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Abstract  

We present a formalism for the definition of software archi- 
tectures in terms of graphs. Nodes represent the individual 
agents and edges define their interconnection. Individual 
agents can communicate only along the links specified by 
the architecture. The dynamic evolution of the overall ar- 
chitecture is defined independently by a 'coordinator ' .  An 
architecture style is a class of architectures characterised by 
a graph grammar.  The rules of the coordinator are stati- 
cally checked to ensure that  they preserve the constraints 
imposed by the architecture style. 

K e y w o r d s :  coordination, graph rewriting, software ar- 
chitecture, stat ic verification. 

1 Mot iva t ion  and approach 

Software systems tend to grow in size and complexity; they 
are often developed through a long period of t ime and be- 
come extremely difficult to understand and to maintain. 
The cost incurred by this complexity is becoming a seri- 
ous concern and a major  challenge today is to provide ways 
of organising software in order to make large applications 
manageable and to favour the reuse of existing products. 
Several languages or systems have been proposed recently 
to tackle these problems: they are called software architec- 
ture languages [12], configuration languages [18] or coordina- 
tion languages [6, 14]. Despite some differences of emphasis, 
these works share a common point of view: the definition of 
a software application should make a clear distinction be- 
tween individual components and their interaction in the 
overall software organisation. 

Several authors [1, 2, 16, 27] have emphasized the impor- 
tance of a framework for the formal definition of software 
architectures. Not only is it a prerequisite for a rigorous 
analysis of architectures, but  it also increases their useful- 
ness and reusability by removing the sources of ambiguity 
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which are unavoidable in informal descriptions. Another 
major requirement for a software architecture model is its 
ability to express s tandard software design choices in a nat-  
ural way. The common practice of software engineers is to 
represent architectures informally as 'box and line' drawings 
[2, 17]. Start ing from this observation, we propose to define 
software architectures formally in terms of graphs, which 
constitute the mathematical  model closest to the intuition 
conveyed by 'box and line' drawings. The nodes of the graph 
represent the individual entities which can themselves be de- 
scribed in conventional programming languages. The edges 
correspond to the communication links between entities. An 
architecture style is a class (or set) of architectures exhibit- 
ing a common shape. For example: 

are two architectures of a style 'pipeline'  (with ei repre- 
senting entity names and S directed links between entities). 
Technically, architecture styles are defined as context-free 
graph grammars. 

The architecture can be seen as the skeleton of an ap- 
plication. In order to be executable, it  must  be 'fleshed', 
or completed with a mapping from nodes to entities defined 
in a given language. This complete description is called an 
architecture instance. The specification of the computat ion 
of an architecture instance mirrors its hierarchical organisa- 
tion: 

• The evolution of the local states of the entities follows 
the rules of the operational semantics of their program- 
ming language. 

• A 'coordinator '  is used to pilot the overall application. 
The coordinator is in charge of managing the architec- 
ture itself (creating and removing entities and links). 

The coordinator is expressed in terms of conditional graph 
rewriting in the spirit  of [10, 28]. The conditions bear on 
the public variables of the entities and represent the only 
possible interactions between a coordinator and the individ- 
ual components (apart  from the creation and destruction of 
links and entities). 

The s tandard way to describe distr ibuted systems is to 
resort to tradit ional  sequential programming languages en- 
hanced with facilities for process creation and communica- 
tion (possibly through operating system procedure calls). 
On the other hand, specification languages like CSP [13], 
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and the ~r-calculus [23] are inherently parallel languages pro- 
viding powerful and integrated constructions for process cre- 
ation and synchronisation. None of these approaches makes 
it easy to extract  the underlying communication topology 
from the application. As an illustration, [22, 25] propose so- 
phist icated analyses to derive information about the topol- 
ogy of CSP and CML programs. We believe that  a bet ter  
basis for understanding the structure of a system is to con- 
sider its topology as an explicit feature rather than trying 
to dig it up from the program a posteriori. In other words, 
we propose tha t  the 'skeleton' of the application is specified 
independently, with the 'flesh' described in a separate way. 

Among the benefits of our approach, let us mention the 
following: 

• I t  makes it possible to reconcile a dynamic view of the 
architecture, which is crucial for a large class of ap- 
plications, with the possibility of static checking, en- 
suring tha t  the evolution of the architecture conforms 
to its style. This verification can be seen as a form of 
static type checking of the coordinator (the type being 
the graph grammar defining the architecture style). In 
our framework, this amounts to a proof of convergence 
of graph rewrite rules. 

