
QEMU-Based Framework for Non-intrusive
Virtual Machine Instrumentation and Introspection

Pavel Dovgalyuk
Novgorod State University
Velikiy Novgorod, Russia
pavel.dovgaluk@ispras.ru

Natalia Fursova
Novgorod State University
Velikiy Novgorod, Russia
natalia.fursova@ispras.ru

Ivan Vasiliev
Novgorod State University
Velikiy Novgorod, Russia
ivan.vasiliev@ispras.ru

Vladimir Makarov
Novgorod State University
Velikiy Novgorod, Russia

vladimir.makarov@ispras.ru

ABSTRACT
This paper presents the framework based on the emulator QEMU.
Our framework provides set of multi-platform analysis tools for the
virtual machines and mechanism for creating instrumentation and
analysis tools. Our framework is based on a lightweight approach
to dynamic analysis of binary code executed in virtual machines.
This approach is non-intrusive and provides system-wide analysis
capabilities. It does not require loading any guest agents and source
code of the OS. Therefore it may be applied to ROM-based guest
systems and enables using of record/replay of the system execution.
We use application binary interface (ABI) of the platform to be
analyzed for creating introspection tools. These tools recover the
part of kernel-level information related to the system calls executed
on the guest machine.

CCS CONCEPTS
•Hardware→ Simulation and emulation; • Software and its
engineering→ Software testing and debugging; Software re-
verse engineering; Dynamic compilers;

KEYWORDS
Software instrumentation; Dynamic analysis; Virtual machine; In-
trospection; ABI; QEMU

ACM Reference Format:
Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov.
2017. QEMU-Based Framework for Non-intrusive Virtual Machine Instru-
mentation and Introspection. In Proceedings of 2017 11th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Paderborn, Germany, September
4–8, 2017 (ESEC/FSE’17), 5 pages.
https://doi.org/10.1145/3106237.3122817

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3122817

1 INTRODUCTION
Dynamic software analysis of the binary code is used for profiling,
malware analysis, intrusion detection, protocol reverse engineering,
software testing, andmany other activities [4, 7, 9, 12]. Semantic gap
between guest binary code (which can be obtained) and source data
structures (needed for debugging) hampers the analysis. Virtual
machine introspection (VMI) is the most used approach to bridge
the semantic gap between binary and source representations [12].

State-of-the-art approaches to VMI use source code or SDK of
the kernels to make the tools that recover information about data
structures directly from the guest memory [4, 9, 10, 15].

Source code or in-guest build tools are used to create the agents
embedded into the guest system. There are basically two kind of
agents: setup and runtime. Setup agents are only used to create
introspection profile which includes guest addresses and offsets of
data that should be extracted from the OS core. Runtime agents
execute within the guest system all the time and transfer the data
to the host. WinDbg in Windows and gdbserver in Android are
the examples of the runtime agents. They operate while system is
running and collect the information for the remote debugger.

Sometimes guest agents cannot be embedded into the system.
When ROM-based OS is analyzed, there is no way to embed run-
time or setup user agent. Source code of such ROM kernel may be
available, but without build options it may be impossible to recover
the internal offsets and addresses.

Runtime guest agent also cannot be embedded into the system
when its execution is recorded and replayed for the analysis [6].
Therefore the main limitations for the user agents are read only OS
image and read only (replayed) execution scenario.

We present a non-intrusive introspection approach which ex-
ploits the application binary interface (ABI) of the guest platforms.
ABI is much more stable and smaller than kernel source code for
manual analysis and creation of the introspection tools. Our ap-
proach is completely non-intrusive, because it doesn’t need any
guest agents. Hooking ABI-related events like system calls is used
to recover part of the kernel data. We also track CPU-level events
like TLB miss or interrupt requests to recover the memory structure
of the processes and parse executables to monitor API function calls.
Using ABI reduces the maintainance efforts required for supporting
the analysis algorithms and applying them to other versions of
guest operating systems.

944

https://doi.org/10.1145/3106237.3122817
https://doi.org/10.1145/3106237.3122817

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov

Our work is based on the open source simulator QEMU [2].
QEMU is capable of running virtual machines based on the com-
modity platforms (e.g., i386, ARM, MIPS, PowerPC). We added new
plugin subsystem and subsystem for dynamic instrumentation into
QEMU, that allow easy migration to newer simulator versions. We
also created plugins for monitoring system calls, file operations,
API functions, and process operations.

