
System Performance Optimization via Design and
Configuration Space Exploration

Chong Tang
Department of Computer Science

University of Virginia
ct4ew@virginia.edu

ABSTRACT
The runtime performance of a software system often depends on a
large number of static parameters, which usually interact in com-
plex ways to carry out system functionality and influence system
performance. It’s hard to understand such configuration spaces and
find good combinations of parameter values to gain available levels
of performance. Engineers in practice often just accept the default
settings, leading such systems to significantly underperform rela-
tive to their potential. This problem, in turn, has impacts on cost,
revenue, customer satisfaction, business reputation, and mission
effectiveness. To improve the overall performance of the end-to-end
systems, we propose to systematically explore (i) how to design new
systems towards good performance through design space synthesis
and evaluation, and (ii) how to auto-configure an existing system
to obtain better performance through heuristic configuration space
search. In addition, this research further studies execution traces of
a system to predict runtime performance under new configurations.

CCS CONCEPTS
• Software and its engineering→ Software design tradeoffs; Sys-
tem administration; Search-based software engineering;

KEYWORDS
Performance Optimization, Design Space, Configuration Space, Per-
formance Prediction

ACM Reference Format:
Chong Tang. 2017. System Performance Optimization via Design and Con-
figuration Space Exploration. In Proceedings of 2017 11th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Paderborn, Germany, September
4–8, 2017 (ESEC/FSE’17), 4 pages.
https://doi.org/10.1145/3106237.3119880

1 INTRODUCTION AND PROBLEMS
Software performance is critical in many aspects of our lives. Slow
applications can cause revenue loss, deterioration in customer satis-
faction and brand reputation, and mission effectiveness. However, it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3119880

is difficult to design and configure a system to achieve its potential
because the runtime performance is determined by a large number
of static parameters. For example, big data systems like Hadoop
present hundreds of configuration parameters to engineers. Many
of them affect performance, and some interact in complex ways. En-
gineers often have to accept the default settings which usually lead
to significantly low performance compare to their potential. In this
research, we propose and evaluate two approaches for dealing with
two sub-problems in system design and configuration respectively.

Problem #1: It is difficult to design a system with desired
performance. Engineers often develop a software system based
on a specification that specifies various requirements and prop-
erties. However, such specifications are usually incomplete [4, 6]
with respect to the totality of desirable properties. For example,
while an object-oriented data model constrains the behavior of a
persistent data store, it does not uniquely determine the database
schema (design); nor does it express preferences for performance
properties like read and write performance, which can vary greatly
with the choice of design. Unspecified properties create degrees of
freedom that give rise to design spaces [10, 20, 21], where sets of
designs satisfy specified properties but vary in unspecified ones
like scalability, security, and performance. Existing methods often
produce only single design in such a space and hope the resulting
system will be good enough.

This research proposes a design space analysis approach to find
designs with valued runtime performance. First, we synthesize
the entire design space and test cases from a given incomplete
specification. Second, we dynamically profile this design space
with synthesized test cases to obtain the runtime performance of
all designs. Third, we find out the Pareto-optimal designs based on
the profiling results. We plan to evaluate this approach in object-
relational mapping (ORM) domain. We will compare the time and
space performance of SQL schemas produced by our approach with
those created by Rails and Django.

Problem #2: It is difficult to configure a system to achieve
better performance. For most legacy systems, a more common
question is how to configure them to improve performance. Our ap-
proach in systems design may not be applied directly to large-scale
legacy systems because: 1) they often lack integrated specifications,
and 2) changing their core designs is not always feasible. Typi-
cally, these systems come with a large number of configuration
parameters. One can turn on/off system features or to fine tune
a feature by adjusting parameter settings. Such flexibility enables
users to tailor a system to meet their needs. However, it also brings
uncertainty to the system performance. There are two challenges
to configure a system to achieve expected performance. First, the
size of a configuration space [8, 26] is huge because it increases

1046

https://doi.org/10.1145/3106237.3119880
https://doi.org/10.1145/3106237.3119880

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Chong Tang

exponentially in proportion to the number of parameters. Second,
configuration parameters often interact in complex ways. It is diffi-
cult to understand the structure of a configuration space, and thus
exploring it is intractable in any conceivable cases.

