
Implementing Protocols via Declarative Event Patterns

Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

rwalker@cpsc.ucalgary.ca

Kevin Viggers
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

viggers@cpsc.ucalgary.ca

ABSTRACT
This paper introducesdeclarative event patterns(DEPs) as a means
to implement protocols while improving their traceability, com-
prehensibility, and maintainability. DEPs are descriptions of se-
quences of events in the execution of a system that include the abil-
ity to recognize properly nested event structures. DEPs allow a
developer to describe a protocol at a high-level, without the need to
express extraneous details. A developer can indicate that specific
actions be taken when a given pattern occurs. DEPs are automati-
cally translated into the appropriate instrumentation and automaton
for recognizing a given pattern. Support for DEPs has been im-
plemented in a proof-of-concept extension to the AspectJ language
that is based on advanced compiler technology. A case study is
described that compares the use of DEPs in the implementation of
a protocol (FTP user authentication) to the use of a set of other
approaches, both object-oriented and aspect-oriented.

Categories and Subject Descriptors: D.2.3 [Software Engi-
neering]: Coding Tools and Techniques; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement; K.6.3
[Management of Computing and Information Systems]: Soft-
ware Management—software development, software selection;
I.5.5 [Pattern Recognition]: Implementation.

General Terms: Design, Human Factors, Languages.

Keywords: Aspect-oriented programming, event patterns, context-
free grammars, traceability, comprehensibility, maintainability, in-
strumentation, parsing, context-sensitive join points.

1. INTRODUCTION
Every software system needs to provide and to adhere to protocols.
Protocols may take the form of static interfaces between objects,
modules, machines, etc., or of specifications of the sequences of
actions or communications that can occur legally or illegally. Ex-
amples of protocols occur in every system, ranging in complexity
from the public interface to a class, to the collaboration between a
set of roles in a design pattern, to the permitted sequences of com-
mands and replies in a communication protocol, such as FTP [22].

In realizing protocols, their specifications must be implemented
in combination with other functionality in a system. Details of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT ’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

the specifications become scattered and tangled with the details
of the other requirements for the system, resulting in the proto-
col implementationscrosscuttingthe classes into which the sys-
tem has been decomposed. As a result, the software engineering
properties of systems—such as traceability, comprehensibility, and
maintainability—tend to suffer. Errors can be introduced when an
implementation must be produced that necessarily bears little re-
semblance to the specification. Corrective maintenance is difficult
when the connection between the specification and the implemen-
tation is unclear and the implementation itself is complex. Al-
though some protocols are targets for standardization, standards
themselves change over time or are replaced, as exemplified by
changes to FTP, HTTP, and CORBA. Thus, protocol implemen-
tations will need to evolve either because they are non-standard or
because the standards to which they adhere have evolved. Evolu-
tion is difficult and error-prone when the maintainer fails to under-
stand the connection between the source they are changing and the
original protocol.

Aspect-oriented programming (AOP) promotes the separation
and modularization of the crosscutting concerns in a system. To
form a functioning system, the separated concerns and the base
functionality of the system must still interact. This interaction can
be specified by describing a set ofjoin pointsin the base functional-
ity (either static points in the source code or points in the execution)
at which to add or replace behaviour. In most existing concrete
approaches to AOP, join point descriptions refer to properties of
individual join points in isolation, without reference to other join
points. Through descriptions of isolated join points, it is possible
to manually translate complex communication protocols into im-
plementations. However, such translation is less than satisfactory:
a haze of details surrounding the manual implementation of proto-
cols can obscure the original intent of even simple protocols. As a
result, such AOP approaches can separate and modularize a cross-
cutting protocol concern but the resulting implementation remains
poorly traceable, incomprehensible, and/or difficult to modify.

Since protocols generally involve sequences of events, the idea
that one can describe protocols via specifications of their legal
traces seems straightforward (e.g., [5, 7, 8, 11, 13]). However,
all existing work along these lines falls into at least one of four
categories: (1) specification techniques without a means for direct
implementation [5, 14]; (2) verification and monitoring techniques
that can announce events or problems but not effect the correct, re-
sultant behaviour [7, 15]; (3) purely theoretical work [8, 11]; and
(4) implementation techniques that fail to provide the software en-
gineering properties that we need [13, 9]. Most implementation
techniques require the developer to manually translate a descrip-
tion of the protocol into (a) instrumentation to announce the occur-
rence of events within the base functionality, (b) the set of points

159

within the base functionality at which to insert the instrumentation,
and (c) an event parser for identifying when the traces of interest
occur. While some work has examined the possibility of higher-
level specification of trace parsing [7, 18], those approaches are not
sufficiently general and are difficult to create in practice.

In this paper, we introducedeclarative event patterns(DEPs)
as a practical means to implement protocols while improving their
traceability, comprehensibility, and maintainability. DEPs are de-
scriptions of sequences of events in the execution of a system, in-
cluding properly-nested event structures. DEPs allow a developer
to describe a protocol in a fashion that is succinct, without the need
to express extraneous details. A developer can indicate that specific
actions be taken when a given pattern occurs. DEPs are compiled
into the appropriate instrumentation and event parsers for recogniz-
ing a given pattern. As a result, modifying a protocol implementa-
tion requires that its DEP description be modified and re-compiled,
rather than directly modifying the scattered and tangled implemen-
tation of event instrumentation and event parser.

We begin with a skeletal example of a protocol to motivate the
problem, in Section 2. We have implemented a proof-of-concept
tool, described in Section 3, for the use of DEPs that extends the
AspectJ language [19] with advanced compiler technology [4, 3].
In Section 4, we examine a case study involving the implementation
of user authentication within an FTP server. This implementation
is performed via four approaches, for comparison: Java, AspectJ,
the EAOPTool [13], and DEPs. Remaining issues and related work
are discussed in Sections 5 and 6, respectively.

This paper provides the following contributions. Declarative
event patterns provide a mechanism for matching context-sensitive
join points, beyond those provided by AspectJ or other AOP
approaches. We describe a proof-of-concept implementation of
DEPs. We demonstrate that DEPs can improve the traceability,
comprehensibility, and evolvability of protocol implementations.

2. MOTIVATION
To motivate the problems encountered in recognizing event pat-
terns, consider a skeletal example of a protocol that is to be imple-
mented in a system that includes four methods of interest:basic ,
complex , safe , andunsafe .

The behaviour ofcomplex must differ depending on the state of
the system, according to the following two constraints. (1) Ifba-
sic has been called, it will have established properties thatcom-
plex must use. Ifbasic has not been called,complex is free
to define properties that are more tailored for its context. For ex-
ample,basic may already have established a connection with a
remote service that was easy to locate but that provides relatively
poor quality of service; this service suffices for the fulfillment of
basic . On the other hand, it might be preferable to spend more
resources locating a different remote service with better quality of
service for the sake ofcomplex if a connection does not already
exist. (2) Thesafe andunsafe methods can be called in a mu-
tually recursive structure, and the control flow may proceed from
either to callcomplex . If a call tosafe encloses a call tocom-
plex more closely than a call tounsafe , thencomplex can
perform its behaviour in an efficient manner that assumes safety
properties. Otherwise, a less efficient mechanism will be used. For
example,safe andunsafe may involve locking and unlocking
resources in a transactional manner.

