
Software architecture styles as graph grammars

D a n i e l Le M ~ t a y e r

I R I S A / I N R I A

C a m p u s d e B e a u l i e u , 35042 R e n n e s , F r a n c e

e m a i l : l e m e t a y e r @ i r i s a . f r

Abstract

We present a formalism for the definition of software archi-
tectures in terms of graphs. Nodes represent the individual
agents and edges define their interconnection. Individual
agents can communicate only along the links specified by
the architecture. The dynamic evolution of the overall ar-
chitecture is defined independently by a 'coordinator ' . An
architecture style is a class of architectures characterised by
a graph grammar. The rules of the coordinator are stati-
cally checked to ensure that they preserve the constraints
imposed by the architecture style.

K e y w o r d s : coordination, graph rewriting, software ar-
chitecture, stat ic verification.

1 Mot iva t ion and approach

Software systems tend to grow in size and complexity; they
are often developed through a long period of t ime and be-
come extremely difficult to understand and to maintain.
The cost incurred by this complexity is becoming a seri-
ous concern and a major challenge today is to provide ways
of organising software in order to make large applications
manageable and to favour the reuse of existing products.
Several languages or systems have been proposed recently
to tackle these problems: they are called software architec-
ture languages [12], configuration languages [18] or coordina-
tion languages [6, 14]. Despite some differences of emphasis,
these works share a common point of view: the definition of
a software application should make a clear distinction be-
tween individual components and their interaction in the
overall software organisation.

Several authors [1, 2, 16, 27] have emphasized the impor-
tance of a framework for the formal definition of software
architectures. Not only is it a prerequisite for a rigorous
analysis of architectures, but it also increases their useful-
ness and reusability by removing the sources of ambiguity

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGSOFT'96 CA, USA
© 1996 ACM 0-89791-797-9/96/0010...$3.50

which are unavoidable in informal descriptions. Another
major requirement for a software architecture model is its
ability to express s tandard software design choices in a nat-
ural way. The common practice of software engineers is to
represent architectures informally as 'box and line' drawings
[2, 17]. Start ing from this observation, we propose to define
software architectures formally in terms of graphs, which
constitute the mathematical model closest to the intuition
conveyed by 'box and line' drawings. The nodes of the graph
represent the individual entities which can themselves be de-
scribed in conventional programming languages. The edges
correspond to the communication links between entities. An
architecture style is a class (or set) of architectures exhibit-
ing a common shape. For example:

are two architectures of a style 'pipeline' (with ei repre-
senting entity names and S directed links between entities).
Technically, architecture styles are defined as context-free
graph grammars.

The architecture can be seen as the skeleton of an ap-
plication. In order to be executable, it must be 'fleshed',
or completed with a mapping from nodes to entities defined
in a given language. This complete description is called an
architecture instance. The specification of the computat ion
of an architecture instance mirrors its hierarchical organisa-
tion:

• The evolution of the local states of the entities follows
the rules of the operational semantics of their program-
ming language.

• A 'coordinator ' is used to pilot the overall application.
The coordinator is in charge of managing the architec-
ture itself (creating and removing entities and links).

The coordinator is expressed in terms of conditional graph
rewriting in the spirit of [10, 28]. The conditions bear on
the public variables of the entities and represent the only
possible interactions between a coordinator and the individ-
ual components (apart from the creation and destruction of
links and entities).

The s tandard way to describe distr ibuted systems is to
resort to tradit ional sequential programming languages en-
hanced with facilities for process creation and communica-
tion (possibly through operating system procedure calls).
On the other hand, specification languages like CSP [13],

15

and the ~r-calculus [23] are inherently parallel languages pro-
viding powerful and integrated constructions for process cre-
ation and synchronisation. None of these approaches makes
it easy to extract the underlying communication topology
from the application. As an illustration, [22, 25] propose so-
phist icated analyses to derive information about the topol-
ogy of CSP and CML programs. We believe that a bet ter
basis for understanding the structure of a system is to con-
sider its topology as an explicit feature rather than trying
to dig it up from the program a posteriori. In other words,
we propose tha t the 'skeleton' of the application is specified
independently, with the 'flesh' described in a separate way.

Among the benefits of our approach, let us mention the
following:

• I t makes it possible to reconcile a dynamic view of the
architecture, which is crucial for a large class of ap-
plications, with the possibility of static checking, en-
suring tha t the evolution of the architecture conforms
to its style. This verification can be seen as a form of
static type checking of the coordinator (the type being
the graph grammar defining the architecture style). In
our framework, this amounts to a proof of convergence
of graph rewrite rules.

• I t provides a high-level view of software systems which
is both intuitive and formally based. The clean sepa-
ration between the computat ion of the individual en-
tities and their coordination makes it easier to check
global properties of the system. In particular, proper-
ties about the information flows in an application can
be derived from the architecture style. This is of prime
importance to be able to enforce the requirements im-
posed by a given security policy (confidentiality, in-
tegrity).