• I t  provides a high-level view of software systems which 
is both intuitive and formally based. The clean sepa- 
ration between the computat ion of the individual en- 
tities and their coordination makes it easier to check 
global properties of the system. In particular,  proper- 
ties about  the information flows in an application can 
be derived from the architecture style. This is of prime 
importance to be able to enforce the requirements im- 
posed by a given security policy (confidentiality, in- 
tegrity). 

The presentation of the paper  follows this two-level de- 
composition. In the next section, we introduce our view 
of architectures as graphs and architecture styles as graph 
grammars.  Section 3 defines coordination as conditional 
graph rewriting and describes an algorithm for the static 
checking of a coordinator with respect to a given style. Sec- 
tions 2 and 3 are independent of the definition of the atomic 
components of the architecture. In section 4, we complete 
the picture with a language for programming the individual 
entities. We provide a structural  operational semantics of 
this language and we show how it cooperates with the se- 
mantics of coordination. In the conclusion, we relate our 
approach to previous work in this area and we suggest av- 
enues for further research. 

We use the 'client-server'  model as a case study through- 
out the paper. Following the top-down presentation of the 
material,  the client-server architecture style itself is intro- 
duced in section 2; a first version of the coordinator is pre- 
sented in section 3 and the complete application is described 
in section 4 (Figure 1). A second example is presented in 
the appendix (a dis tr ibuted hospital ward monitoring sys- 
tem inspired by [18] and [15]). 

2 Architecture styles 

Our notion of graphs is inspired by previous work on the 
chemical reaction model [3, 4, 10] and set-theoretic graph 
rewriting [28]. Formally, a graph is a multiset of relation 
tuples noted R(el, . . . ,  e,~) where R is a n-ary relation name 

and el are entity names (we assume appropria te  countable 
sets of names). We consider only binary and unary relations 
here. In our context, a binary relation L(el, e2) represents a 
directed link of name L between el and e2. A unary relation 
U(e) characterises the role of an enti ty e in the architecture. 
As an illustration, the following (unconnected) graph repre- 
sents an example of a client-server architecture. 

Unary relations are represented by circles and binary rela- 
tions by arrows. C, S, M and X correspond respectively to 
client, server, manager and external entities. The external 
entity stands for the external world; it  records requests for 
new clients wanting to be registered in the system. CR and 
CA correspond to client request links and client answer links 
respectively (SR and SA are the dual links for servers). The 
architecture represented by the above graph involves two 
clients cl and c2, two servers sl  and s2, a manager m and 
x. I t  is formally defined as the multiset A: 

{X(x),  M(m), C(cl) ,  C(c2), S(sl), S(s2), 

CR(cl, m), OR(c2, m), CA(m, cl) ,  CA(m, c2), 

SR(m, sl), SR(m, s2), SA(sl, m), SA(s2, m)} 

It  should be clear that  A is just  one part icular  represen- 
tat ive of a more general class of client-server architectures. 
Architectures belonging to this class must  include values 
X(x) and M(m) and any number of servers and clients. 
Furthermore, they must follow the communication link pat-  
tern exhibited by A. We propose to specify such a class as 
a context-free graph grammar.  Different notions of context- 
free graph grammars have been studied in the literature. 
They are defined either in terms of node replacement [9] or 
in terms of hyper-edge replacement [7]. Graph rewriting is 
also used in [8] as a model for dis t r ibuted systems, but  a 
dual approach is taken, with hyper-edges representing pro- 
cesses and nodes representing ports  (also the process rewrite 
rules are essentially used to model synchronisation require- 
ments). Our definition of graphs as multisets allows us to 
express hyper-edge replacement in a very natural  way. A 
grammar is a four-tuple [NT, T, PR, AX] where NT and 
T are sets of non-terminal and terminal  symbols (each one 
with a given arity), PR is a finite set of production rules 
and AX is an axiom (the origin of the derivation). Termi- 
nal symbols correspond to the relations of the architecture. 
The production rules are pairs (l, r) where l is a singleton 
{A(xl,. . . ,  x,)} (with A a non-terminal  of ari ty i) and r is 
a multiset of terms B(y~,..., y~) with B E NT U T. 