A possible execution tree through such a system is depicted in
Figure 1. The boxed event highlights the only call tocomplex
that is safe but constrained by the properties previously established
by basic . Only enough of the tree is shown to illustrate some
of its structure of interest; a real tree would contain many more

main(args)

complex

unsafe

safe

complex

basic

complex

complex

Figure 1: A partial execution tree involving a protocol.

method calls and other events (such as field accesses, class loads,
or object creation). The sequence of events in this system can be
identified through a pre-order traversal of the tree. Such a sequence
is called atrace.

To react to the patterns of significance in the execution tree, we
can identify the patterns in two stages:lexing individual events
andparsing the resulting lexemes to recognize patterns of multi-
ple events. There are two issues involved in such identification:
implementation of the means of recognition, and specification of
the patterns of interest.

To recognize patterns of multiple events, an automaton will ul-
timately be needed at run-time. This is true whether a developer
manually implements the automaton directly or via a high-level
specification, and whether the implementation details of the au-
tomaton state and state transitions are spread across the system or
are well-modularized. In many circumstances, a finite state ma-
chine would suffice to recognize these patterns but not in the ex-
ecution tree shown. For example, the properly nested entries and
exits ofsafe andunsafe must be recognized to determine when
complex can utilize an efficient but dangerous algorithm. Recog-
nition of these properly nested events is reducible to recognition of
properly nested parentheses; hence, a finite state machine will not
suffice in general, but an automaton such as a pushdown will be
needed.

To specify an execution pattern of interest, the developer must
determine the pattern of interest and implement the automaton for
recognizing it. A direct, manual implementation of the protocol is
likely to suffer from the typical shortcomings of crosscutting con-
cerns: a lack of traceability, comprehensibility, or evolvability—the
software engineering properties of interest in this paper. Separating
and modularizing the protocol implementation should improve the
situation; however, the implementation will still be low-level, diffi-
cult to connect to the requirements, and difficult to modify for the
sake of debugging or evolution. There are two well-tested, high-
level mechanisms for specifying patterns of interest: regular ex-
pressions (e.g., in the Unixgrep tool) and context-free grammars
(e.g., as used by parser generators). Since regular expressions are
not capable of expressing patterns with proper nesting, like that of
our example protocol, we go the route of more general context-free
grammars (CFGs). Fortunately, a CFG specification can be kept
simple when a regular expression will suffice. And in generating
the pushdown automaton realizing the CFG, a given concrete sys-
tem can be statically analyzed to limit the use of the pushdown
whenever possible, thereby eliminating much run-time overhead.
Previous work describes static analyses that can be performed au-
tomatically (e.g., [4, 24]). We now consider how these ideas can be
realized in practice.

3. DECLARATIVE EVENT PATTERNS:
A PROOF-OF-CONCEPT TOOL

We have created a proof-of-concept tool that allows the developer
to specify a protocol (or any other behaviour) as a context-free

160

grammar plus a set of behaviours to perform when patterns of inter-
est occur; these descriptions are given asdeclarative event patterns
(DEPs)—descriptions of multiple-event patterns.

Our proof-of-concept tool permits a developer to augment their
AspectJ (version 1.1) source code with DEPs. The tool then trans-
lates this augmented AspectJ source into standard AspectJ source.
This output source implements (1) an event parser to recognize
each declarative event pattern, (2) the instrumentation code that
will announce the occurrence of particular events at run-time to the
event parsers, and (3) the specification of the join points where the
instrumentation must be injected. With this approach, we need only
instrument those points in the system that can generate events that
affect the state of the event parsers, and need not keep a permanent
record of those events.

We begin by describing the syntax and informal semantics of our
proof-of-concept tool, in Section 3.1. Elements of the skeletal ex-
ample protocol we examined in Section 2 are used to illustrate the
use of the tool. We describe some details of implementation of the
tool in Section 3.2. Remaining issues are delayed until Section 5.

3.1 Syntax and Informal Semantics
In this section, we provide a brief overview of AspectJ and proceed
to our DEP extensions that build upon it. Readers unfamiliar with
the syntax and semantics of AspectJ 1.1 should refer to [25] for
further details.

AspectJ provides three constructs of interest in this paper: point-
cuts, advice, and aspects. Apointcut is a specification of the set
of points (calledjoin points) within the execution of a program or
within its static source at which behaviour is to be added or re-
placed. AspectJ defines a set ofprimitive pointcutsfor capturing
join points such as method executions, field sets, or class initializa-
tions. Primitive pointcuts may be combined through conjunction
(&&) and disjunction (||) operators to build up more complex ex-
pressions. Pointcuts can be named to increase readability and to
reuse their definitions. To add or replace behaviour at a set of join
points, a developer declaresadviceto operate on the appropriate
pointcut; advice can be declared that operates immediately before,
immediately after, or in place of (“around”) each join point match-
ing a pointcut declaration. The body of each piece of advice imple-
ments the behaviour to be inserted. Pointcuts can expose state for
use within the advice body, such as the actual arguments passed in a
method call. The advice and pointcuts related to a particular cross-
cutting concern are collected within a class-like construct called an
aspect. The AspectJ compiler “weaves” together aspects and base
functionality to effect the advice behaviour as specified.

To this base, we have added two constructs:tracecutsand a
history primitive pointcut. Each tracecut is a declarative event
pattern specification. Tracecuts can be named. Thehistory
primitive pointcut takes a tracecut (or reference to a named trace-
cut) as an argument. Pointcuts that include thehistory primitive
pointcut may be advised like any other pointcut; the advice is exe-
cuted when the declarative event pattern is matched by the pattern
of events in the actual execution. Figure 2 shows the syntax for our
extensions. Rules beginning with a capital letter correspond to the
standard AspectJ or Java interpretations.

Primitive tracecuts define the lexemes of declarative event pat-
terns, capturing individual events in the execution trace. Two prim-
itive tracecuts are provided by the tool. Entrance into a join point
can be captured through the use of theentry primitive tracecut,
while exits from a join point can be captured through the use of
the exit primitive tracecut. Both of these take a pointcut as an
argument, which can expose state to the advice implementation
through formal parameters, in the standard AspectJ fashion. To

history pc → history (tracecut)
tracecut → primitive tracecut| namedtracecutref

| orderedtracecut| ˆ | $ | (tracecut)
| [tracecut] | tracecut+ | tracecut*

primitive tracecut → entry (pointcut) | (exit (pointcut)
[(throwing | returning) [(Formal)]])

namedtracecutref → Id (Actuals)
orderedtracecut → (tracecut)* [{: semanticaction:}]
namedtracecut → abstracttracecut| concretetracecut

abstracttracecut → abstract [Modifiers]
tracecut Id (Formals) ;

concretetracecut → [Modifiers] tracecut Id
(Formals) [{ semanticdecls}]
::= disjunct;

disjunct → orderedtracecut(orderedtracecut)*

Figure 2: Grammar for our proof-of-concept tool.

define constraints on the temporal or causal ordering of events, or-
dered tracecuts may be defined as production rules. Each ordered
tracecut is an expression involving primitive tracecuts or references
to named tracecuts; concatenation, Kleene closure, disjunction, re-
cursion, and various forms of syntactic sugar are provided.

An example of a primitive tracecut is shown in Figure 3. A trace-
cut namedbasicDEP is declared in the form of a production rule
that reduces to a primitive tracecut. This primitive tracecut specifies
events involving entry to the methodbasic ; the argument passed
to this method is exposed in the formal parameteri . The ba-
sicDEP tracecut is then used withinbefore advice. Thecom-
plexPC pointcut specifies the join points where thebefore ad-
vice should apply, as long as the methodbasic was entered at any
time in the past. This advice is then able to make use of the value
bound to the formal parameter. Rather than name this tracecut, we
could replace the reference tobasicDEP within the history
pointcut with the explicit right-hand-side of the production rule.

tracecut basicDEP(int i) ::=
entry (execution (* *.basic(int)) && args (i));

pointcut complexPC():
execution (* *.complex(..));

before (int i):
complexPC() && history (basicDEP(i)) {
// Advice implementation making use of i

}

Figure 3: An example of a primitive tracecut.