The presentation of the paper follows this two-level de-
composition. In the next section, we introduce our view
of architectures as graphs and architecture styles as graph
grammars. Section 3 defines coordination as conditional
graph rewriting and describes an algorithm for the static
checking of a coordinator with respect to a given style. Sec-
tions 2 and 3 are independent of the definition of the atomic
components of the architecture. In section 4, we complete
the picture with a language for programming the individual
entities. We provide a structural operational semantics of
this language and we show how it cooperates with the se-
mantics of coordination. In the conclusion, we relate our
approach to previous work in this area and we suggest av-
enues for further research.

We use the 'client-server' model as a case study through-
out the paper. Following the top-down presentation of the
material, the client-server architecture style itself is intro-
duced in section 2; a first version of the coordinator is pre-
sented in section 3 and the complete application is described
in section 4 (Figure 1). A second example is presented in
the appendix (a dis tr ibuted hospital ward monitoring sys-
tem inspired by [18] and [15]).

2 Architecture styles

Our notion of graphs is inspired by previous work on the
chemical reaction model [3, 4, 10] and set-theoretic graph
rewriting [28]. Formally, a graph is a multiset of relation
tuples noted R(el, . . . , e,~) where R is a n-ary relation name

and el are entity names (we assume appropria te countable
sets of names). We consider only binary and unary relations
here. In our context, a binary relation L(el, e2) represents a
directed link of name L between el and e2. A unary relation
U(e) characterises the role of an enti ty e in the architecture.
As an illustration, the following (unconnected) graph repre-
sents an example of a client-server architecture.

Unary relations are represented by circles and binary rela-
tions by arrows. C, S, M and X correspond respectively to
client, server, manager and external entities. The external
entity stands for the external world; it records requests for
new clients wanting to be registered in the system. CR and
CA correspond to client request links and client answer links
respectively (SR and SA are the dual links for servers). The
architecture represented by the above graph involves two
clients cl and c2, two servers sl and s2, a manager m and
x. I t is formally defined as the multiset A:

{X(x), M(m), C(cl) , C(c2), S(sl), S(s2),

CR(cl, m), OR(c2, m), CA(m, cl) , CA(m, c2),

SR(m, sl), SR(m, s2), SA(sl, m), SA(s2, m)}

It should be clear that A is just one part icular represen-
tat ive of a more general class of client-server architectures.
Architectures belonging to this class must include values
X(x) and M(m) and any number of servers and clients.
Furthermore, they must follow the communication link pat-
tern exhibited by A. We propose to specify such a class as
a context-free graph grammar. Different notions of context-
free graph grammars have been studied in the literature.
They are defined either in terms of node replacement [9] or
in terms of hyper-edge replacement [7]. Graph rewriting is
also used in [8] as a model for dis t r ibuted systems, but a
dual approach is taken, with hyper-edges representing pro-
cesses and nodes representing ports (also the process rewrite
rules are essentially used to model synchronisation require-
ments). Our definition of graphs as multisets allows us to
express hyper-edge replacement in a very natural way. A
grammar is a four-tuple [NT, T, PR, AX] where NT and
T are sets of non-terminal and terminal symbols (each one
with a given arity), PR is a finite set of production rules
and AX is an axiom (the origin of the derivation). Termi-
nal symbols correspond to the relations of the architecture.
The production rules are pairs (l, r) where l is a singleton
{A(xl,. . . , x,)} (with A a non-terminal of ari ty i) and r is
a multiset of terms B(y~,..., y~) with B E NT U T.

Continuing our example, the client-server architecture
style is defined as:

Hcs

[{CS, CS1}, {M, X, C, S, CR, CA, SR, SA}, R, CS]

16

with R the following set of rules (we use the concrete syntax
Left =~ Right to represent a pair ({Left}, {Right}):

CS ~ CSt(m)
CSI(m) ~ CR(c,m), CA(re, c), C(c), CSI(m)
CS1 (m) =~ SR(m, s), SA(s, m), S(s), CSl(m)
CSl(m) ~ M(m), X(x)

Formally, a graph grammar H = [NT, T, PR, AX] de-
fines a rewrite system --~H between multisets:

M - + H M ' ¢* M' = M - - m l + m ~

with rnl C M, (Ne(m~)- Ne(ml)) N Ne(M) = 0,
and mz = a l, m~ = a r, with a an injective substitu-
tion and (l, r) 6 PR. The substitution ~ maps variables
to entity names. N~(M) is the set of entity names occur-
ring in the multiset M. The second condition ensures that
new variables occurring on the right-hand side of a rule are
instantiated with entity names which are distinct from all
other existing names. This constraint, which is usual in
graph rewriting [28], is necessary to avoid unexpected vari-
able sharing. It is crucial in our context to be able to state
precisely the actual connections between entitles.

The style defined by a grammar H = [NT, T, PR, AX]
is the set of all terminal graphs (graphs containing only ter-
minal relation symbols) produced by --~H rewritings:

Class(H) = {G] {AX} ~ G and G terminal}

For example, it is easy to check that the graph A defined
above belongs to the client-server class: A 6 Class(Hcs).