Continuing our example, the client-server architecture 
style is defined as: 

Hcs 

[{CS, CS1}, {M, X, C, S, CR, CA, SR, SA}, R, CS] 
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with R the following set of rules (we use the concrete syntax 
Left =~ Right to represent a pair ({Left}, {Right}): 

CS ~ CSt(m) 
CSI(m) ~ CR(c,m), CA(re, c), C(c), CSI(m) 
CS1 (m) =~ SR(m, s), SA(s, m), S(s), CSl(m) 
CSl(m) ~ M(m), X(x) 

Formally, a graph grammar H = [NT, T, PR, AX] de- 
fines a rewrite system --~H between multisets: 

M - + H M '  ¢* M'  = M - - m l + m ~  

with rnl C M, (Ne(m~)- Ne(ml)) N Ne(M) = 0, 
and mz = a l, m~ = a r, with a an injective substitu- 
tion and (l, r) 6 PR. The substitution ~ maps variables 
to entity names. N~(M) is the set of entity names occur- 
ring in the multiset M. The second condition ensures that 
new variables occurring on the right-hand side of a rule are 
instantiated with entity names which are distinct from all 
other existing names. This constraint, which is usual in 
graph rewriting [28], is necessary to avoid unexpected vari- 
able sharing. It is crucial in our context to be able to state 
precisely the actual connections between entitles. 

The style defined by a grammar H = [NT, T, PR, AX] 
is the set of all terminal graphs (graphs containing only ter- 
minal relation symbols) produced by --~H rewritings: 

Class(H) = {G] {AX} ~ G and G terminal} 

For example, it is easy to check that the graph A defined 
above belongs to the client-server class: A 6 Class(Hcs). 

3 Coordination 

As mentioned in the introduction, it is often the case that 
the architecture of an application should be able to evolve 
dynamically. For instance, a client-server organisation must 
allow for the introduction of new clients or their departure, 
a pipeline may grow or shrink dynamically depending on the 

size of the data being processed, facilities for dealing with 
mobile computing may be required. In our framework, the 
evolution of the architecture is defined by a coordinator. The 
task of the coordinator is expressed by conditional graph 
rewrite rules in the style of [3, 4]. The semantics of the 
rules is similar to the definition used above for the rewrite 
system associated with graph grammars, except that we may 
have additional side conditions in coordination rules. These 
conditions bear on the local states of the individual entities; 
they do not play any role at this stage, so we do not consider 
them until the next section. 

As an illustration, we introduce the following coordinator 
Coocs which applies to a client-server architecture: 

X(x), M(m)--+ X(x'), M(m), Cn(c ,m) ,  CA(m,c), C(e) 

CR(c,m), CA(re, c), C(c) -~ O 

The two rules describe respectively the introduction of a new 
client in the architecture and its departure. Note that these 
rules are completed with side conditions on the states of the 
entities in the complete version of the coordinator presented 
in the next section (Figure 1); otherwise, the coordinator 
could clearly lead to infinite behaviours. 

The possibility of expressing architecture transformations 
is definitely a useful feature but  it also raises a new ques- 
tion: is it possible to ensure that  a coordinator does not 
break the constraints of a given architecture style? For ex- 
ample, had we forgotten, say CR(c, rn) in the right-hand side 
of the first rule, then the coordinator would have been able 
to transform a client-server architecture into an architecture 
which does not belong any longer to the client-server class 
defined by Hes. What is needed is a static style checker 
which would be the counterpart for coordinators of the type 
checking algorithms of classical languages. 

In order to define a checking algorithm for a given style 
H = [NT, T, PR, AX], we first consider the graph rewrite 
system __+~1 obtained by a right to left reading of the rules 
in PR (with the appropriate dual restrictions on variables 
appearing only on the right-hand side of a rule). Obviously, 

if G is a graph belonging to the style H, then G 4H 1 {AX}. 
The coordinator Coo defines a second graph rewrite relation 
-+Coo and the checking algorithm must ensure that: 

V G such that G 4-H 1 {AX}, 

G-+coo a' =~ a' C+-H ~ {AX} 

The checking algorithm proceeds in two stages. 

I. First, all the Coo rules (ll, rl) are considered in turn. 
For each Ii, the set Si of all its minimal contexts C~ 
with the associated non-terminal terms N~ (Xl~..., Xn) 
is computed. The pairs (CJl, N](xl, . . . ,x~)) satisfy 
the relation: 

l, + CJi -5,-H 1 {N](x~,...,x~)}. 

The minimal contexts C~ are the smallest multisets 
which have to be added to the Ii to reduce to a non- 
terminal (in other words, they are completely con- 
sumed by the reduction). They are computed by con- 
structing all the possible superpositions (non empty 
intersections) of li with left-hand sides of -+H 1 rules 
and performing the corresponding reductions until a 
non-terminal is reached (or a term isomorphic to one 
of its ancestors). This iteration terminates because the 
reductions cannot increase the size of a term and the 
number of terms of a given size is finite (up to vari- 
able renaming). 'Impossible contexts' (contexts which 
cannot lead to a single non-terminal, and thus cannot 
lead to the axiom AX) are removed during the course 
of this process for a better precision of the analysis. 

