State design pattern in implementing traces to be stored persistently; DEPs can express properly nested
some of the versions of the FTP server; however, the point would eyent structures: and DEPs are used within a program’s implemen-
ment the finite state machine (FSM) representation of the user au- Filman, Havelund, and their colleagues have used largely man-
because it needed to be derived from a few informal descriptions yerification (e.g., [16]). Douencet al. have advocated an event-
ficult and error-prone. One might argue that the FTP specification the EAOPToOI [13] that we have discussed. Doueetal. have
should have been more formal in the first place, thereby mitigating giso developed a theoretical framework for “stateful aspects” [11],
this difficulty. However, someone would have still needed to have \yhich can be used for analysis of event patterns.
generated the FSM in order for it to be present in the specification. A number of techniques force the developer to explicitly iden-
Such derivation must necessarily, ultimately start from an informal ity states and state transitions. Type adaptation [30] allows mod-
base. Yellin and Strom have reported similar difficulties in generat- yjes to be composed via stateful translation protocols specified as
ing state machine representations of translation protocols for type finjte state machines; however, the work has not been extended be-
adaptation [30]. ~yond pairs of modules. State abstraction has been promoted as a

Similarly, one could ask whether a temporal or modal l0gic mechanism for specifying behaviour in modular software devel-
would be more appropriate for the expression of event patterns [1]. gpment [17]. Butkevictet al.[7] use explicit state-and-transition
Our initial attempts at providing an event pattern language were representations of FSMs to aid in debugging object protocols.
based in temporal logics. The result of expressing a simple pattern jasco [18], a tool that combines AOP and components, claims to
without apparent connection to the original pattern; the equivalent the FSM states and transitions in a protocol must be explicitly de-
pattern expressed as a DEP required 30 seconds of effort and wagcribed. As discussed in Section 4.5, FSMs lack the expressibility
rather obviously the same as the concept being represented. Othergeeded to recognize properly nested structures in event patterns.
have noted that “fixpoint logics are notorious for being incompre- pEPs allow states and state transitions to be defined implicitly via
hensible” [6]. trace specifications. In some situations, states and state transitions

~ In some situations, logic-based event languages might be morere readily available, but in typical development settings, this is not

intentional than DEPs. Neither an approach based on context-freehe case. Yellin and Strom [30] agree, indicating that it is diffi-

grammars nor a logic-based approach is likely to be ideal in all

circumstances for all purposes. As with so many things in software *We have been unable to locate more recent work on Gist or details

engineering, one size is unlikely to fit all. on the form of these historical references. Presumably, Feather's
more recent work on FLEA represents the direction taken by the
research surrounding Gist.

Multi-threading. Our proof-of-concept tool currently allows
for DEPs to be matched within a single thread; its implementa-
tion creates automata strictly on a per-thread basis. The tool’s im-
plementation can be extended to deal with certain limited cases of
multi-threading, by creating automata on a per-virtual-machine ba-
sis. The use of declarative event patterns does not allow one to
magically avoid synchronization: race conditions between updates
to automaton state and accesses to that state could occur unles
the automaton methods were synchronized. Total synchronization
would be straightforward to implement; more efficient synchro-
nization is likely possible [21], but remains non-trivial future work.

In practice, we have rarely needed multi-threaded queries.

168

cult to specify these state machines. Similarly, we had difficulty [7] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.

in correctly defining the FSM for FTP authentication (Figure 6), Compiler and tool support for debugging object protocols. In
despite reviews by multiple colleagues. Testing and elimination of Int’l Symp. Foundations Softw. ER@000.

other possible error sources was necessary prior to discovering the [g] T. Colcombet and P. Fradet. Enforcing trace properties by
incorrect specification. program transformation. I8ymp. Princ. Progr. Lang2000.

Declarative event patterns are a practical realizatiocadifhis-
tory, which we have previously introduced [29, 28]. The original
implementation of call history recorded every event in a system for
the duration of an execution. Events could be retrieved for exam- i . ; -) s
ination using only a simplistic application programming interface; Execution patterns_ In objt_act-orlented visualization. In
pattern recognition was limited to basic ordering relations, such as USENIX Conf. Object-Oriented Tech. and 5¢998.

finding the most recent occurrence of an event. DEPs address thesél1] R. Douence, P. Fradet, and Midholt. A framework for the
shortcomings. detection and resolution of aspect interactiongntt Conf.

Generic Prog. and Component Eng002. LNCS 2487.