3 Coordination

As mentioned in the introduction, it is often the case that
the architecture of an application should be able to evolve
dynamically. For instance, a client-server organisation must
allow for the introduction of new clients or their departure,
a pipeline may grow or shrink dynamically depending on the

size of the data being processed, facilities for dealing with
mobile computing may be required. In our framework, the
evolution of the architecture is defined by a coordinator. The
task of the coordinator is expressed by conditional graph
rewrite rules in the style of [3, 4]. The semantics of the
rules is similar to the definition used above for the rewrite
system associated with graph grammars, except that we may
have additional side conditions in coordination rules. These
conditions bear on the local states of the individual entities;
they do not play any role at this stage, so we do not consider
them until the next section.

As an illustration, we introduce the following coordinator
Coocs which applies to a client-server architecture:

X(x), M(m)--+ X(x'), M(m), Cn(c ,m) , CA(m,c), C(e)

CR(c,m), CA(re, c), C(c) -~ O

The two rules describe respectively the introduction of a new
client in the architecture and its departure. Note that these
rules are completed with side conditions on the states of the
entities in the complete version of the coordinator presented
in the next section (Figure 1); otherwise, the coordinator
could clearly lead to infinite behaviours.

The possibility of expressing architecture transformations
is definitely a useful feature but it also raises a new ques-
tion: is it possible to ensure that a coordinator does not
break the constraints of a given architecture style? For ex-
ample, had we forgotten, say CR(c, rn) in the right-hand side
of the first rule, then the coordinator would have been able
to transform a client-server architecture into an architecture
which does not belong any longer to the client-server class
defined by Hes. What is needed is a static style checker
which would be the counterpart for coordinators of the type
checking algorithms of classical languages.

In order to define a checking algorithm for a given style
H = [NT, T, PR, AX], we first consider the graph rewrite
system __+~1 obtained by a right to left reading of the rules
in PR (with the appropriate dual restrictions on variables
appearing only on the right-hand side of a rule). Obviously,

if G is a graph belonging to the style H, then G 4H 1 {AX}.
The coordinator Coo defines a second graph rewrite relation
-+Coo and the checking algorithm must ensure that:

V G such that G 4-H 1 {AX},

G-+coo a' =~ a' C+-H ~ {AX}

The checking algorithm proceeds in two stages.

I. First, all the Coo rules (ll, rl) are considered in turn.
For each Ii, the set Si of all its minimal contexts C~
with the associated non-terminal terms N~ (Xl~..., Xn)
is computed. The pairs (CJl, N](xl, . . . ,x~)) satisfy
the relation:

l, + CJi -5,-H 1 {N](x~,...,x~)}.

The minimal contexts C~ are the smallest multisets
which have to be added to the Ii to reduce to a non-
terminal (in other words, they are completely con-
sumed by the reduction). They are computed by con-
structing all the possible superpositions (non empty
intersections) of li with left-hand sides of -+H 1 rules
and performing the corresponding reductions until a
non-terminal is reached (or a term isomorphic to one
of its ancestors). This iteration terminates because the
reductions cannot increase the size of a term and the
number of terms of a given size is finite (up to vari-
able renaming). 'Impossible contexts' (contexts which
cannot lead to a single non-terminal, and thus cannot
lead to the axiom AX) are removed during the course
of this process for a better precision of the analysis.

2. The second stage consists in applying --+H ~ rules, to
show that all pairs (h, rl) satisfy:

V(C~, N[(xl , . . . ,x~)) 6 Si,

r, + C{ 2+-H 1 {N](Xl, . . . ,x,)}.

The second stage terminates for the same reason as
the first one. If the above property holds, then Coo is
correct with respect to the style H.

The correctness of the algorithm is proven in [10]. As
an illustration, let us apply it to the coordinator Coors
presented above. The first rule of Coovs is:

({X(x), M(m)}, {X(x'), M(m), CR(c, m), CA(m, c), C(c)}).

17

There is only one superposition of X(x), M(m) with left-
hand sides of __+-1 namely X(x), M(m) itself. The only C S
possible rewriting to a non-terminal is

{X(x), M(m)} ---~CS--1 {CSl(m)}.

Thus $1 = {(O, CSI(m))} and we have to show that:

{X(x') , M(m), CR(c,m), CA(re, c), C(c)}

-~cs {csl(m)}
which is obtained in two rewrite steps.

The second rule of Coocs is treated in a similar way.
The only successful reduction of its left-hand side is:

{CR(c,m), CA(re, c), C(c), CS, (m)} -~cls {CSI(m)}.

Thus $2 = {({CSl(m)}, CSl(m))} and we obviously have

{CSl(m)} -~cs { C S l (T r ~) } •

This concludes the verification that Coocs is a correct co-
ordinator with respect to the client-server style CS.

4 Architecture instances

We have presented architecture styles and architecture trans-
formations without any assumption on the individual enti-
ties so far. This section completes the picture by introducing
a small language for entities. We provide its formal defini-
tion in terms of a structural operational semantics and we
show how it interacts with the actions of the coordinator.