2. The second stage consists in applying --+H ~ rules, to 
show that all pairs (h, rl) satisfy: 

V(C~, N[(xl , . . . ,x~)) 6 Si, 

r, + C{ 2+-H 1 {N](Xl, . . . ,x,)}.  

The second stage terminates for the same reason as 
the first one. If the above property holds, then Coo is 
correct with respect to the style H. 

The correctness of the algorithm is proven in [10]. As 
an illustration, let us apply it to the coordinator Coors 
presented above. The first rule of Coovs is: 

({X(x), M(m)}, {X(x'),  M(m), CR(c, m), CA(m, c), C(c)}). 
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There is only one superposition of X(x), M(m) with left- 
hand sides of __+-1 namely X(x), M(m)  itself. The only C S  
possible rewriting to a non-terminal is 

{X(x), M(m)} ---~CS--1 {CSl(m)}. 

Thus $1 = {(O, CSI(m))}  and we have to show that: 

{X(x') ,  M(m),  CR(c,m),  CA(re, c), C(c)} 

-~cs {csl(m)} 
which is obtained in two rewrite steps. 

The second rule of Coocs is treated in a similar way. 
The only successful reduction of its left-hand side is: 

{CR(c,m),  CA(re, c), C(c), CS, (m)}  -~cls {CSI(m)}.  

Thus $2 = {({CSl(m)},  CSl(m))} and we obviously have 

{CSl(m)} -~cs { C S l ( T r ~ ) }  • 

This concludes the verification that  Coocs is a correct co- 
ordinator with respect to the client-server style CS. 

4 Architecture instances 

We have presented architecture styles and architecture trans- 
formations without any assumption on the individual enti- 
ties so far. This section completes the picture by introducing 
a small language for entities. We provide its formal defini- 
tion in terms of a structural operational semantics and we 
show how it interacts with the actions of the coordinator. 

The syntax of the language of entities is better intro- 
duced through the complete version of the client-server ap- 
plication in Figure 1. First note that  the relations defining 
the links of the architecture are typed (and so are the vari- 
ables they bear on). The basic types are names of entities 
(client, server, manager, external here). For instance, the 
type attached to CR specifies a link from a client entity to 
a manager entity. Each entity defines public and private 
variables, output  and input links and entity names. The 
public variables can be checked (but not assigned) by the 
coordinator. The public variable v of an entity a is denoted 
by a.v in the definition of the coordinator. For example, 
the complete definition of Coocs creates a new client only 
if the boolean variable newc of the entity x is true. A new 
instance x'  of the external entity is created in the same rule 
(which prevents the immediate re-application of the rule). 
Similarly, clients use a public variable leave to indicate their 
intention to leave the system. The output and input links 
of the entities must conform to the edges of the architecture 
(this can be checked statically). 

The commands of the language are very much in the 
spirit of CSP except for the following generalisation: the 
semantics of input  and output commands of the form 

a 6 L ? v  and a 6 L ! E  

correspond to the establishment of a rendez-vous with any 
entity a linked to the current entity through a link of name 
L. For example, the command c 6 CR ? r of the manager 
m is matched with the command m 6 CR ! r in any of the 
clients ci such that  CR(ci, m) is an edge of the architecture. 
The effect of this communication is to assign ci to m.c in 

Architecture style 

CS ~ CSl (m) 
CSI(m ) => CR(c,m), CA(re, c), C(e), CSl(m ) 
C S  l ( m )  ~ S R ( m , s ) ,  S A ( s , m ) ,  S ( s ) ,  C S I ( m )  
C S I ( m  ) ~ M(m),  X(x) 

Link types 

C : c l i e n t  S : s e r v e r  
C R  : c l i e n t  x m a n a g e r  C A  : m a n a g e r  x c l i e n t  
S R  : m a n a g e r  × s e r v e r  S A  : s e r v e r  × m a n a g e r  
M : m a n a g e r  X : e x t e r n a l  

Coordinator 

Coocs = 

X(z) ,  M ( m ) ,  z . n e w c = t r u e  --~ X(z ' ) ,  M ( m ) ,  C R ( c , m ) ,  
CA(m, c), C(c) 

C(c), c . l e a v e  = t r u e  --* 
C R ( c ,  m ) ,  C A ( m ,  c) 

Entities 

c l i e n t  : p u b  l e a v e  : bool 
p r i v  r, a : i n t  
o u t  C R  
in  CA 
ent  m 
b o d y  I n i t e ;  l e a v e  := f a l s e ;  