2 NON-INTRUSIVE VIRTUAL MACHINE
INTROSPECTION

The aim of our system is debugging, analysis, and reverse engi-
neering of the applications, firmwares, and kernels. In most cases
we cannot upload guest modules into machines based on that ker-
nels to figure out field offsets in kernel data structures (as Panda
does [4]), because embedded firmwares do not include compiler and
headers. When the execution is replayed, guest modules can’t be
installed too, because data exchange with these modules will also be
recorded and won’t alter to get required information [1]. However,
ABI usually remains unchanged (when firmware is a tuned Linux
or ABI is a part of the hardware platform) and we may use it for
creating introspection tools.

ABI includes the list of system calls, calling convention, data
alignment rules, execution files format, stack frame format, and
registers usage pattern. ABIs are designed for the hardware or
software platforms and remains mostly unchanged with platforms
evolution for the sake of backward compatibility. Layout of the
kernel structures may be unavailable or volatile, in contrast to
system call identifiers and parameters.

System call functions in Linux are identified by an integer passed
as a parameter in one of the registers. These identifiers never change.
Therefore maintainance efforts for Linux introspection modules in
our approach will include only adding new system calls and sup-
porting arguments passing agreement for the new platforms added
to the analysis scope. We created a subsystem for QEMU, which
allows hooking system calls to capture OS-specific information
from the virtual machine instead of monitoring guest memory to
find kernel data structures.

To match call and return instructions for the system calls we
track execution context. It consists of current process id and stack
pointer. We identify processes by page directory address (e.g., CR3
for x86 or CP15.c2 for ARM) [9].

Simulator QEMU supports many commodity hardware platforms
like x86, x86-64, ARM, MIPS, and PowerPC [2]. With multi-platform
support one can make analysis tools that can be executed on many
platforms. QEMU translates guest binary code into host binary code
and then executes it.

To invoke our own code on system call execution we embed call-
backs into the translated code. These callbacks recover arguments
of the system calls and their return values. Parameters and return
values are recovered on system call entry and exit instructions
respectively.

We added instrumentation layer into QEMU and implemented
VMI as a set of plugins. Existing and planned plugins in our frame-
work are shown in Figure 1. Upper plugins in the figure use the
information recovered by the lower plugins. It includes data struc-
tures and event notifications.

File monitoring is perfomed by a plugin, which is independent
from executing guest OS and guest hardware platform. It operates
with system call and file abstractions. File monitor maintains the
list of the open files to detect close system calls that operate with
files, because close operations may be used to free other system
resources (e.g.,NtClose is used to close all handles in Windows).

Commodity operating systems use memory-mapped files to load
executables and dynamic libraries. We hook mapping/unmapping
operations in the file monitoring plugin. This information is used to
detect executable image loading and parse those images to extract
API functions addresses.

Monitoring of API function calls may be useful in itself (e.g., for
detecting anomalies), and also for recovering more system infor-
mation, than from the system calls (e.g., hooking CreateProcess
in Windows is used to recover the executed processes). Formats of
the executable images are well documented. Therefore we may use
them to extract information of the API functions offsets and instru-
ment its entry points with monitoring function calls. Monitoring
function sends a message to the user or a higher-level plugin.

Process monitoring plugin provides a list of the currently exe-
cuted guest processes to the user. For each discovered process it
stores the following tuple: execution context (page directory base
register, e.g. CR3 for x86); parent execution context; process id as-
signed by operating system (for user’s convenience); name of the
executable image.

For Linux we hook fork and clone functions for creation of
the processes, and execve for running the programs. Windows
uses NtCreateProcess for creating process without any threads
and NtCreateThread for adding new threads. We use parameters
and return values of these functions to reconstruct the list of the
running processes. We also hook CreateProcess in Windows to
match execution context and image file with the process id.

3 PERFORMANCE EVALUATION
To measure instrumentation overhead we executed QEMU on a
machine with Intel Core i7 CPU with 8 cores at 3.40GHz, 8Gb RAM,
500Gb HDD, and 64-bit Ubuntu 14.04. Virtual machine on i386
platform had 128Mb of memory. We used Windows XP and Arch
Linux as guest OSes.

We ran several tests: booting Windows XP, booting Linux, down-
loading 255Mb file under Linux, packing downloaded file with gzip,
and unpacking the created archive. We measured system call instru-
mentation overhead and file operations logging overhead (Table 1).
In most cases instrumentation of the system calls incurs very low
overhead (5.1% on average). Logging of download, pack, and un-
pack incurs greater overhead, than booting OS, because file log
includes the contents of the buffers for all read/write operations.