The syntax of the language of entities is better intro-
duced through the complete version of the client-server ap-
plication in Figure 1. First note that the relations defining
the links of the architecture are typed (and so are the vari-
ables they bear on). The basic types are names of entities
(client, server, manager, external here). For instance, the
type attached to CR specifies a link from a client entity to
a manager entity. Each entity defines public and private
variables, output and input links and entity names. The
public variables can be checked (but not assigned) by the
coordinator. The public variable v of an entity a is denoted
by a.v in the definition of the coordinator. For example,
the complete definition of Coocs creates a new client only
if the boolean variable newc of the entity x is true. A new
instance x' of the external entity is created in the same rule
(which prevents the immediate re-application of the rule).
Similarly, clients use a public variable leave to indicate their
intention to leave the system. The output and input links
of the entities must conform to the edges of the architecture
(this can be checked statically).

The commands of the language are very much in the
spirit of CSP except for the following generalisation: the
semantics of input and output commands of the form

a 6 L ? v and a 6 L ! E

correspond to the establishment of a rendez-vous with any
entity a linked to the current entity through a link of name
L. For example, the command c 6 CR ? r of the manager
m is matched with the command m 6 CR ! r in any of the
clients ci such that CR(ci, m) is an edge of the architecture.
The effect of this communication is to assign ci to m.c in

Architecture style

CS ~ CSl (m)
CSI(m) => CR(c,m), CA(re, c), C(e), CSl(m)
C S l (m) ~ S R (m , s) , S A (s , m) , S (s) , C S I (m)
C S I (m) ~ M(m), X(x)

Link types

C : c l i e n t S : s e r v e r
C R : c l i e n t x m a n a g e r C A : m a n a g e r x c l i e n t
S R : m a n a g e r × s e r v e r S A : s e r v e r × m a n a g e r
M : m a n a g e r X : e x t e r n a l

Coordinator

Coocs =

X(z) , M (m) , z . n e w c = t r u e --~ X(z ') , M (m) , C R (c , m) ,
CA(m, c), C(c)

C(c), c . l e a v e = t r u e --*
C R (c , m) , C A (m , c)

Entities

c l i e n t : p u b l e a v e : bool
p r i v r, a : i n t
o u t C R
in CA
ent m
b o d y I n i t e ; l e a v e := f a l s e ;

* [C o n d l --* C1 13
C o n d 2 --* m E C R ! r ; r e : C A ? a] ;

l e a v e := t r u e

s e r v e r : p r i v r : int
ou t SA
in Sit
ent m
b o d y * [m • S R ? r -* m : S A ! f (r)]

m a n a g e r : p r i v r, a : i n t
out S R , C A
i n C R , S A
ent c, s
b o d y * [c E C R g r - - * s E S R ! r ;

s : S A ? a ; c : C A ! a]

e x t e r n a l : p u b n e w c : b o o l

b o d y l n i t , ; n e w c := f a l s e ;
, [G o a d 3 --, C3];
n e l / / e : = ~ : r u e

Figure 1: The complete client-server application

1 8

addition to the expected assignment of c~.r to m . r . This fa-
cility makes it possible for an entity to communicate with an
unbounded number of other entities (without knowing their
number or their existence), relying only on the topology of
the architecture. Commands of the form

a : L ? v and a : L ! E

are closer to the standard CSP rendez-vous since the names
of the partner entity is explicitly specified. This facility is
necessary for an entity to realise a series of communications
with the same partner: for instance, the manager must send
the answer to the client which has issued the initial request.

The complete syntax of the commands of the language
of entities is the following:

C -- v :-- E [s k i p I C1 ; C2 [Corn
[a -~ C(D a - ~ C)*] I
• [C -+ C(D G-~ C)*]

Corn = H!E I H?v
H = a : L I a 6 L
G = B I Corn I (B , Corn)

Symbols E and B denote respectively expressions (of any
type) and boolean expressions, L is a link symbol declared
in the ou t or in section, a is an entity variable and v any
other (public or private) variable. As in CSP, a guard may
be a combination of a boolean expression and a communica-
tion command. The semantics of the language is defined in
the top part of Figure 2 as a labelled transition system on lo-
cal configurations of the form < C, S >, with C a command
and S a store. As usual, the label e is used for silent transi-
tions (transitions involving no communication). S e m [E] S
is the semantics of expression E in store S and S [v a l / v] is
the same as S except that variable v takes the value val .
~ (C o m , S, C o r n ' , S ') is an intermediate relation associating
the label Corn ' and the new store S' with the communica-
tion command C o r n and store S. R plays a similar role for
guards. The label Corn ' and the new store S' are specified
by the relation p, which formalises the above discussion on
input and output commands. A repetitive command termi-
nates when each guard includes a false boolean condition.
Note that we do not follow the original CSP convention in-
dicating the termination of the repetitive command when all
processes addressed in the input /ou tput guards have termi-
nated [13]. This option would not make sense in our setting
since, as explained above, a communication command may
avoid to name the partner process explicitly and new pro-
cesses and links can be added by the coordinator.