The first approach we propose is to learn good configurations
from system usage patterns. Daily operation of a system creates a
large amount of usage data which contains various configurations
and corresponding resulting performance. We can build system
performance prediction models by learning from these traces. In
practice, it’s possible that users never get close to good configura-
tions and thus create biased training data. Therefore, we propose an
alternative approach to explore the configuration space of a system
to find out good settings using heuristic search algorithms. We plan
to evaluate our approach by applying it to the Hadoop system. A
current research [19] shows that its usage is still in adolescence.
There is a large room for performance improvement. However,
users rarely tune it for performance but only for errors. In this
context, even moderate performance improvement than engineers
can achieve today has a huge impact.

2 RELATEDWORK
This section reviews related work in design synthesis, performance
prediction, and configuration space exploration.
Design Space Synthesis. There is a large body of research on
synthesis techniques. Dang [13] provided a tool for embedded soft-
ware synthesis. Neema et al. [17] proposed a suite to synthesize
an integrated embedded system from multiple models to meet “set
design goals and performance targets”. Andersen [1] provided a
framework for mathematical problems synthesis. Le [14] provided
a framework to synthesize program for data extraction from dif-
ferent kinds of sources. Gupta [9] provided a high-level synthe-
sis framework to transfer a behavioral description in ANSI-C to
register-transfer level VHDL with parallel compiler transformation
technique. Different from all these techniques, our approach tackles
the automated design space analysis through synthesizing spaces
of design alternatives and common test cases which enables us to
evaluate designs with the same amount of business data.
Performance Prediction Model. Zhang et al. [28] assumes all
options are independent and can be converted to boolean variables.
They thus formulated the problem of performance prediction as
learning the Fourier coefficients of a function. However, convert-
ing arbitrary options to boolean values could largely increase the
feature space. Besides, options usually interact with each other.
Siegmund et al. [22] used step-wise linear regression to derive a
performance influence model for a given configurable system. They
added features hierarchically to the learning algorithm. However,
due to interactions among them, selecting one/few options while
ignoring others does not represent the real scenario. In this re-
search, we first use the domain knowledge to select options that
have somewhat influence on performance. Then, we then reduce
the feature space based on the actual meaning and the relationships
which we will discuss in section 3.2.
Heuristic Configuration Space Search. In embedded hardware
design domain, Palermo et al. [18] adopted heuristic searching
algorithms to find an approximation of the Pareto-optimal config-
urations to achieve better energy and delay trade-offs. Zhang et

al. [27] used tuning heuristic to find better settings for single-level
configurable cache. In robotic motion planning domain, Jaillet et
al. [12] used stochastic sampling for path planning on given con-
figuration space costmaps. Recently, many works in the software
engineering field have shown that heuristic searching algorithms
can be leveraged to solve various problems. Weimer et al. [24] used
heuristic search techniques to help find candidate code snippets to
repair buggy code. Some other works [15, 25] used search-based
techniques in software testing. These works share with ours the
common insight that given the vast size and complex structure of
configuration spaces, heuristic sampling techniques seem promis-
ing to reveal high-value solutions. While most of them focus on
system correctness, this work focuses on system performance.

3 APPROACH
To solve the performance issue in system design, we propose an
approach that combines design space synthesis and dynamic evalu-
ation to select desired designs. For the performance issue in system
configuration, we propose a machine learning based approach and
a heuristic search approach to obtain desired configuration settings.

3.1 ORM Design Space Exploration
Figure 1 shows the overall structure of the proposed approach.
There are four main steps: formal schema and test cases synthesis,
distributed concrete schema creation and test cases realization us-
ing MapReduce framework, distributed performance profiling, and
Pareto-optimal schema selection.