We also reviewed the overhead of other known VMI frameworks.
DECAF incurs 22% overhead for booting Windows XP on x86 [9].
TCG plugins framework provided only simple plugins for instruc-
tion counting, therefore it cannot be directly compared with our
approach. Simplest instruction counting plugin incurs 3% overhead,
calling empty function in every translation block — 25%. QTrace
instrumentation framework incurs 90% overhead for instruction
counting plugin [14]. According to this data, our tool is competetive

945

QEMU-Based Framework for Non-intrusive
Virtual Machine Instrumentation and Introspection ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Debug
info reader

Symbol reader API monitor API functions log

Module
monitor

Application
monitor

Application log

Process
monitor File monitor File logProcess log

Context
detector

System call
detector

File system
parser

QEMU Disk images

Figure 1: Plugins for virtual machine introspection. Dashed modules are not implemented yet.

Table 1: Instrumentation and file monitoring performance

Test case Instr.
overhead, %

Logging
overhead, %

Loading Windows 3.2 9.5
Loading Linux 3.1 9.3
Downloading 6.7 237
Packing 6.6 168
Unpacking 5.6 56

with other system-wide instrumentation and monitoring frame-
works.

4 INTROSPECTION USE CASES
4.1 Debugging Linux Kernel
Supporting new platforms in the simulator is a tough task, because
complete specifications may not be available. Everything we have
is the firmware and brief system description. When booting OS
in the simulator fails we cannot even log in into the system and
examine startup log to find out the reason. We created set of plugins
that collect the following information from the running system:
console output, messages sent to dmesg with printk function, pro-
grams that started with execve function. Fragment of such log is
shown in Figure 2. We used this kind of log to understand how
analyzed system behaves and what features hardware simulator
must provide.

4.2 Process List in Windows
Process monitoring plugin collects information about executed pro-
cesses. User may request the list of the currently running processes
and select specific process to be monitored with other plugins.
To ensure that produced process list is correct, we compared this

<execve>/sbin/xz /sbin/xz --check=sha256
-d /bin.tar.xz

<execve>/sbin/ftar /sbin/ftar -xf /bin.tar
</dev/console>
</dev/console>System is starting...
<syscall> mount ret=-6 source=/dev/hda1

target=/data filesystemtype=ext2
<stderr>Can't create /etc/ssh directory
</dev/console>Abort booting!

Figure 2: Kernel introspection log example.

Table 2: Process list fragment

Parent
context

Context PID Image
name

0x60fc000 0x28bf000 0x178 notepad.exe
0x60fc000 0xc14000 0x180 calc.exe
0x60fc000 0x7adb000 0x190 iexplore.exe
0x60fc000 0x4bf1000 0x2f4 sol.exe

output with the task manager list. Sample output is presented in
Table 2.

4.3 Dumping Created Files
Another use case of non-intrusive VMI is extracting created files
from running virtual machine. We encountered this case when
loaded OS kernel extracted files with the custom unpacker. We
couldn’t run this program on the other machine, because it was
bound to the custom kernel and libraries. OS didn’t boot competely
to allow logging in. Therefore to reverse engineer extracted binaries
we had to extract them somehow to the host machine. We created

946

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Pavel Dovgalyuk, Natalia Fursova, Ivan Vasiliev, and Vladimir Makarov

Table 3: Fragment of the API functions log

Module
name

Function name

Linux log
libc.so realloc
libc.so __libc_malloc
libc.so __open64
libc.so __fxstat64

Windows log
gdi32.dll SelectPalette
gdi32.dll DeleteDC
user32.dll ReleaseDC
gdi32.dll GdiReleaseDC

the plugin which hooks file creation and write operations and saves
obtained data to the host file system. This helped us to find out the
hardware features that should be implemented in the simulator.

4.4 Windows and Linux API Monitoring
Two API monitoring plugins are intended to detect named function
calls located in executable modules. There are two plugins because
we support two most used executable formats: PE and ELF. Usually
they are not used simultaneously within the same system, therefore
only one of the plugins should be loaded.

These plugins detect loading of the shared modules (.dll, .so),
parse its headers, and put tracepoints at named functions entries.
Therefore we can trace the calls of the exported functions. Our plu-
gins work for Windows XP/7/8 and for wide range of Linux-based
systems (including the embedded ones). Fragments of Windows
and Linux API logs are presented in Table 3.

5 RELATEDWORK
In this section we give a revision of previous studies carried out
by other researchers and related to reverse engineering. Our ap-
proach differs from prior ones by using non-volatile data sources
(like executed file formats and system call interface) for the VMI.
Therefore our approach does not require embedding any agents
into the guest system. We also don’t rely on hardware virtualization
to allow using our analysis for non-x86 platforms.