Let us now focus on the bottom part of Figure 2 which
defines the semantics of the coordinator and show how it
fits with the semantics of the underlying language of enti-
ties. Global configurations are triples [Coo, G, Val] where
Co o is the set of conditional rewrite rules defining the co-
ordinator, G is the graph representing the architecture and
V a l is a function mapping entity names onto local config-
urations (pairs < C, S >). The three rules defining the
semantics of coordination correspond to the following cases:

• The first rule simply propagates at the level of global
configurations the silent transitions of local configura-
tions.

• The second rule ensures proper matching of local tran-
sitions involving communications.

Semantics of the language of entities

< v := E, S >-~< 0, S[(Sern[E]S)/.] >

< s k i p , S>--~< 0, S>

<Cl , s>-% <0, s'>

< C l ; C2 , S > -% < C 2 , S' >

<C 1 , S > -% < C'1 , S ' >

< C l ; C 2 , S > - % < C' 1 ; C 2 , S' >

~(Corn, S, Corn', S')
C°rnt Sl <Corn, S> --* <0, >

~(G~, S, Corn', S ')

< [. . . oG~ -~ C~o . . .] , S > C?-T'< C~ , S' >

~(Gi, S, Corn', S')

< *[. . . OGi ---* CiD. . .] , S > C ? m ' < Ci; *[. . . DGI "* C iD . . .] , S' >

i, Corn', S' s.t. R(G~,S, C o m ' , S ')

<.[...DG~ -. C~D...], S > l . < O , S >
Sere [B] S -- true S%(Oom, S, Corn', S'

R(B, S, e, S) R(Com, S, Corn', S'

Sere [B] S -~ true ~(Com, S, Corn ' ,S ')
R((B, Corn), S, Corn', S')

~(H, S, H', S')
~(H ! E, S, H' ! (Sern [E] S) ,S')

p(H, S, H ' , S ')
~ (H ? v , S, H' ? val, S'[val/v])

p(a 6 L , S, p : L , S[pla]) p(a : L , S, S(a) L , S)

Semantics of coordination

--*lc Vat(p) " '
[Coo, G, Vat] ~-* [Coo, G, Val[tc'/p]]

p:L?v t L(p,q) e G Yal(p) q:L !~tcp' Yal(q) -~ tc~
[Coo, G, Valid-* [Coo, G, Yal[lcp'/p][lcq'/q]]

(/ , r ,c) 6 C o o a I C_ G V~(Val, c) = true
[Coo, G, Val] ~-* [Coo, G - - a l 4-ar , Val[< Ci,3- > /P l]]

foral l Pi 6 N ~ (a r) - N , (a l) and p~ o f t y p e C i
v~(vaz , c) = Sere [e] [((Yat(~ w)) T S)v/w.v]

Figure 2: Semantics of the language of entities and coordi-
nation

19

• The third case is the transformation of the architec-
ture according to a rule (1,r, c) of the coordinator: l
and r s tand respectively for the left-hand side and the
r ight-hand side of a rule and c is the condition. The
value of c is evaluated with respect to the local states
of the entities: in the definition of V¢(Val, c), a is used
to get the entity name associated with a variable w,
Val returns the local configuration of the correspond-
ing entity, and "~ S extracts its store component. The
names of N~ (ar) - N~ (al) correspond to new entities
created by the rule: their original configuration is the
pair < Ci, _l_ > where _l_ is the undefined store and Ci
is the body of the enti ty which constitutes the type of
the new variable (remember that the relations defin-
ing links and their variables are typed with entities).
As an illustration, the type of C in the client-server
application is client which means that the occurrence
of a new variable c in the first rule of Coots results
in the creation of a new entity of type client and its
initialisation with the undefined store.

An impor tant observation concerning the process lan-
guage described here is tha t it is very minimal indeed: it
does not provide any facility for parallelism (no process cre-
ation, no parallel construct). This follows our original design
choice of keeping a clear separation between the computa-
tion at the level of entities and the management of concur-
rency and communication at the level of the coordinator.

5 Conclusion

The need for specific languages and formal frameworks for
describing the overall organisation of large software systems
has triggered a considerable interest for software architec-
tures and coordination languages during the last decade.
Up- to-da te surveys of formalisms and current trends can
be found in [12, 29]. In order to relate our contribution
to previous work in this area, let us focus on two comple-
mentary issues: the formal model used to describe software
architectures and the features provided by specific software
architecture or coordination languages.

• F o r m a l m o d e l s : Among the formal frameworks used
to specify software architectures, let us mention the
specification language Z [1], CSP [2], the chemical ab-
stract machine [16], the ~r-calculus [21], part ial ordered
sets of events [20] and first-order logical theories [24].
These formalisms have been extensively studied and
their respective advantages have been identified: Z is
a widely used state-based specification language which
allows for a clean decomposition of applications into
collections of schemas (in the context of software ar-
chitectures, schemas can be components, connectors,
configurations [1]); CSP [13] and the ~r-calculus [23] are
process algebra which highlight the concurrency and
communication issues; the ~r-calculus includes pow-
erful features for manipulat ing channels as first-class
values which increases its potential for describing dy-
namic architectures; the chemical abstract machine [5]
is based on the chemical reaction metaphor [4] which
allows for a higher level of abstraction promoting par-
allelism as a basic computat ional model; the event-
based structures of [20] are well suited to the explicit
representation of t iming properties; the logical theories
used in [24] form the basis of a definition of a notion
of architecture refinement.