Figure 1: Design space exploration approach

First, the Model Finder solves a specification to synthesize all
formal schemas and test cases. Second, the Concretizer generates
real SQL schema. In abstract, there is only one set of test cases
synthesized for all schemas. In order to successfully run them, we
concretize test cases based on the structure of different schemas.
Third, the Profiler runs test cases on all schemas and collect the
performance data. There are three criteria we plan to collect: data
storing time, retrieval time, and disk space consumption. We will
run each measurement multiple times to obtain the average per-
formance. In the last step, the Filter will find out schemas with
Pareto-optimal performance.
Evaluation Plan. We plan to evaluate our approach to check
whether our approach can find better schemas in the tested per-
formance metrics comparing to Ruby on Rails and Django. We

1047

System Performance Optimization via Design and Configuration
Space Exploration ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

will evaluate it with 7 different object models. They have different
sizes and inheritance and association relationships. The hardware
platform will be a Spark cluster.

3.2 Performance Prediction for MapReduce
The problem of predicting system performance using configurations
is a supervise learning task, where the system configuration is the
input object, and the performance is a desired supervisory signal.
The main approach includes data collection, data cleaning, and
model training and verification.
Data Collection. The job tracker (or application master in MR2)
in Hadoop framework is designed to track job execution and log
the cluster and job configuration. It serves information about com-
pleted jobs. From the job tracker, we will gather performance and
configuration data of successfully completed jobs. The gathered
data is a list of <configuration, performance> pairs.
Data Preprocessing. Data preprocessing is important when build-
ing a prediction model [5, 7, 29]. It affects almost all aspects of
the training phase, like convergence rate, prediction accuracy [16].
In addition the standard techniques, we also utilize the semantic
meaning of parameters to select features. Specifically, we study
the common relationships among parameters and leverage that
knowledge to decompose interactions. For example, while a fea-
ture is turned off, the parameters used to fine tune it do not affect
performance anymore.
Model Training and Verification. The models we plan to train
are listed in Table 1. For each trained model, we will check the
performance criteria listed in Table 2. We will check the accuracy
of trained models with k-fold cross validation.

Table 1: Models to train

Prediction Models
Linear Regression
Ridge Regression
Support Vector Regression
(with different kernels)
Random Forests

Table 2: Metrics to check

Performance Criteria
Explained Variance Score
Mean Absolute Error
Mean Squared Error
Median Absolute Error
R2 Score

Evaluation Plan.We plan to evaluate our approach on three dif-
ferent clusters: a production cluster in an e-commerce company, a
cluster built on AWS, and an in-house cluster. We will run various
MapReduce jobs in HiBench [11] to collect training data.

3.3 Heuristic Configuration Space Exploration
The main idea is to shrink a configuration space using domain
knowledge first and then to search near-optimal settings with
heuristic searching algorithms.
Dimension Reduction with Domain Knowledge. In practice,
some parameters define system behaviors that are not related to
system performance. For example, the log level (INFO or WARN)
and the default user name or access key do not impact system
performance. Therefore, we can remove those parameters to re-
duce the space dimension. Our preliminary work shows that this
approach could reduce more than half of the parameters in the
Hadoop system.
Configuration Search with Heuristic Algorithms. Configura-
tion parameters usually interact with each other in complex ways.

Therefore, heuristic searching is an appropriate approach to search
configuration spaces. Here we illustrate this approach with the
genetic algorithm. We represent all parameters as a n − bit vector,
with each bit represents a configuration parameter1. A standard
genetic algorithm can be used in following four steps:

• Initialization: Randomly generateN parameter vectors and
benchmark their system performance.

• Crossover and Mutation: These two steps generate an off-
spring setting o f f sprinд

′
0, as shown in Figure 2. We will

benchmark the system with the new generated setting.
• Fitness function: We accept a new setting if its perfor-
mance is better than its parents. Otherwise we discard it.

• Termination: This procedure terminates if a desired config-
uration is found. If not, it will terminate after a given number
of iterations and return the best-so-far configuration.