An example of an ordered tracecut is shown in Figure 4. The
isSafe tracecut specifies a declarative event pattern where we
want to recognize a nested sequence of calls involvingsafe and
unsafe . Specifically, we want to ensure that the current event
is more tightly enclosed in an execution ofsafe thanunsafe .
Two pointcuts are declared to capture executions ofsafe andun-
safe . The completed tracecut captures all completed, prop-
erly nested entry–exit pairs onsafe or unsafe . The dollar sign
matches the end of the execution trace that has been encountered
up to the current moment in the execution. TheisSafe tracecut
will thus match the execution at a given moment only if there is an
unmatched entry tosafe and no unmatched entries tounsafe .

The context exposed within tracecuts can be assigned or manip-
ulated in an optional semantic action block of Java code. For primi-
tive tracecuts this typically involves modifying the state drawn from
the join point before assigning it to a formal parameter. Such com-
putations can make use of temporary local variables, which are de-
clared in a block on the left-hand-side of the production rule for a
named tracecut declaration. These local variables can be bound to
context exposed on the right-hand-side of the production rule. This

161

pointcut safePC(): execution (* *.safe(..));
pointcut unsafePC(): execution (* *.unsafe(..));

tracecut completed() ::=
(entry (safePC()) [completed()] exit (safePC())) |
(entry (unsafePC()) [completed()]

exit (unsafePC()));

tracecut isSafe() ::=
entry (safePC()) completed()* $;

Figure 4: Capturing properly nested sequences.

is a standard feature of parser generators.
Figure 5 shows a situation in which a tracecut on the right-hand-

side of a production exposes context of the wrong type for our pur-
poses. Theentry primitive tracecut exposes theInteger argu-
ment passed to calls ofbasic ; however, we need the named trace-
cut that we are declaring (namelybasicDEP) to expose a value of
typeint . Thus, we declare a local variablearg of typeInteger
to capture the argument exposed from the call tobasic , and then
convert this argument to anint value within the semantic action
block.

pointcut basicPC(Integer arg):
call (* *.basic(Integer)) && args (arg);

tracecut basicDEP(int i) {: Integer arg : } ::=
entry (basicPC(arg))
{: i = arg.intValue();

if (i & 1) /* is odd number? */
fail ; /* reject this occurrence */ : };

Figure 5: Using semantic action blocks.

It is also possible to apply semantic actions to conditionally re-
ject event occurrences. In the example, we enforce a semantic con-
straint on the class of events selected by thebasicDEP tracecut:
i must be an even number. Rejection is indicated by the use of the
identifierfail , which also causes execution of the semantic block
to end. An explicitreturn or falling off the end of the semantic
block indicate no semantic failure for a match.

3.2 Tool Implementation
Our proof-of-concept tool translates aspects augmented with DEPs
into standard AspectJ. We consider here a few details of how the
tool generates instrumentation and the event parser. Further details
can be found elsewhere [26].

For eachhistory primitive pointcut for which advice is ap-
plied, the tool attempts to construct a pushdown automaton. This
automaton will parse the context-free grammar specified by the
target tracecut given as the argument to thathistory primitive
pointcut. These automata are implemented as optimized, table-
driven LR parsers [20, 2, 4].

The target tracecut can make reference to other tracecuts. The
transitive closure of these references defines the production rules
for the automaton implementing the target tracecut. The leaves of
the transitive closure consist of primitive tracecuts.

Each primitive tracecut is translated into AspectJ advice; each
entry becomesbefore advice, while eachexit becomesaf-
ter advice. During the execution of the woven system, the oc-
currence of an event matching a primitive tracecut will cause one
or more tokens to be generated, each of which will be sent to a
different automaton for recognition.

The tool applies token-generation advice for each parser (and
hence, each DEP) even if the pointcuts for this advice are not dis-

joint across all parsers. This may involve some code bloat, but
token generation for each parser does not normally need to be
ordered. We have conducted initial investigation into the use of
general LR recognition coupled with the Schrödinger’s token ap-
proach [3] as a means of allowing a join point to simultaneously be
a member of multiple terminal classes. Such an idea remains to be
incorporated in future approaches.

Eachhistory primitive pointcut is translated into anif prim-
itive pointcut that tests the state of the corresponding automaton.
If a given communication history pattern has occurred, the corre-
sponding automaton will be in an accepting state; otherwise, it will
not be in accepting state.

The semantic stack of each parser provides a means of storing
the exposed context of a pattern as it is recognized. Primitive trace-
cuts obtain state directly from their join point bindings; the tokens
generated at each join point store the exposed state of the event
and carry it to the parser. More complex traces derive their state
from the individual tracecut occurrences in a trace pattern. When
an ordered tracecut is recognized by the parser, operations on the
semantic stack are executed to combine state placed on the stack.

With primitive tracecuts, their associated semantic actions deter-
mine how state exposed at the join point is assigned to the tracecut
state and even if the primitive tracecut should be recognized. These
semantic actions execute every time an occurrence of the primitive
event is encountered during execution. With ordered tracecuts, se-
mantic actions are executed immediately after the preceding trace-
cut pattern is recognized. An ordered tracecut may use this oppor-
tunity to manipulate state from its constituent parts. As mentioned
earlier, tracecuts may also reject the occurrence of the pattern based
on some semantic condition, causing the parser to return to its ini-
tial state.

4. CASE STUDY: FTP AUTHENTICATION
We now consider a case study that we have conducted involving the
development and extension of a server for the File Transfer Proto-
col (FTP). FTP defines, among other details: (1) a set of commands
that a client may send to a server, (2) a procedure for authenticating
the user who is interacting with the client, and (3) the effects of
authentication or lack thereof on the remainder of the functionality
of the protocol.

User authentication involves two FTP commands issued by a
client. TheUSERcommand passes an argument that supplies the
user name to the server. ThePASScommand passes an argument
that supplies the user’s password to the server. The FTP specifica-
tion (RFC 959 [22]) makes two statements regarding the sequenc-
ing of these and other FTP commands:

[The PASS] command must be immediately preceded
by the user name command.

Servers may allow a newUSERcommand to be en-
tered at any point This has the effect of flushing
any user, [and] password ... information already sup-
plied and beginning the login sequence again.

The session is authenticated at a particular moment if and only if
the most recent occurrence of theUSERcommand is immediately
followed by aPASScommand, thisPASScommand is the most
recently issued, and the password supplied in thatPASScommand
is valid for the user name supplied in thatUSERcommand. This is a
simple pattern match on the execution trace that can be expressed as
the regular expression below (viagrep syntax); a password check
must be performed in addition.

USER PASS [ˆUSER,PASS]* $

162

The finite state machine for user authentication is shown in Fig-
ure 6; it can be derived through careful analysis of the FTP spec-
ification and corresponds to the regular expression above. This
state machine must possess three states:Unauthenticated, awaiting
Password, andAuthenticated. The state machine begins in state U.
Receipt of aUSERcommand causes a transition to state P regard-
less of the current state. Receipt of aPASScommand in states U or
A causes a transition to state U. A transition to state U also occurs
if the password contained in thePASScommand is invalid. How-
ever, if aPASScommand is received in state P that contains a valid
password, the server transitions to state A. And finally, receipt of
any other FTP command while in state P causes the system to re-
vert back to state U. Receipt of other FTP commands in states U
and A cause no change.