• S o f t w a r e a r c h i t e c t u r e l a n g u a g e s : there is a great
variety of needs for software architectures [29] and this
fact is reflected in the variety of papers published in
this active area during the last few years. Aesop [11]
provides facilities for the design and graphical visual-
isation of architectures following the rules prescribed
by specific styles. Architecture styles are defined in
a generic object model and include the specification
of a vocabulary and constraints on the connections
between elements. Unicon [30] supports a variety of
components (such as 'shared data ' , 'filter' , 'sequential
file') and connectors (such as 'pipes' , ' remote proce-
dure calls') which have been implemented and used as
a tes tbed for experimenting system construction mech-
anisms. Other proposals put more emphasis on the
dynamic aspects of the system, introducing a separa-
tion between the sequential computat ion of individual
agents and their coordination expressed in a specific
languages [6, 14, 18]. In Linda [6], activities cooper-
ate through a global tuple space using specific asso-
ciative access primitives. The Conic environment pro-
vides a neat separation between individual tasks with
explicit interfaces and a configuration level describing
the overall application (which involves specifying the
task components and establishing links between their
ports). The Conic environment supports graphic tools
for configuration programming and monitoring. Con-
coord [14] introduces a notion of coordinator which is
in charge of a collection of processes. A coordinator
has access to the state variables of its processes and
can test them to trigger the creation (or deletion) of
processes and the binding (and unbinding) of ports.

As far as formalisation is concerned, our approach to
software architectures is in the spirit of previous proposals
based on process calculi like CSP [2] or the ~r-calculus [23].
On the other hand, our computat ional model based on a
clean separation between individual entities and a coordina-
tor is inspired by [14] (but no formal model is provided for
Concoord [14] and a number of technical choices differ from
our own approach).

The main departure of our contribution with respect to
the above process calculi based proposals is the emphasis
put on the geometry of the architecture (following the 'box
and line' drawing analogy), promoting it as an independent
object. We believe tha t graph grammars provide a useful de-
vice for an intuitive and unambiguous understanding of the
overall organisation of a system and form a suitable basis for
various analyses. We observe, for example, that any power-
ful proof technique for parallel languages must include some
form of analysis to obtain information about the communi-
cation topology of the program. The difficulty of this task
is i l lustrated in various papers [22, 25]. Such analyses be-
come much simpler in our framework because the topology is
directly available from the specification of the architecture.

A significant benefit of our approach is tha t the direct
information flows of a system are made explicit. This is be-
cause the coordinator cannot perform any assignment and
the individual entities can only communicate through the
links specified by the architecture. The la t ter proper ty can-
not be enforced by our model because it depends on the
underlying language, but it can be ensured by a complemen-
tary e~ect analysis. The advantage is tha t such an analysis
is easier to perform because all the parallelism issues are
lifted at the level of the coordinator.

20

As an illustration of the relevance of our approach for
the analysis of non-functional properties, let us consider a
simplified version of the well-known 'Bell and LaPadula ' se-
curity model [19]. The following graph represents in our
setting a small platform with two levels of confidentiality
(Confidential and Secret with Confidential < Secret).

M:(x) is a server for subjects of clearance Confidential and
M : (z) is a server for subjects of clearance Secret (and sim-
ilarly for M2(y) and M2(t) which are object servers). The
links W, R and A represent respectively write requests, read
requests and answers to read requests. The links specified
by the architecture ensure that:

• No subject has read access to any object that has a
classification greater than the clearance of the subject.

• No subject has write access to any object that has a
classification less than the clearance of the subject.

Another important issue is the possibility of defining for-
mally a notion of refinement between software architectures.
We proposed in [10] a refinement relation which corresponds
to class containment and which can be checked statically
on the rules of the graph grammar. This notion of refine-
ment was used in a different context (the transformation
of parallel programs to optimise their implementation) and
we are now exploring its applicability to software architec-
tures. There does not seem to be a single answer to this
problem because different usages may put different require-
ments on the notion of refinement. For instance, security-
related properties may be preserved through refinements
corresponding to multiset inclusion (because removing links
or entities decrease the global information flow), but this
form of refinement may not be acceptable for functional
properties (because removing links or entities may alter the
services provided by the system).

I t should be clear tha t we have focused on specific as-
pects of software architectures in this paper and a number

of important issues have not been considered. Our frame-
work tackles the coordination problems, but it should be
complemented with an appropriate interface to manage the
da ta conversions required to support interoperability. One
natural solution would be to rely on the interface definition
language of a s tandard platform like CORBA. Also the types
associated with the links in the architecture do not include
a communication protocol dimension. We have assumed a
rendez-vous mechanism here but a useful extension would
be to associate links with user-defined communication pro-
tocols. One promising research direction is the notion of
regular processes used in [26] to specify protocols for object
behaviours.