* [ C o n d l  --* C1 13 
C o n d 2  --* m E C R  ! r ; r e : C A ? a ] ;  

l e a v e  := t r u e  

s e r v e r  : p r i v  r : int 
ou t  SA 
in  Sit 
ent  m 
b o d y  * [ m • S R ? r  -* m : S A ! f ( r ) ]  

m a n a g e r  : p r i v  r, a : i n t  
out  S R ,  C A  
i n  C R ,  S A  
ent  c, s 
b o d y  * [ c E C R g r  - - * s E S R ! r ;  

s : S A ? a ;  c : C A ! a ]  

e x t e r n a l  : p u b  n e w c  : b o o l  

b o d y  l n i t , ;  n e w c  := f a l s e ;  
, [ G o a d  3 --, C3]; 
n e l / / e  : =  ~ : r u e  

Figure 1: The complete client-server application 
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addition to the expected assignment of c~.r to m . r .  This fa- 
cility makes it possible for an entity to communicate with an 
unbounded number of other entities (without knowing their 
number or their existence), relying only on the topology of 
the architecture. Commands of the form 

a : L ? v  and a : L ! E  

are closer to the standard CSP rendez-vous since the names 
of the partner entity is explicitly specified. This facility is 
necessary for an entity to realise a series of communications 
with the same partner: for instance, the manager must send 
the answer to the client which has issued the initial request. 

The complete syntax of the commands of the language 
of entities is the following: 

C -- v :-- E [ s k i p  I C1 ; C2 [ Corn  
[a -~ C(D a - ~  C)*] I 
• [C -+ C(D G-~ C)*] 

Corn = H!E I H?v 
H = a : L  I a 6 L  
G = B I Corn  I (B ,  Corn )  

Symbols E and B denote respectively expressions (of any 
type) and boolean expressions, L is a link symbol declared 
in the ou t  or in  section, a is an entity variable and v any 
other (public or private) variable. As in CSP, a guard may 
be a combination of a boolean expression and a communica- 
tion command. The semantics of the language is defined in 
the top part of Figure 2 as a labelled transition system on lo- 
cal configurations of the form < C, S >, with C a command 
and S a store. As usual, the label e is used for silent transi- 
tions (transitions involving no communication). S e m  [E] S 
is the semantics of expression E in store S and S [ v a l / v ]  is 
the same as S except that  variable v takes the value val .  
~ ( C o m ,  S,  C o r n ' ,  S ' )  is an intermediate relation associating 
the label Corn '  and the new store S' with the communica- 
tion command C o r n  and store S. R plays a similar role for 
guards. The label Corn '  and the new store S' are specified 
by the relation p, which formalises the above discussion on 
input and output commands. A repetitive command termi- 
nates when each guard includes a false boolean condition. 
Note that we do not follow the original CSP convention in- 
dicating the termination of the repetitive command when all 
processes addressed in the input /ou tput  guards have termi- 
nated [13]. This option would not make sense in our setting 
since, as explained above, a communication command may 
avoid to name the partner process explicitly and new pro- 
cesses and links can be added by the coordinator. 

Let us now focus on the bottom part of Figure 2 which 
defines the semantics of the coordinator and show how it 
fits with the semantics of the underlying language of enti- 
ties. Global configurations are triples [Coo, G, Val]  where 
Co o  is the set of conditional rewrite rules defining the co- 
ordinator, G is the graph representing the architecture and 
V a l  is a function mapping entity names onto local config- 
urations (pairs < C, S >). The three rules defining the 
semantics of coordination correspond to the following cases: 

• The first rule simply propagates at the level of global 
configurations the silent transitions of local configura- 
tions. 

• The second rule ensures proper matching of local tran- 
sitions involving communications. 

Semantics of the  language of entities 

< v := E, S >-~< 0, S[(Sern[E]S)/.] > 

< s k i p ,  S>--~< 0, S> 

<Cl , s>-% <0, s'> 

< C l  ; C2 , S >  -% < C 2  , S'  > 

<C 1  , S >  -% < C'1 , S '  > 

< C l  ; C 2 ,  S > - %  < C' 1 ; C 2 ,  S'  > 

~( Corn, S, Corn', S') 
C°rnt Sl <Corn, S> --* <0, > 

~(G~, S, Corn', S ' )  

< [. . . oG~ -~ C~o . . .] , S > C?-T'< C~ , S'  > 

~(Gi, S, Corn', S') 

< *[. . .  OGi ---* CiD. . . ] ,  S > C ? m ' <  Ci; *[. . .  DGI "* C iD . . . ] ,  S'  > 

i, Corn', S' s.t. R(G~,S, C o m ' , S ' )  

<.[...DG~ -. C~D...], S >  l . < O ,  S >  
Sere [B] S -- true S%(Oom, S, Corn', S' 