PASS and password valid for user

USER

any other command

USER

any other command

PU

A

any other command

PASS

USER

Figure 6: FSM for authentication implied by RFC 959.

Initially, we designed and implemented in Java an FTP server
providing the Minimum Implementation subset as specified by
RFC 959. This base design (Figure 7) ignored the presence of the
remainder of the FTP specification, including the user authentica-
tion protocol. TheServer listens at a port for connection attempts
by clients, which result in the creation of a newSession and its
associatedControlConnection and TransferContext .
TheControlConnection is used to send commands to and re-
ceive responses from the server. TheDataConnection is a po-
tentially transient connection opened to transfer files.Transfer-

UserCommand

ModeCommand

LogoutCommand

StructureCommand

DataPortCommand

ControlConnection

Server

Type

FileStructure *

Structure

ASCIIType *

ImageType *

CommandFactory

ServerException

TransferContext

Command

Interpreter *SessionException

DataConnection

Session

StoreCommand

RetrieveCommand

NoopCommand

TypeCommand

Figure 7: Base design for the FTP server.

Context maintains state regarding the session and connections,
such as the IP address and the file type. Each FTP command was
implemented in a separate subclass (via the Command design pat-
tern); each is responsible for parsing its own arguments and sending
its own responses. The appropriateCommandsubclass is selected
by the Interpreter by parsing the command string received
from the client.CommandFactory creates or caches instances of
Commandsubclasses.

The base design was then extended to add the user authentication
feature, one version for each of four approaches: Java (Section 4.1),
AspectJ (Section 4.2), EAOPTool (Section 4.3), and our proof-of-
concept tool for DEPs (Section 4.4). In Section 4.5, we compare
the resulting implementations for their effects on traceability, com-
prehensibility, and evolvability.

4.1 FTP Authentication in Java
Authentication required additions to several classes in the base de-
sign. A PasswordCommand was added to theCommandhi-
erarchy. TheUserCommand had to be altered to reply “Pass-
word needed” to the client. AnAuthenticationMonitor
class was added to monitor and record those events involved
in determining the current authorization state of aSession .
(AuthenticationMonitor combines elements from the State
and Mediator design patterns.)

Since the occurrence of any FTP command can effect a transi-
tion within the monitor in some states, every class in theCommand
hierarchy had to be modified to notify the monitor of the occur-
rence of an FTP command event. ThePasswordCommand class
was manually instrumented to report occurrences ofPASSevents,
UserCommand reportedUSERevent occurrences, and all other
Commandsubclasses reportedOTHERevent occurrences.

Figure 8 shows the implementedAuthenticationMonitor
class. Anonymous classes are used to represent the three authenti-
cation states described earlier. The monitor is initially in state U.
Each state class must implement a method to react to each of the
three recognized event kinds. The implementation will cause a
transition to another state when appropriate.

In addition to reporting the occurrence of events, most FTP com-
mands (exceptUSER, PASS, or QUIT) must be authenticated prior
to operation. Therefore, 6 of the 9 subclasses in theCommandhi-
erarchy had to be further altered to check that the user had been
logged in. If not, a reply of “User not logged in” had to be
sent to the client. For most commands, this involved the inser-
tion of a few lines of code at the beginning of the corresponding
perform method on thatCommandsubclass; this code calls the
isAuthenticated method ofAuthenticationMonitor .

4.2 FTP Authentication in AspectJ
The AspectJ extension (Figure 10) followed an approach to user
authentication similar to that in the Java extension. A single aspect
was created, along withAuthenticatorMonitor andPass-
wordCommandclasses equivalent to those added for the Java ex-
tension.

Rather than manually instrumenting eachCommandsubclass to
report particular event occurrences to theAuthentication-
Monitor , we were able to use AspectJ to instrument the corre-
sponding join points in a generative fashion. Four named pointcuts
were declared to capture occurrences of FTP commands: one for
USER, one forPASS, one forQUIT, and one for all commands
exceptUSERor PASS (other); an additional named pointcut
(needAuthentication) captures join points where user au-
thentication is required. Three pieces ofbefore advice were
declared to instrument the base code. Each of these notifies an

163

AuthenticationMonitor state machine that an event of po-
tential interest has occurred; the monitor was implemented identi-
cally to that in the Java extension.

Three pieces of around advice were declared to alter the response
of a Commandbased on the currentAuthenticationState .
The first of these alters the behaviour ofUserCommand: the re-
ceipt of USERcauses a “Password needed” reply to be sent. The
second advice alters invalid command executions so that a “Not
logged in” reply is sent instead of servicing the request. The third
advice captures a dummy reply issuing fromPasswordCommand
as a convenient join point to add the following functionality. Within
the Pending state, if an invalid password is received as the argument
to aPASScommand, a reply to this effect must be sent.

4.3 FTP Authentication in Event-Based AOP
Event-based AOP (EAOP) [12, 13] monitors the occurrence of par-
ticular events in the execution of a system. The developer specifies
a set of join points in the source code of a program. When these
points are reached, events are emitted to an event monitor that oper-
ates as a coroutine to the main program. The monitor passes these
events to developer-defined subclasses of a library class calledAs-
pect . Each subclass must be implemented to parse the incoming
stream of events to recognize some pattern of interest. When a
pattern is recognized, developer-specified behaviour occurs. As a
result, the equivalent of AspectJ advice may be applied to complex
sequences of events.

Part of the implementation of the FTP user authentication exten-
sion in EAOP is shown in Figure 9. The developer must define the
points in the base functionality that are to emit events when they are
executed. Library and tool support for this instrumentation process
has been added to the EAOP tool. We do not show the code that
specifies the instrumentation points; it is conceptually equivalent to
the AspectJ pointcut definitions described earlier.

We added anAuthenticationMonitor subclass to moni-
tor and to capture events in the base FTP functionality. In order to
recognize the pattern of events related to user authentication, the
developer must provide a method calleddefinition within the
subclass that parses the events. With some difficulty, one can iden-
tify that the necessary authentication sequence through the finite
state machine of Figure 6 is implemented in this method. The state
is recorded in the pair of local variablesuserCall andpass-
Call : when both arenull , the state isUnauthenticated; when
userCall references an object, the state is awaitingPassword;
and when both local variables contain object references, the state is
“ready to be authenticated” as the actual password check must be
performed.

To modify the behaviour of the base program according to the
authentication state, the developer must provide composition spec-
ifications that are conceptually equivalent to AspectJ advice dec-
larations. We found that the EAOPTool had a number of short-
comings in terms of the usability of its composition specifications;
however, these shortcomings could presumably be overcome with
additional development effort. As these details are not pertinent to
our discussion and would clutter the code snippet significantly, we
do not show them.

4.4 FTP Authentication via DEPs
The application of DEPs towards the implementation of the FTP
authentication protocol required the addition of a single DEP-
augmented aspect to the system, shown in Figure 11. The five
pointcuts we used here are identical to those found in the original
AspectJ aspect of Figure 10.

In place of the combined state machine implementation and ad-

vice for observation instrumentation, we provide a single trace-
cut. This tracecut declares two local variables,name and pwd.
The tracecut matches occurrences of the pattern “user pass
other *” where the passed user name and password are an au-
thentic pair. This latter test is specified as a semantic action block;
if it fails, the parser is informed that the event sequence does not
match and that the start state should be re-entered, ready for new
events. The “$” matches the current end of the trace prefix.