Another issue deserving further work is the design of a
user friendly interface supporting externally ini t iated changes
to the architecture [18]. In our framework, these changes
could be expressed, and formally controlled, through the 'ex-
ternal agents' as exemplified by the client-server case study.

Considering graph grammars themselves, a potentially
interesting generalisation would be to consider context sen-
sitive grammars. This would allow us to specify topologies
like square grids which are out of reach of context free gram-
mars. Further experience is necessary to assess the useful-
ness of this extension.

Acknowledgements

This work was par t ly supported by Esprit Basic Research
project 9102 Coordination. Some of the inspiration for this
paper emerged from previous work on Structured Gamma in
collaboration with Pascal Fradet [10]. Jean-Pierre Ban£tre,
Alexandra Holzbacher and Val~rie Issarny provided valuable
feedback on an earlier version of this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

G. Abowd, R. Allen and D. Garlan, Using style to un-
derstand descriptions of software architecture, Proc.
Sigsoft'93: Foundations of Software Engineering, Soft-
ware Engineering Notes, 18, 5, December 1993.

R. Allen and D. Garlan, Formalizing architectural con-
nection, Proc. 16th Int. Conf. Software Engineering,
IEEE Computer Society, pp. 71-80, 1994.

J.-P. Ban~tre and D. Le M~tayer, Programming
by multiset transformation, Communications of the
ACM, Vol. 36-1, pp. 98-111, January 1993.

J.-P. Ban£tre and D. Le M~tayer, Gamma and the
chemical reaction model: ten years after, Coordina-
tion programming: mechanisms, models and seman-
tics, Imperial College Press, 1996, to appear.

G. Berry and G. Boudol, The chemical abstract ma-
chine, Theoretical Computer Science, Vol. 96, pp. 217-
248, 1992.

N. Carriero and D. Gelernter, Linda in context, Com-
munications of the ACM, Vol. 32-4, pp. 444-458, April
1989.

B. Courcelle, Graph rewriting: an algebraic and logic
approach, Handbook of Theoretical Computer Science,
Chapter 5, J. van Leeuwen (ed.), Elsevier Science Pub-
lishers, 1990.

21

[8] P. Degano and U. Montanari, A model for distributed
systems based on graph rewritings, Journal of the
ACM, Vol. 34-2, pp. 411-449, April 1987.

[9] P. Della Vigna and C. Ghezzi, Context-free graph
grammars, Information and Control, Vol. 37, pp. 207-
233, 1978.

[10] P. Fradet and D. Le M~tayer, Structured Gamma, Irisa
Research Report PI-989, March 1996.

[11] D. Garlan, R. Allen and J. Ockerbloom, Exploiting
style in architectural design anvironment, Proc. Sig-
soft'94, Foundations of Software Engineering, pp. 175-
188, 1994.

[12] D. Garlan and D. Perry, Editor's Introduction, IEEE
Transactions on Software Engineering, Special Issue
on Software Architectures, 1995.

[13] C. A. R. Hoare, Communicating sequential processes,
Communications of the ACM, Vol. 21-8, pp. 666-677,
August 1978.

[14] A. A. Holzbacher, A software environment for concur-
rent coordinated programming, Proc. First int. Conf.
on Coordination Models, Languages and Applications,
Springer Verlag, LNCS 1061, pp. 249-266, April 1996.

[15] A. A. Holzbacher, Coordination of distributed and par-
allel programs in Concoord, Coordination program-
ming: mechanisms, models and semantics, Imperial
College Press, 1996, to appear.

[16] P. Inverardi and A. Wolf, Formal specification and
analysis of software architectures using the chemical
abstract machine model, IEEE Transactions on Soft-
ware Engineering, Vol. 21, No. 4, pp. 373-386, April
1995.

[17] R. Kazman, L. Bass, G. Abowd and M. Webb, SAAM:
A method for analysing the properties of software ar-
chitectures, Proc. 16th Int. Conf. Software Engineer-
ing, IEEE Computer Society, pp. 81-90, 1994.

[18] J. Kramer, Configuration programming. A framework
for the development of distributable systems, Proc.
COMPEURO'90, IEEE, pp. 374-384, 1990.

[19] C. E. Landwehr, Formal models of computer secu-
rity, Computing Surveys, Vol. 13, No. 3, pp. 247-277,
September 1981.

[20] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera,
D. Bryan and W. Mann, Specification and analysis of
system architecture using Rapide, IEEE Transactions
on Software Engineering, Vol. 21, No. 4, pp. 336-355,
April 1995.

[21] J. Magee and J. Kramer, Modelling distributed soft-
ware architectures, Proc. First int. workshop on Ar-
chitectures for Software Systems, CMU Technical Re-
port, CMU-CS-95-151, April 1995.