R( B,  S, e, S) R( Com, S, Corn', S' 

Sere [B] S -~ true ~(Com,  S, Corn ' ,S ' )  
R( ( B,  Corn), S, Corn', S' ) 

~(H, S, H', S') 
~(H ! E, S, H' ! (Sern [E] S) ,S') 

p(H,  S, H ' ,  S ' )  
~ ( H  ? v , S, H' ? val, S'[val/v]) 

p(a 6 L ,  S, p : L ,  S[pla]) p(a : L ,  S, S(a) L ,  S) 

Semantics of coordination 

--*lc Vat(p) " ' 
[Coo, G, Vat] ~-* [Coo, G, Val[tc'/p]] 

p:L?v t L(p,q) e G Yal(p)  q:L !~tcp' Yal(q)  -~ tc~ 
[Coo, G, Valid-* [Coo, G, Yal[lcp'/p][lcq'/q]] 

( / , r ,c )  6 C o o  a I C_ G V~(Val,  c) = true 
[Coo, G, Val] ~-* [Coo, G - - a l  4-ar , Val[< Ci,3- > /P l ] ]  

foral l  Pi 6 N ~ ( a r ) - N , ( a l )  and p~ o f t y p e C i  
v~(vaz ,  c) = Sere [e] [((Yat(~ w)) T S)v/w.v]  

Figure 2: Semantics of the language of entities and coordi- 
nation 
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• The third case is the transformation of the architec- 
ture according to a rule (1,r, c) of the coordinator: l 
and r s tand respectively for the left-hand side and the 
r ight-hand side of a rule and c is the condition. The 
value of c is evaluated with respect to the local states 
of the entities: in the definition of V¢(Val, c), a is used 
to get the entity name associated with a variable w, 
Val returns the local configuration of the correspond- 
ing entity, and "~ S extracts its store component. The 
names of N~ (ar) - N~ (al) correspond to new entities 
created by the rule: their original configuration is the 
pair < Ci, _l_ > where _l_ is the undefined store and Ci 
is the body of the enti ty which constitutes the type of 
the new variable (remember that  the relations defin- 
ing links and their variables are typed with entities). 
As an illustration, the type of C in the client-server 
application is client which means that  the occurrence 
of a new variable c in the first rule of Coots  results 
in the creation of a new entity of type client and its 
initialisation with the undefined store. 

An impor tant  observation concerning the process lan- 
guage described here is tha t  it is very minimal indeed: it 
does not provide any facility for parallelism (no process cre- 
ation, no parallel construct).  This follows our original design 
choice of keeping a clear separation between the computa- 
tion at the level of entities and the management of concur- 
rency and communication at the level of the coordinator. 

5 Conclusion 

The need for specific languages and formal frameworks for 
describing the overall organisation of large software systems 
has triggered a considerable interest for software architec- 
tures and coordination languages during the last decade. 
Up- to-da te  surveys of formalisms and current trends can 
be found in [12, 29]. In order to relate our contribution 
to previous work in this area, let us focus on two comple- 
mentary issues: the formal model used to describe software 
architectures and the features provided by specific software 
architecture or coordination languages. 

• F o r m a l  m o d e l s :  Among the formal frameworks used 
to specify software architectures, let us mention the 
specification language Z [1], CSP [2], the chemical ab- 
stract  machine [16], the ~r-calculus [21], part ial  ordered 
sets of events [20] and first-order logical theories [24]. 
These formalisms have been extensively studied and 
their respective advantages have been identified: Z is 
a widely used state-based specification language which 
allows for a clean decomposition of applications into 
collections of schemas (in the context of software ar- 
chitectures, schemas can be components, connectors, 
configurations [1]); CSP [13] and the ~r-calculus [23] are 
process algebra which highlight the concurrency and 
communication issues; the ~r-calculus includes pow- 
erful features for manipulat ing channels as first-class 
values which increases its potential  for describing dy- 
namic architectures; the chemical abstract  machine [5] 
is based on the chemical reaction metaphor [4] which 
allows for a higher level of abstraction promoting par- 
allelism as a basic computat ional  model; the event- 
based structures of [20] are well suited to the explicit 
representation of t iming properties; the logical theories 
used in [24] form the basis of a definition of a notion 
of architecture refinement. 