Figure 2: Genetic algorithm for configuration exploration

We also plan to implement other heuristic search algorithms like
MCMC and compare their performance in the context of exploring
configurations with better performance.
Evaluation Plan.We plan to take Hadoop as the study object. We
will evaluate it on three different clusters similar to the performance
prediction approach. We will use HiBench [11] as the benchmark
tool. It covers common use cases of Hadoop systems in the indus-
try, like web indexing, machine learning, and SQL-like jobs. There
are two research questions we will answer. First, how much per-
formance we can improve compare to the default settings? Since
the previous study [19] shows that users just accept the default
settings in terms of performance. Second, How much overhead/cost
our approach will create? We will analyze the performance gain
normalized by the resource to get such improvement, including the
computation time, the monetary cost on AWS.

4 PRELIMINARY RESULTS
In this section, we show some preliminary results of the first and
second approach.

4.1 ORM Design Space Exploration Result
Figure 3 illustrates the tradeoff between data storing and retrieval,
where the triangles are Pareto-optimal solutions found by our ap-
proach, the diamonds are Rails solutions, and the stars are Django
solutions. This figure shows that our approach reduces the data
storing and retrieval time by almost 40%.

1To simplify the illustration, we assume all parameters are boolean variables. But it
could have any data types in practice.

1048

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Chong Tang

Figure 3: Tradeoff between time to store and retrieve data

4.2 Performance Prediction Result
I gathered a large data set from a production cluster atWalmartLabs.
This dataset contains around 13K records. They span from simple
data transfer jobs to large machine learning jobs. We trained four
different models. Table 3 shows the performance of the trained
random forests model.

Table 3: CPU time prediction result

Metrics Value
R^2 Score 0.962
Cross Validation 0.947 (+/-0.034)
Mean Absolute Error 0.001
Mean Squared Error 8.663e-05
Median Absolute Error 6.904e-05

5 CONTRIBUTION
This research creates a comprehensive solution to explore design
and configuration space for performance optimization. To this end,
we provide a framework that combines design space synthesis
and distributed computation to help design better systems from
a partial specification. We also provide a novel approach to find
better configurations using machine learning prediction models
and heuristic search algorithms. Some preliminary results [2, 3, 23]
have shown the effectiveness of our approach.

REFERENCES
[1] Erik Andersen, Sumit Gulwani, and Zoran Popovic. A Trace-based Framework

for Analyzing and Synthesizing Educational Progressions. In CHI ’13. NY, USA.
[2] Hamid Bagheri, Chong Tang, and Kevin Sullivan. 2014. Trademaker: Automated

dynamic analysis of synthesized tradespaces. In Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM, 106–116.

[3] Hamid Bagheri, Chong Tang, and Kevin Sullivan. 2017. Automated synthesis
and dynamic analysis of tradeoff spaces for object-relational mapping. IEEE
Transactions on Software Engineering 43, 2 (2017).

[4] BarryW. Boehm. 1988. A spiral model of software development and enhancement.
Computer 21, 5 (1988), 61–72.

[5] Sven F Crone, Stefan Lessmann, and Robert Stahlbock. 2006. The impact of
preprocessing on data mining: An evaluation of classifier sensitivity in direct
marketing. European Journal of Operational Research 173, 3 (2006), 781–800.

[6] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dandashi,
Anhtuan Dinh, Gary Kincaid, Glen Ledeboer, Patricia Reynolds, Pradip Sitaram,
et al. 1993. Identifying and measuring quality in a software requirements specifi-
cation. In Software Metrics Symposium. IEEE, 141–152.

[7] A Famili, Wei-Min Shen, Richard Weber, and Evangelos Simoudis. 1997. Data
preprocessing and intelligent data analysis. Intelligent data analysis (1997).

[8] Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic performance
tuning of word-based software transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming.
ACM, 237–246.