Finally, there are two pieces ofaround advice that correspond
closely to those in the original AspectJ aspect. The only differ-
ence is that these ones make use of the tracecut within ahistory
pointcut instead of theif statements in the original. Thehis-
tory pointcut matches all join points where the DEP specified as
an argument matches the current trace prefix.

4.5 Comparison
While various details of language syntax and tool support could be
critiqued, we are interested in the more fundamental properties of
the ability of each technique to achieve traceability, comprehensi-
bility, and evolvability. Table 1 summarizes our comparison. An
entry has been added for a putative FSM generation technique in
which the developer must declare the states of the FSM explicitly,
and the state transitions are specified as regular expressions. Such a
technique corresponds to the approach of some of the related work
we shall discuss in Section 6.

Manual instrumentation for the purposes of generating events
necessarily requires scattering and tangling details in the base code,
since the points where events are generated occur widely over the
system. As a result of such scattering, an implementation must as-
sume that all its parts will check and make use of the authentication
state of the session in the appropriate manner. Each event poten-
tially causing a transition in the finite state machine representation
must be announced to the monitor; therefore, the base design must
be manually instrumented to announce those events to the monitor.
If any part performs this duty incorrectly, the user authentication
protocol would be violated. Detecting and correcting the source of
such an error would be (and was) difficult. Only the Java-extended
version had this trouble.

Most of the approaches required manual implementation of the
event parser, which necessarily obfuscates the patterns of interest;
however, manual implementation permits the greatest expressibil-
ity since a Turing-equivalent language is available. In practice, this
expressibility is more a burden than a boon. But all the techniques
can make use of the Turing-equivalence of the underlying base lan-
guage when pressed.

The declarative expression of event patterns is non-existent to
poor for most of the approaches. Java and EAOPTool have none,
requiring the use of the base language to manually implement the
pattern recognition algorithms. AspectJ possesses only thecflow

App In Pa DE Tr Un Ev
Java man man L L L L

AspectJ gen man L-M M L-M M
EAOPTool gen man L L L M
FSM gen. gen gen M M M M-H

DEPs gen gen H H H H

Table 1: Comparison of different extension approaches. Ta-
ble entries indicate manual vs. generated or Low, Medium,
or High; categories are: means of Instrumentation; means
of creating Parser; and resulting Declarative Expressibility,
Tr aceability, Understandability, and Evolvability, specifically
regarding event patterns.

164

public class AuthenticationMonitor {
/* State and transition definitions */
private abstract class AuthenticationState {

public void observePasswordCommand(String pwd) {}
public void observeUserCommand(String usr) {}
public void observeOtherCommand() {}

}

AuthenticationState unauthenticatedState =
new AuthenticationState() {

public void observeUserCommand(String usr) {
state = pendingState;
userName = usr;

}
};

AuthenticationState authenticatedState =
new AuthenticationState() {

public void observePasswordCommand(String pwd) {
state = unauthenticatedState;
userName = null;

}
public void observeUserCommand(String usr) {

state = pendingState;
userName = usr;

}
};

AuthenticationState pendingState =
new AuthenticationState() {

public void observePasswordCommand(String pwd) {
if (Authenticator.isValid(userName, pwd)) {

state = authenticatedState;
} else {

state = unauthenticatedState;
}

}
public void observeOtherCommand() {

state = unauthenticatedState;
}
public void observeUserCommand(String usr) {

userName = usr;
}

};

/* Protocol context */
private AuthenticationState state =

unauthenticatedState;
private String userName = null ;

/* Mediation method */
public boolean isAuthenticated() {

return (state == authenticatedState);
}

/* Observation methods */
public void observeOtherCommand() {

state.observeOtherCommand();
}
public void observeUserCommand(String usr) {

state.observeUserCommand(usr);
}
public void observePasswordCommand(String pwd) {

state.observePasswordCommand(pwd);
}

}

/* Extensive modifications to base functionality
are necessary but not shown... */

Figure 8: Partial authentication extension in Java.

pointcut and its closely related variants; we discuss it further in Sec-
tion 5. For FSM-based generators, properly nested events cannot
be recognized. DEPs possess the highest degree of declarative ex-
pressibility of event patterns amongst the approaches investigated.

The traceability of most of the AOP approaches is improved by
the separation of the authentication protocol from the base func-
tionality. However, the traceability of the event pattern remains
poor in all the approaches except DEPs. Traceability of these pat-

class AuthenticationMonitor extends Aspect {
/* Protocol context */
boolean isAuthenticated = false ;

/* EAOP Aspect entry point */
public void definition() {

MethodCall userCall = null ;
MethodCall passCall = null ;
Event e = null ;

while (true) {
e = nextCallEvent();
while (!isUserCommand(e)) {

e = nextCallEvent();
}

while (isUserCommand(e)) {
userCall = (MethodCall)e;
e = nextCallEvent();

}

if (isPasswordCommand(e) && userCall != null) {
passCall = (MethodCall)e;
String usr = (String)userCall.args[0];
String pwd =

(String)((MethodCall)passCall).args[0];
if (Authenticator.isValid(usr, pwd)) {

isAuthenticated = true ;
} else {

isAuthenticated = false ;
passCall = null ;
userCall = null ;

}
} else {

isAuthenticated = false ;
passCall = null ;
userCall = null ;

}
// Some other details elided

}
}

/* Event classification methods */
public boolean isPasswordCommand(Event e) {

return ((e instanceof MethodCall) &&
((MethodCall) e).method.
getDeclaringClass().getName().
equals("PasswordCommand"));

}

public boolean isUserCommand(Event e) {
return ((e instanceof MethodCall) &&

((MethodCall) e).method.
getDeclaringClass().getName().
equals("UserCommand"));

}

public boolean isCallEvent(Event e) {
return (e instanceof MethodCall);

}

/* Block on next event and
filter out non-call events */

public MethodCall nextCallEvent() {
Event e = null ;
boolean ok = false ;
while (!ok) {

e = nextEvent();
ok = isCallEvent(e);

};
return (MethodCall)e;

}
}

// Event emitter instrumentation not shown
// but conceptually equivalent to the
// AspectJ pointcut definitions

// Action language specification not shown
// but conceptually equivalent to the
// AspectJ behaviour modification advice

Figure 9: Partial authentication extension in EAOP.

165

public aspect AuthenticationMonitor {
/* State and transition definitions, protocol

context, and mediation method all identical
to Java extension, so not repeated... */

/* Observation pointcuts */
pointcut user(String usr):

execution (*
UserCommand.perform(String, Session))

&& args (usr);

pointcut pass(String pwd):
execution (*

PasswordCommand.perform(String, Session))
&& args (pwd);

pointcut other():
execution (* Command+.perform(..))
&& !user(*) && !pass(*);

pointcut quit():
execution (*

QuitCommand.perform(String, Session));

pointcut needAuthentication(Session s):
other() && !quit() && args (s);

/* Behaviour modification */
void around (Reply r):

cflow (user(String))
&& args (r)
&& call (* * ControlConnection.send(Reply)) {

proceed (new NeedPasswordReply());
}

void around (Session s): needAuthentication(s) {
if (!isAuthenticated()) {

ControlConnection cc = s.getControlConnection();
cc.send(new NotLoggedInReply());

} else {
proceed (s);

}
}

void around (Reply r):
cflow (pass(*)) && args (r) &&
call (* * ControlConnection.send(Reply)) {
if (!isAuthenticated()) {

proceed (new LogInFailedReply());
} else {

proceed (r);
}

}

/* Observation instrumentation */
before (String usr): user(*) && args (usr) {

state.observeUserCommand(usr);
}
before (String pwd): pass(*) && args (pwd) {

state.observePasswordCommand(pwd);
}
before (): other() && !quit() {

state.observeOtherCommand();
}

}

Figure 10: Partial authentication extension in AspectJ.

terns suffers because they must be explicitly and manually trans-
lated into a set of states in conjunction with the events that cause
transitions. Parser generators, on which our proof-of-concept tool
is based, do not require that states be explicitly identified, but can
generate them based on the interacting patterns of interest (i.e., pro-
duction rules) as described by the developer.