RTKDSM system leverages OS analysis capabilities of Volatility
computer forensics framework to simplify and automate analysis of
VM internal states [10]. RTKDSM system uses Volatility for locating
the OS-specific data structures and uses host-side monitoring agent
to keep track of the changes in these structures. The main limitation
of RTKDSM system is targeting to x86 platform, because of using
Xen hypervisor for the virtual machine.

PinOS is the framework for whole-system dynamic instrumenta-
tion [3]. PinOS can use plugins developed for Pin dynamic instru-
mentation framework, but it can only boot Linux on x86 virtual
machine. PinOS incurs significant execution slowdown (up to 120x)
even without any instrumentation.

Another attempt to create Pin-compatible full-system analysis
platform is PEMU [16]. It supports introspection of user level pro-
cesses and OS kernels. To solve the semantic gap problem, PEMU

forwards system calls to the guest. These system calls are used to
retrieve guest-level information from the virtual machine. PEMU is
intrusive, because the forwarded syscalls may alter guest system
behavior. Therefore it cannot be used for the offline analysis of the
recorded execution.

QTrace is an instrumentation extension API developed on top of
QEMU [14]. QTrace incurs 90% overhead for instruction counting
plugin. Proof-of-concept version is available on github1, but it does
not provide any features except register and memory access tracing.

TCG plugins is a proof of concept QEMU-based toolkit for dy-
namic instrumentation of the system execution [8]. It includes
several profiling plugins and instrumentation layer for QEMU.

DECAF is a platform-neutral whole-system binary dynamic anal-
ysis framework built upon QEMU [9]. It reconstructs OS-level se-
mantic view with VMI engine. DECAF supports Windows and
Linux operating systems, ARM and x86 hardware platforms. The
main drawbacks of DECAF are execution overhead (15% slowdown
without any instrumentation), old version of used QEMU, and rely-
ing on internal OS data structures, which makes it dependent on
OS builds.

Dolan-Gavitt et al. describes technique of mining memory ac-
cesses for VMI [4, 5]. They created a prototype system, Tappan Zee
Bridge (TZB), which observes memory accesses in runtime to find
points in the program that access security-relevant information.
This system incurs significant overhead and uses guest agents for
setup.

Nitro is a KVM-based framework for VMI [13]. It was tested with
guest Windows, Linux on 32- and 64-bit platforms. Nitro is able
to trace system calls on all these platforms, but it is limited to x86,
because of using KVM.

VMWatcher uses non-intrusive introspection approach of the
virtual machines for malware detection [11]. However, it scans the
guest memory to find OS kernel data structures, making the whole
approach dependent from the knowlenge about the source code
and used build tools and parameters. This approach is implemented
for several Linux builds and for Windows XP.

6 CONCLUSION
In this work we described a promising approach for non-intrusive
VMI through monitoring the system calls and virtual hardware
events. We showed that this approach is practical by creating the
plugins for API, file and process operations monitoring. These
plugins may be used for non-intrusive logging of Windows- and
Linux-based guest systems. Our approach may be used for monitor-
ing of read only virtual machine images and for offline analysis of
the execution recordings. Instrumentation part of our framework
and several plugins for it were published on github2.

ACKNOWLEDGMENTS
The work was partially supported by the Ministry of Education and
Science of Russia, research project No. 2.6146.2017/8.9.

1https://github.com/x-y-z/QTRACE
2https://github.com/ispras/qemu/tree/plugins

947

https://github.com/x-y-z/QTRACE
https://github.com/ispras/qemu/tree/plugins

QEMU-Based Framework for Non-intrusive
Virtual Machine Instrumentation and Introspection ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] K. A. Batuzov, P. M. Dovgalyuk, V. K. Koshelev, and V. A. Padaryan. 2012.

Dva sposoba organizatsii mekhanizma polnosistemnogo determinirovannogo
vosproizvedeniya v simulyatore QEMU [Two Approaches To Organizing a Full-
System Deterministic Replay Mechanism In QEMU Simulator]. Trudy ISP
RAN [The Proceedings of ISP RAS] 22 (2012), 77–94. https://doi.org/10.15514/
ISPRAS-2012-22-6

[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41–41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

[3] Prashanth P. Bungale and Chi-Keung Luk. 2007. PinOS: A Programmable Frame-
work for Whole-system Dynamic Instrumentation. In Proceedings of the 3rd
International Conference on Virtual Execution Environments (VEE ’07). ACM, New
York, NY, USA, 137–147. https://doi.org/10.1145/1254810.1254830

[4] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. 2014. Repeatable
Reverse Engineering for the Greater Good with PANDA. (Oct. 2014).