[22] N. Mercouroff, An algorithm for analysing commu-
nicating processes, 7th int. Conf. on Mathematical
Foundations of Programming Semantics, pp. 312-325,
March 1991.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Milner, J. Parrow and D. Walker, A calculus of
mobile processes, Journal of Information and Compu-
tation, Vol. 100, pp. 1-77, 1992.

M. Moriconi, X. Qian and R. A. Riemenschneider,
Correct architecture refinement, IEEE Transactions on
Software Engineering, Vol. 21, No 4, pp. 356-372, April
1995.

H. R. Nielson and F. Nielson, Higher-order concurrent
programs with finite communication topology, Proc.
21st ACM Symp. on Principles of Programming Lan-
guages, pp. 84-97, January 1994.

O. Nierstrasz, Regular types for active objects, Proc.
OOPSLA'93, ACM Sigplan Notices, Vol. 28, No 10,
pp. 1-15, October 1993.

D. E. Perry and A. Wolf, Foundations for the study
of software architecture, ACM Sigsoft, Software En-
gineering Notes, Vol. 17, No. 4, pp. 40-52, October
1992.

J.-C. Raoult aaLd F. Voisin. Set-theoretic graph rewrit-
ing, Proc. int. Workshop on Graph Transformations
in Computer Science, Springer Verlag, LNCS 776, pp.
312-325, 1993.

M. Shaw and D. Garlan, Formulations and formalisms
in software architecture, Computer Science Today,
Recent Trends and Developments, Springer Verlag,
LNCS 1000, pp. 307-323, 1995.

M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D.
M. Young and G. Zelesnik, Abstractions for software
architecture and tools to support them, IEEE Trans-
actions on Software Engineering, Vol. 21, No. 4, pp.
314-335, April 1995.

22

Appendix: a hospital ward monitoring system

The distributed monitoring of a hospital ward system
was used as a case study in [18] and [15]. The system con-
sists of a number of nurses, beds and a secretary. Each nurse
is associated with a collection of beds, some of them being
occupied by a patient. Nurses check the state of their pa-
tients regularly and decide when they are allowed to leave
the hospital. Patients can also send an alarm to their nurse
when their state becomes critical. The following graph rep-
resents a possible configuration with two nurses nl and n2.
Nurse nl has two free beds f l and f2 and one occupied bed
bx. Nurse n2 has one occupied bed b~ and one free bed f3.
Links C, R, L are used respectively for asking the state (e.g.
temperature) of a patient, receiving his state and sending
back the decision taken by the nurse (a boolean value indi-
cating if the patient is allowed to leave the hospital). A is
the alarm link and E is used to connect a nurse with her
free beds.

o

Figure 3 shows the architecture style of the application,
the coordinator and the programs defining the individual
entities. The secretary plays a role similar to the external
entity in the client-server architecture. When its newp vari-
able is set to true, the coordinator allocates a new patient
to a nurse who has a bed available. Upon request, a nurse
receives the temperature t of a patient and uses function
F(t) to decide whether the patient is allowed to leave the
hospital. The patient receives the decision and stores it in
the public variable leave which is used by the coordinator to
modify the architecture according to this decision (replacing
the occupied bed by a new instance of a free bed). Free beds
are inactive entities and the associated program body is the
skip command.

Architecture style

H
HI
HI
H2(n)
H~ (n)
H 3 (n)
H3(n)

=*- H1, S(s)
N (n) , H2(n), H3(n), HI
O
B(b) , C (n , b) , R (b , n) , L (n , b) , A (b , n) , H2(n)
0
F (f) , E (n , f) , H3(n)

Link types

N : n u r s e C : n u r s e × bed L : n u r s e × bed
B : bed R : bed x n u r s e A : bed x n u r s e
F : f r e e S : s e c r e t a r y E : n u r s e × f r e e

Coordinator

COOH -~

N (n) , S (s) , s . n e w p = t r u e

F (f) , E (n , f)

B (b) , b . leave = t r u e
C (n , b), n (n , b)
R(b, n) , A(b , n)

--* N (n) , S (s ') , B (b) ,
C (n , b), L (n , b)
R (b , n) , A(b, n)

--* F (f) , E (n , f)

Entities

n u r s e : p r i v
o u t
in
p o r t
b o d y

t : i n t
C, L
A , R
b
I n i t ~ ;
[b E A ? t -- A c t i o n (b , t) 0

b E C ! t r u e --* b : R ? t ; b : L t F(t)]

bed: p u b
p r i v
o u t
in
p o r t
b o d y

l eave : bool
y, t : i n t
A , R
C, L
n
In i t b ; l eave := f a l s e ;
[(~ leave A C o n d l) -- C1 rn

(-~leave A C o n d 2) --* C 1 n E A [t rn
(-~leave, n E C ? y) --* n : R ! t ; n : L ? l e a v e]

s e c r e t a r y : p u b n e w p : bool
b o d y I n i t , ; n e w p := f a l s e ;

. [C o n d 3 --. C3];
n e w p :--- t r u e

f r e e : b o d y sk ip

Figure 3: The hospital ward application

23