The use of tracecuts improves comprehensibility over the use of
context variables (such as theisAuthenticated field in the
EAOP version and theuserName and state fields in the As-
pectJ version) or the explicit states that had to be identified in the
finite state machine represented in Figure 6. The developer can see

public aspect AuthenticationMonitor {
/* Observation pointcuts */
pointcut user(String usr):

execution (*
UserCommand.perform(String, Session))

&& args (usr);

pointcut pass(String pwd):
execution (*

PasswordCommand.perform(String, Session))
&& args (pwd);

pointcut other():
execution (* Command+.perform(String, Session))
&& !user(*) && !pass(*);

pointcut quit():
execution (*

QuitCommand.perform(String, Session));

pointcut needAuthentication(Session s):
other() && !quit() && args (s);

/* Event pattern detection */
tracecut isAuthenticated()

{: String name, String pwd : } ::=
entry (user(name)) entry (pass(pwd))
{: if (! Authenticator.isValid(name, pwd))

fail ;
: }
entry (other())* $;

/* Behaviour modification */
void around (Session s) :

needAuthentication(s)
&& ! history (isAuthenticated()) {

ControlConnection cc = s.getControlConnection();
control.send(new NotLoggedInReply());

}

void around (Reply r) :
cflow (pass(*)) && args (r) &&
call (* * ControlConnection.send(Reply))
&& ! history (isAuthenticated()) {
proceed (new LogInFailedReply());

}
}

Figure 11: Full authentication extension using DEPs.

through the tracecut declarations just how a history is to be satis-
fied. Context variables on the other hand are disconnected from
their intent. Although their name may offer an expectation as to
their purpose, confirming, refuting, or modifying that purpose re-
quires delving through potentially complex implementations. This
increases the probability that a developer will effect changes to
a system when their understanding of it is insufficient. On the
other hand, a tracecut—being a more direct implementation of a
concept—reduces the likelihood of such an error.

The evolvability of an approach is limited when it causes scatter-
ing and tangling of event instrumentation or obfuscation of proto-
cols in implementing the event parser. Thus, the evolvability of the
Java approach is poorest, and that of AspectJ and the EAOPTool
is intermediate. The FSM-based generator and DEP approaches
generate the parser from a high-level specification that is simpler
to modify. The modifiability of the FSM-based approach is re-
duced because it is relatively difficult to define a new FSM man-
ually should the requirements change, i.e., evolvability is coupled
with comprehensibility. Our own experience with defining finite
state machines from informal specifications, as well as the experi-
ence of others [30], supports this contention.

We were able to represent the regular expression for user au-
thentication directly with the use of declarative event patterns as
provided by our proof-of-concept tool—no translation to other rep-
resentations or models was required. Authentication becomes a

166

simple statement on patterns of events, resulting in simplification
and localization of the state specification as compared to the other
solutions.

5. DISCUSSION
In this section, we consider a number of remaining issues sur-
rounding the concept of declarative event patterns and our proof-
of-concept implementation.

Pointcuts versus tracecuts.Rather than provide DEPs atop
AspectJ, we could have chosen a different base or to start from
scratch. We chose to extend AspectJ both to take advantage of
its existing features and to simplify comparisons. However, the
combination of AspectJ and DEPs is imperfect. While all AOP
approaches operate on the basis of a join point model, join point
models differ between different approaches. In AspectJ, dynamic
join points are effectively points in the control-flow graph of a pro-
gram. In declarative event patterns, dynamic join points are event
occurrences. The fact that tracecuts and pointcuts are combined in
expressing declarative event patterns brings into question the nature
of the relationship between the two and whether both are necessary.

The AspectJ join point model does not easily support multi-point
patterns because its join points are not well-ordered. To see this,
consider again the example from Section 2 where the methodsafe
is calling the methodcomplex . A straightforward interpretation
of this situation might be thatsafe executes beforecomplex .
However, consider applyingbefore and after advice to the
execution of each of these methods, which should execute re-
spectively immediately before and immediately after each of the
methods. Thebefore advice onsafe would execute before that
oncomplex , but theafter advice would execute in the reversed
order. In other words, theexecution pointcut does not describe
a discrete event but an interval, from a trace-based perspective.

This difference does not matter much when join points are con-
sidered in isolation. In multi-point patterns, we can see 3 possi-
ble solutions. (1) A more elegant realization of DEPs would re-
place AspectJ’s join point model in favour of one based on discrete
events. This would require a significantly different language from
AspectJ, thereby eliminating the benefit gained from the efforts at
developing AspectJ as an industrial strength approach. (2) Elimi-
nating the discrete event model of DEPs in favour of the control-
flow graph-based model of AspectJ would likely require support
for join point patterns based on some interval logic. It is unclear
whether such an approach would maintain the intentionality pro-
vided by DEPs. (3) Pointcuts and tracecuts can both be supported,
as we have done. This solution requires that they be conjoined in
a tightly controlled and slightly clumsy fashion, i.e., isolation of
tracecuts inside thehistory primitive pointcut, and isolation of
pointcuts inside theentry andexit primitive tracecuts. Solu-
tion 3 struck the best balance for our research purposes, but may
not be the best solution in the long term.

The cflow and related pointcuts.AspectJ provides the
cflow(pc) pointcut to detect join points that occur while the exe-
cution remains within the control flow of another pointcut (pc). For
example, the pointcut

cflow (execution (* *.safe()))

would capture all events that occurred whilesafe remained on the
call stack. Note that recognizing theexecution pointcut does
not suffice to recognize thecflow pointcut; for the latter, the be-
ginning of the execution must be recognized and the absence of
the ending of thesameexecution must also be recognized. Thus,

recognizing this pattern requires that nesting of method entry and
exit events be accounted for (otherwise, the first exit from a deeply
recursive execution ofsafe would be interpreted as exiting the
control flow of the outermostsafe).

The difference betweencflow and other pointcuts is signifi-
cant. Since thecflow pointcut must recognize properly nested
method entries and method exits, it must recognize a context-
free language that is non-regular. Hence, its implementation re-
quires the use of a stack. (Static optimizations can sometimes
reduce the use of the stack [4, 24].) Nevertheless,cflow can
only be used to express limited context-free languages—e.g., note
that, for example, it cannot distinguish between the call sequences
safe →unsafe →complex andunsafe →safe →complex ,
which would be problematic in the skeletal example protocol de-
scribed in Section 2.

One should realize that thecflow pointcut is not necessary in
an absolute sense. One could implementcflow by individually
advising the entries and exits and manually implementing a stack.
However, such a manual implementation would cause the purpose
of cflow to disappear behind a haze of details scattered amongst
advice and automata. Thecflow pointcut is a higher-level specifi-
cation. Declarative event patterns continue this trend towards high-
level specification, thereby improving comprehensibility, traceabil-
ity, and evolvability.