[5] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, andWenke Lee. 2013. Tappan Zee
(north) bridge: mining memory accesses for introspection. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security (CCS
’13). ACM, New York, NY, USA, 839–850. https://doi.org/10.1145/2508859.2516697

[6] Pavel Dovgalyuk. 2012. Deterministic Replay of System’s Execution with Multi-
target QEMU Simulator for Dynamic Analysis and Reverse Debugging. In Proceed-
ings of the 2012 16th European Conference on Software Maintenance and Reengi-
neering (CSMR ’12). IEEE Computer Society, Washington, DC, USA, 553–556.
https://doi.org/10.1109/CSMR.2012.74

[7] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. 2008. The Evolution of
System-Call Monitoring. In Proceedings of the 2008 Annual Computer Security
Applications Conference (ACSAC ’08). IEEE Computer Society, Washington, DC,
USA, 418–430. https://doi.org/10.1109/ACSAC.2008.54

[8] Christophe Guillon. 2011. Program instrumentation with qemu. In 1st Interna-
tional QEMU UsersâĂŹ Forum, Vol. 1. 15–18.

[9] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu, Xujiewen
Wang, Rundong Zhou, and Heng Yin. 2014. Make It Work, Make It Right, Make
It Fast: Building a Platform-neutral Whole-system Dynamic Binary Analysis
Platform. In Proceedings of the 2014 International Symposium on Software Testing
and Analysis (ISSTA 2014). ACM, New York, NY, USA, 248–258. https://doi.org/
10.1145/2610384.2610407

[10] Jennia Hizver and Tzi-cker Chiueh. 2014. Real-time Deep Virtual Machine Intro-
spection and Its Applications. In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’14). ACM, New
York, NY, USA, 3–14. https://doi.org/10.1145/2576195.2576196

[11] Xuxian Jiang, XinyuanWang, and Dongyan Xu. 2007. StealthyMalware Detection
Through Vmm-based "Out-of-the-box" Semantic View Reconstruction. In Proceed-
ings of the 14th ACM Conference on Computer and Communications Security (CCS
’07). ACM, New York, NY, USA, 128–138. https://doi.org/10.1145/1315245.1315262

[12] Asit More and Shashikala Tapaswi. 2014. Virtual machine introspection: towards
bridging the semantic gap. Journal of Cloud Computing 3, 1 (2014), 1–14. https:
//doi.org/10.1186/s13677-014-0016-2

[13] Jonas Pfoh, Christian Schneider, and Claudia Eckert. 2011. Advances in Infor-
mation and Computer Security: 6th International Workshop, IWSEC 2011, Tokyo,
Japan, November 8-10, 2011. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, Chapter Nitro: Hardware-Based System Call Tracing for Virtual
Machines, 96–112. https://doi.org/10.1007/978-3-642-25141-2_7

[14] Xin Tong and A. Moshovos. 2015. QTrace: a framework for customizable full
system instrumentation. In Performance Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium on. 245–255. https://doi.org/10.1109/ISPASS.
2015.7095810

[15] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
Proceedings of the 21st USENIX Conference on Security Symposium (Security’12).
USENIX Association, Berkeley, CA, USA, 29–29. http://dl.acm.org/citation.cfm?
id=2362793.2362822

[16] Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin. 2015. PEMU: A Pin Highly
Compatible Out-of-VM Dynamic Binary Instrumentation Framework. SIGPLAN
Not. 50, 7 (March 2015), 147–160. https://doi.org/10.1145/2817817.2731201

948

https://doi.org/10.15514/ISPRAS-2012-22-6
https://doi.org/10.15514/ISPRAS-2012-22-6
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1254810.1254830
https://doi.org/10.1145/2508859.2516697
https://doi.org/10.1109/CSMR.2012.74
https://doi.org/10.1109/ACSAC.2008.54
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2576195.2576196
https://doi.org/10.1145/1315245.1315262
https://doi.org/10.1186/s13677-014-0016-2
https://doi.org/10.1186/s13677-014-0016-2
https://doi.org/10.1007/978-3-642-25141-2_7
https://doi.org/10.1109/ISPASS.2015.7095810
https://doi.org/10.1109/ISPASS.2015.7095810
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2362793.2362822
https://doi.org/10.1145/2817817.2731201

	Abstract
	1 Introduction
	2 Non-intrusive Virtual Machine Introspection
	3 Performance Evaluation
	4 Introspection Use Cases
	4.1 Debugging Linux Kernel
	4.2 Process List in Windows
	4.3 Dumping Created Files
	4.4 Windows and Linux API Monitoring

	5 Related Work
	6 Conclusion
	References