[12] R. Douence, O. Motelet, and Mii8holt. A formal definition
7. CONCLUSIONS of crosscuts. IiMetalevel Architectures and Separation of
We have presented declarative event patterns (DEPs) to permit the Crosscutting Concern001. LNCS 2192.
intentional specification of patterns of multiple events. We have 13] R. Douence and M. &lholt. A model and a tool for
created a proof-of-concept tool for the specification of DEPs based event-based aspect-oriented programming (EAOP). TR
on context-free grammars. This tool augments AspectJ aspects 02/11/INFO, Ecole des Mines de Nantes, 2002.
with DEP constructs that can be advised similarly to pointcuts. The
tool transforms the DEP constructs into standard AspectJ pointcuts methodology. In T. Biggerstaff and A. Perlis, editors
and advice that specifies event-generating instrumentation and an Software ReLleabiiitwolume 1 Addisén—WelsIey 19é9
event-recognition parser. This parser takes advantage of advanced) o M
compiler technology. Additional static optimization of the parseris [1°] S- Fickas and M. Feather. Requirements monitoring in
possible but remains to be added to the proof-of-concept tool. dynamic environments. IlEEE Symp. Requirements Eng.
While formal specifications and formal implementations have an 1995.
important role to play in software development, they tend to be too [16] R. Filman and K. Havelund. Source-code instrumentation
expensive to apply in everyday situations. DEPs promise to reduce and quantification of events. Wkshp. Foundations
the gap between informal specifications and implementation. By Aspect-Oriented Lang. at AOSR002.
providing a means of directly expressing the patterns present in[17] D. Hoffman and P. Strooper. State abstraction and modular
informal specifications, we reduce the likelihood of losing sight of software development. limt'l Symp. Foundations Softw.
the original requirements. Eng, 1995.
We have compared Aspect] extended with DEPs to Java, event{1g8] JAsCo toolssel.vub.ac.beljasco , 2004.
based AOP, and standard AspectJ in a small case study involving[19] G. Kiczales et al. An overview of Aspect]. Rioc
the implementation of user authentication in an FTP server. DEPs El.Jropean Conf bbject-Oriented ProgZOO.l LNCS 2072
allowed for the implementation of user authentication in a manner ! . ' .
that improved the comprehensibility, traceability, and evolvability [20] D. Knuth. On the translation of languages from left to right.

of the system above the other approaches. Information and Contral8(6), 1965.
[21] E. Ochmaski. Recognizable trace languagesThe Book of

Traces World Scientific, 1995.
[22] J. Postel and J. Reynolds. File Transfer Protocol (FTP).

[9] Cs3 Inc.TriggerWare: Infrastructure for Event Reasoning
Applications Version 1.0, 2004www.cs3-inc.com

[10] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman.

[14] M. Feather. Reuse in the context of a transformation-based

8. ACKNOWLEDGMENTS

We thank Andrew Eisenberg, Martin Robillard and the anonymous Request for Comments 959, Network Working Group, 1985.
revievyers for their comments, and John Ayc_ock for his help with [23] S. Reiss and M. Renieris. Encoding program executions. In
compiler technology. This work was funded in part by an NSERC Intl Conf. Softw. Eng.2001.

Discovery Grant and by a University of Calgary Research Grant. [24] D. Sereni and O. de Moor. Static analysis of aspectitih

Conf. Aspect-Oriented Softw. De2003.
9. REFERENCES [25] The AspectJ TeanThe Aspectd Programming Guidealo
Alto Research Center, Inc., 2003.

[1] R. Aberg et al. On the automatic evolution of an OS kernel) . . .
[26] K. Viggers and R. Walker. An implementation of declarative

using temporal logic and AOP. Int'l Conf. Automated

Softw. Eng.2003. event patterns. TR 2004-745-10, Univ. of Calgary, 2004.
[2] A. Aho, R. Sethi, and J. UllmarCompilers: Principles, [27] D. Wagner and D. Dean. Intrusion detegtion via static
Techniques, and Tooladdison-Wesley, 1986. analysis. INEEE Symp. Security and Privac3001.
[3] J. Aycock and N. Horspool. Schrodinger’s token. [28] R. Walker. IConJ 0.1: A proof-of-concept tool for the
Software—Practice & Experienca1(8), 2001. application of the implicit context model to Java software.
[4] J. Aycock, N. Horspool, J. Janouek, and B. Melichar. Even TR 2004-757-22, Univ. of Calgary, 2004.
faster generalized LR parsingcta Informatica 37(9), 2001. [29] R. Walker and G. Murphy. Implicit context: Easing software
[5] W. Bartussek and D. Parnas. Using assertions about traces to evolution and reuse. Imt'l Symp. Foundations Softw. Eng.
write abstract specifications for software modules. In 2000.
Information Systems Methodolog®78. LNCS 65. [30] D. Yellin and R. Strom. Protocol specifications and
[6] J. Bradfield and C. Stirling. Modal logics and mu-calculi. In component adaptor&CM Trans. Progr. Lang. Sys19(2),
Handbook of Process AlgehrElsevier, 2001. 1997.

169

http://www.cs3-inc.com/
http://ssel.vub.ac.be/jasco

	1 Introduction
	2 Motivation
	3 Declarative Event Patterns:A Proof-of-Concept Tool
	3.1 Syntax and Informal Semantics
	3.2 Tool Implementation

	4 Case Study: FTP Authentication
	4.1 FTP Authentication in Java
	4.2 FTP Authentication in AspectJ
	4.3 FTP Authentication in Event-Based AOP
	4.4 FTP Authentication via DEPs
	4.5 Comparison

	5 Discussion
	6 Related Work
	7 Conclusions
	8 Acknowledgments
	9 References