Avoiding further language extensions.DEPs are general
purpose, since they can express arbitrary context-free patterns of
events. Without them, one could encode specific patterns in new
primitive pointcuts and extend AspectJ with these additions. How-
ever, DEPs allow the expression of other multi-point patterns with-
out requiring further language extensions for each new pattern of
interest.

Adding the ability to define parameterized tracecuts would per-
mit the encoding and reuse of commonly-occurring patterns. These
generic patterns would effectively define new operators in terms of
structural and temporal properties of traces. Thecflow pointcut
is a hard-coded example of what a generic pattern could define. Its
definition would be similar to the example shown in Figure 4.

Closed universe of tokens.In our example tracecuts in Sec-
tion 3.1, theisSafe andcompleted tracecuts are assumed to
operate on a closed universe of events that consist only of entries
and exits to thesafe andunsafe methods. Only the primitive
tracecuts in the transitive closure of the target tracecut will send
tokens to the corresponding event-parsing automaton.

This approach has advantages and disadvantages. On the one
hand, this allows us to simplify the expression of DEPs: we do not
need to make mention of token types that the pattern does not care
about. On the other hand, we then need to make explicit mention
of any tokens that we definitely do not want to occur. For example,
consider the trace:a b c . If we specified a target tracecut con-
sisting of the sequencea c , this pattern would match this trace:
our automaton would not care aboutb events.

A means is needed to specify the universe of tokens to be con-
sidered by an automaton when the universe of tokens differs from
those explicitly mentioned in the transitive closure of the target
tracecut. Complementation would then be unambiguously defined
and a complement operator could be added to the syntax. These
extensions are currently unrealized but straightforward.

Run-time efficiency.The space requirements of the approach
depend on two things: (1) the number of points in the system
at which event-generating instrumentation must be inserted, and
(2) on the amount of data that must be stored at run-time to encode

167

the state of the pattern recognition automata. The LR parser tech-
nology that we employ limits unnecessary use of the stack thereby
improving efficiency, but at the cost of a larger automaton memory
footprint.

We are currently implementing additional optimizations based
on static detection of definite or infeasible paths, at which time we
will collect benchmark data on space and efficiency.

Multi-threading. Our proof-of-concept tool currently allows
for DEPs to be matched within a single thread; its implementa-
tion creates automata strictly on a per-thread basis. The tool’s im-
plementation can be extended to deal with certain limited cases of
multi-threading, by creating automata on a per-virtual-machine ba-
sis. The use of declarative event patterns does not allow one to
magically avoid synchronization: race conditions between updates
to automaton state and accesses to that state could occur unless
the automaton methods were synchronized. Total synchronization
would be straightforward to implement; more efficient synchro-
nization is likely possible [21], but remains non-trivial future work.
In practice, we have rarely needed multi-threaded queries.

Dynamic definition of event patterns.The dynamic intro-
duction of code could pose difficulties for our technique in some
situations. If the new code contained DEPs that required access
to details of the current trace prefix that were not being stored by
an automaton already present, these DEPs could not be evaluated
conservatively. This weakness would be equally present in a sys-
tem not using DEPs, as the existing code would need to have kept
track of state that might only be of interest to the dynamically intro-
duced code. Further research is needed to address this issue, with
or without DEPs.

Formal specifications and logic-based implementa-
tions. We have used the State design pattern in implementing
some of the versions of the FTP server; however, the point would
have remained the same had a different means been used to imple-
ment the finite state machine (FSM) representation of the user au-
thentication protocol. The FSM representation caused difficulties
because it needed to be derived from a few informal descriptions
within the FTP specification, and this derivation process was dif-
ficult and error-prone. One might argue that the FTP specification
should have been more formal in the first place, thereby mitigating
this difficulty. However, someone would have still needed to have
generated the FSM in order for it to be present in the specification.
Such derivation must necessarily, ultimately start from an informal
base. Yellin and Strom have reported similar difficulties in generat-
ing state machine representations of translation protocols for type
adaptation [30].

Similarly, one could ask whether a temporal or modal logic
would be more appropriate for the expression of event patterns [1].
Our initial attempts at providing an event pattern language were
based in temporal logics. The result of expressing a simple pattern
in CTL was a week’s effort to produce a whiteboard full of symbols
without apparent connection to the original pattern; the equivalent
pattern expressed as a DEP required 30 seconds of effort and was
rather obviously the same as the concept being represented. Others
have noted that “fixpoint logics are notorious for being incompre-
hensible” [6].

In some situations, logic-based event languages might be more
intentional than DEPs. Neither an approach based on context-free
grammars nor a logic-based approach is likely to be ideal in all
circumstances for all purposes. As with so many things in software
engineering, one size is unlikely to fit all.

6. RELATED WORK
Various techniques make use of event traces or historical references
for purposes other than implementation. For example, in formal
specification techniques, such as trace assertion [5]; or run-time
verification and monitoring techniques, such as intrusion detec-
tion [27] and event-triggered decision support systems [9]. Col-
combet and Fradet [8] describe a theory behind the enforcement of
trace properties for the sake of detecting security violations; this
work is restricted to regular languages and does not address issues
of comprehensibility. Reiss and Renieris have described a tech-
nique for compressing voluminous execution traces as they are col-
lected, through an encoding based on CFGs and construction of
automata [23]. Declarative event patterns use similar techniques
but specifically for the purposes of high-level implementation.

The work of De Pauwet al. [10] attempts to automatically
discover emergent patterns in executions, rather than specify be-
haviour that should execute when expected patterns occur.

Feather and colleagues have investigated a variety of techniques
related to DEPs. Gist is a specification language that permits the
use of historical references [14]; however, Gist is not automatically
compilable and thus is insufficient as a means of implementation.1

Fickas and Feather have investigated requirements-based, run-time
monitoring of programs in dynamic environments [15]. Their work
has culminated in the Formal Language for Expressing Assump-
tions (FLEA) and its inclusion in TriggerWare, a commercial in-
frastructure for decision support systems [9]. TriggerWare supports
run-time monitoring of instrumented programs and the recording of
complete execution traces; it requires manual intervention to evolve
the configuration of these systems. Despite its otherwise rich lan-
guage for describing complex events, FLEA does not support the
detection of properly nested event structures but is limited to se-
quencing. In contrast, DEPs do not require complete execution
traces to be stored persistently; DEPs can express properly nested
event structures; and DEPs are used within a program’s implemen-
tation, not necessarily for external monitoring.

Filman, Havelund, and their colleagues have used largely man-
ual instrumentation and event parsing techniques, particularly for
verification (e.g., [16]). Douenceet al. have advocated an event-
based approach to aspect-oriented programming [12], realized in
the EAOPTool [13] that we have discussed. Douenceet al. have
also developed a theoretical framework for “stateful aspects” [11],
which can be used for analysis of event patterns.