[9] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. 2003. SPARK: a high-level synthesis
framework for applying parallelizing compiler transformations. In 16th Inter-
national Conference on VLSI Design, 2003. Proceedings. Institute of Electrical &
Electronics Engineers (IEEE).

[10] Cheng Huang, Minghua Chen, and Jin Li. 2013. Pyramid codes: Flexible schemes
to trade space for access efficiency in reliable data storage systems. ACM Trans-
actions on Storage (TOS) 9, 1 (2013), 3.

[11] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In Data Engineering Workshops (ICDEW), 2010. IEEE, 41–51.

[12] Léonard Jaillet, Juan Cortés, and Thierry Siméon. 2010. Sampling-based path
planning on configuration-space costmaps. IEEE Transactions on Robotics 26, 4
(2010), 635–646.

[13] D.-I. Kang, R. Gerber, L. Golubchik, J. K. Hollingsworth, and M. Saksena. 1999.
A Software Synthesis Tool for Distributed Embedded System Design. SIGPLAN
Not. 34, 7 (May 1999).

[14] Vu Le and Sumit Gulwani. FlashExtract: A Framework for Data Extraction by
Examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA.

[15] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In ACM SIGPLAN Notices, Vol. 50. ACM.

[16] Oded Maimon and Lior Rokach. 2002. Improving supervised learning by feature
decomposition. In International Symposium on Foundations of Information and
Knowledge Systems. Springer, 178–196.

[17] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts. 2003.
Constraint-based design-space exploration and model synthesis. In International
Workshop on Embedded Software. Springer, 290–305.

[18] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2005. Multi-objective
design space exploration of embedded systems. Journal of Embedded Computing
1, 3 (2005), 305–316.

[19] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill Howe. 2013. Hadoop’s
adolescence: an analysis of Hadoop usage in scientific workloads. Proceedings of
the VLDB Endowment 6, 10 (2013), 853–864.

[20] Adam Michael Ross. 2006. Managing unarticulated value: changeability in multi-
attribute tradespace exploration. Engineering Systems Division 361 (2006).

[21] AdamM Ross, Daniel E Hastings, Joyce MWarmkessel, and Nathan P Diller. 2004.
Multi-attribute tradespace exploration as front end for effective space system
design. Journal of Spacecraft and Rockets 41, 1 (2004), 20–28.

[22] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.
Performance-influence models for highly configurable systems. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM.

[23] Chong Tang, Hamid Bagheri, Sarun Paisarnsrisomsuk, and Kevin Sullivan. 2017.
Towards designing effective data persistence through tradeoff space analysis. In
Proceedings of the 39th International Conference on Software Engineering Compan-
ion. 353–355.

[24] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE Computer Society.

[25] James A Whittaker and Michael G Thomason. 1994. A Markov chain model for
statistical software testing. IEEE Transactions on Software engineering (1994).

[26] Cemal Yilmaz, Myra B Cohen, and Adam A Porter. 2006. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE Transactions
on Software Engineering 32, 1 (2006), 20–34.

[27] Chuanjun Zhang, Frank Vahid, and Roman Lysecky. 2004. A self-tuning cache
architecture for embedded systems. ACM Transactions on Embedded Computing
Systems (TECS) 3, 2 (2004), 407–425.

[28] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. Performance Pre-
diction of Configurable Software Systems by Fourier Learning. In ASE ’15. IEEE,
IEEE Computer Society, Washington, DC, USA.

[29] Thomas Zimmermann and Peter Weißgerber. 2004. Preprocessing CVS data for
fine-grained analysis. In Proceedings of the First International Workshop on Mining
Software Repositories. sn, 2–6.

1049

	Abstract
	1 Introduction and Problems
	2 Related Work
	3 Approach
	3.1 ORM Design Space Exploration
	3.2 Performance Prediction for MapReduce
	3.3 Heuristic Configuration Space Exploration

	4 Preliminary Results
	4.1 ORM Design Space Exploration Result
	4.2 Performance Prediction Result

	5 Contribution
	References