• S o f t w a r e  a r c h i t e c t u r e  l a n g u a g e s :  there is a great 
variety of needs for software architectures [29] and this 
fact is reflected in the variety of papers published in 
this active area during the last few years. Aesop [11] 
provides facilities for the design and graphical visual- 
isation of architectures following the rules prescribed 
by specific styles. Architecture styles are defined in 
a generic object model and include the specification 
of a vocabulary and constraints on the connections 
between elements. Unicon [30] supports  a variety of 
components (such as 'shared data ' ,  'filter' ,  'sequential 
file') and connectors (such as 'pipes' ,  ' remote proce- 
dure calls') which have been implemented and used as 
a tes tbed for experimenting system construction mech- 
anisms. Other proposals put  more emphasis on the 
dynamic aspects of the system, introducing a separa- 
tion between the sequential computat ion of individual 
agents and their coordination expressed in a specific 
languages [6, 14, 18]. In Linda [6], activities cooper- 
ate through a global tuple space using specific asso- 
ciative access primitives. The Conic environment pro- 
vides a neat separation between individual tasks with 
explicit interfaces and a configuration level describing 
the overall application (which involves specifying the 
task components and establishing links between their 
ports). The Conic environment supports  graphic tools 
for configuration programming and monitoring. Con- 
coord [14] introduces a notion of coordinator which is 
in charge of a collection of processes. A coordinator 
has access to the state variables of its processes and 
can test them to trigger the creation (or deletion) of 
processes and the binding (and unbinding) of ports. 

As far as formalisation is concerned, our approach to 
software architectures is in the spirit  of previous proposals 
based on process calculi like CSP [2] or the ~r-calculus [23]. 
On the other hand, our computat ional  model based on a 
clean separation between individual entities and a coordina- 
tor is inspired by [14] (but no formal model is provided for 
Concoord [14] and a number of technical choices differ from 
our own approach). 

The main departure of our contribution with respect to 
the above process calculi based proposals is the emphasis 
put  on the geometry of the architecture (following the 'box 
and line' drawing analogy), promoting it as an independent 
object. We believe tha t  graph grammars provide a useful de- 
vice for an intuitive and unambiguous understanding of the 
overall organisation of a system and form a suitable basis for 
various analyses. We observe, for example, that  any power- 
ful proof technique for parallel languages must include some 
form of analysis to obtain information about  the communi- 
cation topology of the program. The difficulty of this task 
is i l lustrated in various papers [22, 25]. Such analyses be- 
come much simpler in our framework because the topology is 
directly available from the specification of the architecture. 

A significant benefit of our approach is tha t  the direct 
information flows of a system are made explicit. This is be- 
cause the coordinator cannot perform any assignment and 
the individual entities can only communicate through the 
links specified by the architecture. The la t ter  proper ty  can- 
not be enforced by our model because it depends on the 
underlying language, but  it can be ensured by a complemen- 
tary e~ect analysis. The advantage is tha t  such an analysis 
is easier to perform because all the parallelism issues are 
lifted at the level of the coordinator. 
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As an illustration of the relevance of our approach for 
the analysis of non-functional properties, let us consider a 
simplified version of the well-known 'Bell and LaPadula '  se- 
curity model [19]. The following graph represents in our 
setting a small platform with two levels of confidentiality 
(Confidential and Secret with Confidential < Secret). 

M:(x)  is a server for subjects of clearance Confidential and 
M :  (z) is a server for subjects of clearance Secret (and sim- 
ilarly for M2(y) and M2(t) which are object servers). The 
links W, R and A represent respectively write requests, read 
requests and answers to read requests. The links specified 
by the architecture ensure that:  

• No subject  has read access to any object that  has a 
classification greater than the clearance of the subject. 

• No subject has write access to any object that  has a 
classification less than the clearance of the subject. 

Another important  issue is the possibility of defining for- 
mally a notion of refinement between software architectures. 
We proposed in [10] a refinement relation which corresponds 
to class containment and which can be checked statically 
on the rules of the graph grammar.  This notion of refine- 
ment was used in a different context (the transformation 
of parallel programs to optimise their implementation) and 
we are now exploring its applicability to software architec- 
tures. There does not seem to be a single answer to this 
problem because different usages may put  different require- 
ments on the notion of refinement. For instance, security- 
related properties may be preserved through refinements 
corresponding to multiset inclusion (because removing links 
or entities decrease the global information flow), but  this 
form of refinement may not be acceptable for functional 
properties (because removing links or entities may alter the 
services provided by the system). 

I t  should be clear tha t  we have focused on specific as- 
pects of software architectures in this paper and a number 

of important  issues have not been considered. Our frame- 
work tackles the coordination problems, but  it should be 
complemented with an appropriate  interface to manage the 
da ta  conversions required to support  interoperability. One 
natural  solution would be to rely on the interface definition 
language of a s tandard platform like CORBA. Also the types 
associated with the links in the architecture do not include 
a communication protocol dimension. We have assumed a 
rendez-vous mechanism here but  a useful extension would 
be to associate links with user-defined communication pro- 
tocols. One promising research direction is the notion of 
regular processes used in [26] to specify protocols for object 
behaviours. 