A number of techniques force the developer to explicitly iden-
tify states and state transitions. Type adaptation [30] allows mod-
ules to be composed via stateful translation protocols specified as
finite state machines; however, the work has not been extended be-
yond pairs of modules. State abstraction has been promoted as a
mechanism for specifying behaviour in modular software devel-
opment [17]. Butkevichet al. [7] use explicit state-and-transition
representations of FSMs to aid in debugging object protocols.
JAsCo [18], a tool that combines AOP and components, claims to
provide stateful aspects as described by Douenceet al.; however,
the FSM states and transitions in a protocol must be explicitly de-
scribed. As discussed in Section 4.5, FSMs lack the expressibility
needed to recognize properly nested structures in event patterns.
DEPs allow states and state transitions to be defined implicitly via
trace specifications. In some situations, states and state transitions
are readily available, but in typical development settings, this is not
the case. Yellin and Strom [30] agree, indicating that it is diffi-

1We have been unable to locate more recent work on Gist or details
on the form of these historical references. Presumably, Feather’s
more recent work on FLEA represents the direction taken by the
research surrounding Gist.

168

cult to specify these state machines. Similarly, we had difficulty
in correctly defining the FSM for FTP authentication (Figure 6),
despite reviews by multiple colleagues. Testing and elimination of
other possible error sources was necessary prior to discovering the
incorrect specification.

Declarative event patterns are a practical realization ofcall his-
tory, which we have previously introduced [29, 28]. The original
implementation of call history recorded every event in a system for
the duration of an execution. Events could be retrieved for exam-
ination using only a simplistic application programming interface;
pattern recognition was limited to basic ordering relations, such as
finding the most recent occurrence of an event. DEPs address these
shortcomings.

7. CONCLUSIONS
We have presented declarative event patterns (DEPs) to permit the
intentional specification of patterns of multiple events. We have
created a proof-of-concept tool for the specification of DEPs based
on context-free grammars. This tool augments AspectJ aspects
with DEP constructs that can be advised similarly to pointcuts. The
tool transforms the DEP constructs into standard AspectJ pointcuts
and advice that specifies event-generating instrumentation and an
event-recognition parser. This parser takes advantage of advanced
compiler technology. Additional static optimization of the parser is
possible but remains to be added to the proof-of-concept tool.

While formal specifications and formal implementations have an
important role to play in software development, they tend to be too
expensive to apply in everyday situations. DEPs promise to reduce
the gap between informal specifications and implementation. By
providing a means of directly expressing the patterns present in
informal specifications, we reduce the likelihood of losing sight of
the original requirements.

We have compared AspectJ extended with DEPs to Java, event-
based AOP, and standard AspectJ in a small case study involving
the implementation of user authentication in an FTP server. DEPs
allowed for the implementation of user authentication in a manner
that improved the comprehensibility, traceability, and evolvability
of the system above the other approaches.

8. ACKNOWLEDGMENTS
We thank Andrew Eisenberg, Martin Robillard and the anonymous
reviewers for their comments, and John Aycock for his help with
compiler technology. This work was funded in part by an NSERC
Discovery Grant and by a University of Calgary Research Grant.

9. REFERENCES

[1] R. Åberg et al. On the automatic evolution of an OS kernel
using temporal logic and AOP. InInt’l Conf. Automated
Softw. Eng., 2003.

[2] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[3] J. Aycock and N. Horspool. Schrodinger’s token.
Software—Practice & Experience, 31(8), 2001.

[4] J. Aycock, N. Horspool, J. Janouek, and B. Melichar. Even
faster generalized LR parsing.Acta Informatica, 37(9), 2001.

[5] W. Bartussek and D. Parnas. Using assertions about traces to
write abstract specifications for software modules. In
Information Systems Methodology, 1978. LNCS 65.

[6] J. Bradfield and C. Stirling. Modal logics and mu-calculi. In
Handbook of Process Algebra. Elsevier, 2001.

[7] S. Butkevich, M. Renedo, G. Baumgartner, and M. Young.
Compiler and tool support for debugging object protocols. In
Int’l Symp. Foundations Softw. Eng., 2000.

[8] T. Colcombet and P. Fradet. Enforcing trace properties by
program transformation. InSymp. Princ. Progr. Lang., 2000.

[9] Cs3 Inc.TriggerWare: Infrastructure for Event Reasoning
Applications, Version 1.0, 2004.www.cs3-inc.com .

[10] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman.
Execution patterns in object-oriented visualization. In
USENIX Conf. Object-Oriented Tech. and Sys., 1998.

[11] R. Douence, P. Fradet, and M. Südholt. A framework for the
detection and resolution of aspect interactions. InInt’l Conf.
Generic Prog. and Component Eng., 2002. LNCS 2487.

[12] R. Douence, O. Motelet, and M. Südholt. A formal definition
of crosscuts. InMetalevel Architectures and Separation of
Crosscutting Concerns, 2001. LNCS 2192.

[13] R. Douence and M. S̈udholt. A model and a tool for
event-based aspect-oriented programming (EAOP). TR
02/11/INFO, Ecole des Mines de Nantes, 2002.

[14] M. Feather. Reuse in the context of a transformation-based
methodology. In T. Biggerstaff and A. Perlis, editors,
Software Reusability, volume 1. Addison–Wesley, 1989.

[15] S. Fickas and M. Feather. Requirements monitoring in
dynamic environments. InIEEE Symp. Requirements Eng.,
1995.

[16] R. Filman and K. Havelund. Source-code instrumentation
and quantification of events. InWkshp. Foundations
Aspect-Oriented Lang. at AOSD, 2002.

[17] D. Hoffman and P. Strooper. State abstraction and modular
software development. InInt’l Symp. Foundations Softw.
Eng., 1995.

[18] JAsCo tool.ssel.vub.ac.be/jasco , 2004.
[19] G. Kiczales et al. An overview of AspectJ. InProc.

European Conf. Object-Oriented Progr., 2001. LNCS 2072.
[20] D. Knuth. On the translation of languages from left to right.

Information and Control, 8(6), 1965.
[21] E. Ochmánski. Recognizable trace languages. InThe Book of

Traces. World Scientific, 1995.
[22] J. Postel and J. Reynolds. File Transfer Protocol (FTP).

Request for Comments 959, Network Working Group, 1985.
[23] S. Reiss and M. Renieris. Encoding program executions. In

Int’l Conf. Softw. Eng., 2001.
[24] D. Sereni and O. de Moor. Static analysis of aspects. InInt’l

Conf. Aspect-Oriented Softw. Dev., 2003.
[25] The AspectJ Team.The AspectJ Programming Guide. Palo

Alto Research Center, Inc., 2003.
[26] K. Viggers and R. Walker. An implementation of declarative

event patterns. TR 2004-745-10, Univ. of Calgary, 2004.
[27] D. Wagner and D. Dean. Intrusion detection via static

analysis. InIEEE Symp. Security and Privacy, 2001.
[28] R. Walker. IConJ 0.1: A proof-of-concept tool for the

application of the implicit context model to Java software.
TR 2004-757-22, Univ. of Calgary, 2004.

[29] R. Walker and G. Murphy. Implicit context: Easing software
evolution and reuse. InInt’l Symp. Foundations Softw. Eng.,
2000.

[30] D. Yellin and R. Strom. Protocol specifications and
component adaptors.ACM Trans. Progr. Lang. Sys., 19(2),
1997.

169

http://www.cs3-inc.com/
http://ssel.vub.ac.be/jasco

	1 Introduction
	2 Motivation
	3 Declarative Event Patterns:A Proof-of-Concept Tool
	3.1 Syntax and Informal Semantics
	3.2 Tool Implementation

	4 Case Study: FTP Authentication
	4.1 FTP Authentication in Java
	4.2 FTP Authentication in AspectJ
	4.3 FTP Authentication in Event-Based AOP
	4.4 FTP Authentication via DEPs
	4.5 Comparison

	5 Discussion
	6 Related Work
	7 Conclusions
	8 Acknowledgments
	9 References