Another issue deserving further work is the design of a 
user friendly interface supporting externally ini t iated changes 
to the architecture [18]. In our framework, these changes 
could be expressed, and formally controlled, through the 'ex- 
ternal agents' as exemplified by the client-server case study. 

Considering graph grammars themselves, a potentially 
interesting generalisation would be to consider context sen- 
sitive grammars. This would allow us to specify topologies 
like square grids which are out of reach of context free gram- 
mars. Further experience is necessary to assess the useful- 
ness of this extension. 
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Appendix: a hospital ward monitoring system 

The distributed monitoring of a hospital ward system 
was used as a case study in [18] and [15]. The system con- 
sists of a number of nurses, beds and a secretary. Each nurse 
is associated with a collection of beds, some of them being 
occupied by a patient. Nurses check the state of their pa- 
tients regularly and decide when they are allowed to leave 
the hospital. Patients can also send an alarm to their nurse 
when their state becomes critical. The following graph rep- 
resents a possible configuration with two nurses nl  and n2. 
Nurse nl  has two free beds f l  and f2 and one occupied bed 
bx. Nurse n2 has one occupied bed b~ and one free bed f3. 
Links C, R, L are used respectively for asking the state (e.g. 
temperature) of a patient, receiving his state and sending 
back the decision taken by the nurse (a boolean value indi- 
cating if the patient is allowed to leave the hospital). A is 
the alarm link and E is used to connect a nurse with her 
free beds. 

o 

Figure 3 shows the architecture style of the application, 
the coordinator and the programs defining the individual 
entities. The secretary plays a role similar to the external 
entity in the client-server architecture. When its newp vari- 
able is set to true, the coordinator allocates a new patient 
to a nurse who has a bed available. Upon request, a nurse 
receives the temperature t of a patient and uses function 
F(t)  to decide whether the patient is allowed to leave the 
hospital. The patient receives the decision and stores it in 
the public variable leave which is used by the coordinator to 
modify the architecture according to this decision (replacing 
the occupied bed by a new instance of a free bed). Free beds 
are inactive entities and the associated program body is the 
skip command. 

Architecture style 

H 
HI 
HI 
H2(n) 
H~ (n) 
H 3 ( n )  
H3(n) 

=*- H1, S( s )  
N ( n ) ,  H2(n), H3(n), HI 
O 
B(b) ,  C ( n , b ) ,  R ( b , n ) ,  L ( n , b ) ,  A ( b , n ) ,  H2(n ) 
0 
F ( f ) ,  E ( n , f ) ,  H3(n ) 

Link types 

N : n u r s e  C : n u r s e  × bed L : n u r s e  × bed 
B : bed R : bed x n u r s e  A : bed x n u r s e  
F : f r e e  S : s e c r e t a r y  E : n u r s e  × f r e e  

Coordinator 

COOH -~ 

N ( n ) ,  S ( s ) ,  s . n e w p  = t r u e  

F ( f ) ,  E ( n , f )  

B (b ) ,  b . leave = t r u e  
C ( n ,  b), n ( n ,  b) 
R(b,  n ) ,  A(b ,  n) 

--* N ( n ) ,  S ( s ' ) ,  B (b ) ,  
C ( n ,  b), L ( n ,  b) 
R ( b , n ) ,  A(b,  n) 

--* F ( f ) ,  E ( n , f )  

Entities 

n u r s e  : p r i v  
o u t  
in 
p o r t  
b o d y  

t : i n t  
C,  L 
A ,  R 
b 
I n i t ~  ; 
*[b E A ? t --* A c t i o n ( b , t )  0 

b E C ! t r u e  --* b : R ? t ; b : L t F( t ) ]  

bed:  p u b  
p r i v  
o u t  
in  
p o r t  
b o d y  

l eave  : bool 
y,  t : i n t  
A ,  R 
C,  L 
n 
In i t b ;  l eave  := f a l s e ;  
*[ (~ leave  A C o n d l )  --* C1 rn 

(-~leave A C o n d 2 )  --* C 1 n E A [ t rn 
(-~leave, n E C ? y) --* n : R ! t ; n : L ? l e a v e ]  

s e c r e t a r y  : p u b  n e w p  : bool 
b o d y  I n i t , ;  n e w p  := f a l s e ;  

. [ C o n d  3 --. C3]; 
n e w p  :--- t r u e  

f r e e  : b o d y  sk ip  

Figure 3: The hospital ward application 
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