
Multi-layered Approach for Recovering Links between
Bug Reports and Fixes

Anh Tuan Nguyen
anhnt@iastate.edu

Tung Thanh Nguyen
tung@iastate.edu

Hoan Anh Nguyen
hoan@iastate.edu

Tien N. Nguyen
tien@iastate.edu

Electrical and Computer Engineering Department
Iowa State University
Ames, IA 50011, USA

ABSTRACT
The links between the bug reports in an issue-tracking sys-
tem and the corresponding fixing changes in a version repos-
itory are not often recorded by developers. Such linking
information is crucial for research in mining software repos-
itories in measuring software defects and maintenance ef-
forts. However, the state-of-the-art bug-to-fix link recovery
approaches still rely much on textual matching between bug
reports and commit/change logs and cannot handle well the
cases where their contents are not textually similar.
This paper introduces MLink, a multi-layered approach

that takes into account not only textual features but also
source code features of the changed code corresponding to
the commit logs. It is also capable of learning the association
relations between the terms in bug reports and the names of
entities/components in the changed source code of the com-
mits from the established bug-to-fix links, and uses them for
link recovery between the reports and commits that do not
share much similar texts. Our empirical evaluation on real-
world projects shows that MLink can improve the state-of-
the-art bug-to-fix link recovery methods by 11-18%, 13-17%,
and 8-17% in F-score, recall, and precision, respectively.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Documentation, Experimentation, Measurement

Keywords
Bug-to-Fix Links, Bugs, Fixes, Mining Software Repository

1. INTRODUCTION
During the development of a software system, software en-

gineers produce and manage their source code in a version

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

repository such as CVS [25] or SVN [38]. When erroneous
behaviors are found in the system, the users/testers/devel-
opers reported the issues, which are stored in a different
repository called a bug-tracking system (e.g. Bugzilla [39]).
The links between bug reports in a bug tracking system
and corresponding committed fixing changes in a source code
repository (called bug-to-fix links) are not often recorded [11].
This type of links is crucial for many research approaches in
mining software repositories (MSR) because the information
on software quality and maintenance efforts such as the mea-
surements on software defects and bug-fixing changes can be
derived from those links [10, 34].

Recognizing the importance of bug-to-fix links, several ap-
proaches have been proposed to recover such links from bug
reports in a bug tracking system and commit logs in a ver-
sion archive. The widely used, traditional link recovery ap-
proach [31, 35, 36] is based on the mining of key phrases
and common text patterns that the fixers have noted in the
change logs such as “Fixed the issue XYZ”, “Fix bug ID ...”,
etc. Unfortunately, recent studies have found that those tra-
ditional pattern-based heuristics likely result in biased data
with many false negatives, i.e. missing links [9, 10, 28]. The
authors reported that developers may not always document
bug references in commit logs. They found that only a por-
tion of bug fixes are actually linked to change logs in version
archives. Thus, the software quality and maintenance mea-
surements derived from the biased resulting link data are
not accurate and affect much MSR research results [10, 20].

To address those issues, Wu et al. [34] recently proposed
ReLink, a bug-to-fix link recovery technique based on three
key heuristics: 1) time interval, i.e., a bug should be fixed
after the creation and before the closure of a bug report; 2)
text similarity between bug reports and change logs; and 3)
the developers responsible for a bug are typically the com-
mitters of the bug-fixing change. However, the authors re-
ported that accuracy of ReLink is affected much by the re-
ports and logs that are not textually similar [34]. This is
common because the bug reporter describes the issue itself
from the users’ perspective (e.g. the error scenarios, inter-
actions, re-producing steps, etc) while the fixer records how
(s)he has fixed the bug from the developers’ point of view.

Aiming to improve further bug-to-fix link recovery accu-
racy, we introduce MLink approach that explores not only
textual features and traditional heuristics, but also source
code features of the changed source files that correspond to
the commit/change logs. In other words, in addition to the
commit logs, which are just the textual information asso-
ciated with the fixes, MLink takes advantage of the actual

1

Bug Report #86
(Reported by whoister...@gmail.com, Oct 3, 2008
Type: Defect, Status: Fixed, Closed: Oct 6, 2008)
Summary: NoSuchMethodError: No such method getHeight().
Description: ...
Expect decoded output, but see Error:
NoSuchMethodError: No such method getHeight().
...
Got the following trace:
com/google/zxing/common/BaseMonochromeBitmapSource.esti
mateBlackPoint. ALERT: java/lang/NoSuchMethodError: No
such method getWidth()

Comment 1 by project member srowen, Oct 4, 2008
Exactly, sounds like the same thing. BaseMonochromeBitmap-
Source is an abstract class which implements an interface defin-
ing methods like getHeight() and getWidth(). The abstract class
doesn’t have to define an implementation for all the interface
methods, and it doesn’t define these ...But the Nokia JVMs don’t
seem to accept that...The workaround is that we can just add
public abstract int getHeight();
public abstract int getWidth();
...
Comment 4 by project member srowen, Oct 6, 2008
I will add those other two methods...

Figure 1: Bug Report #86 in the ZXing Project

source code changes for the fixes themselves. MLink uses
different cascading layers to retrieve additional links after
each layer. After applying traditional pattern-based heuris-
tics and time interval filtering, it extracts the following code
features to detect links: 1) the names of program entities and
system components that appear frequently and are signifi-
cant in both bug records (including descriptions, summaries
and bug comments) and commits (including commit logs,
changed source code and its textual inline comments), and 2)
the code fragments appearing in both bug reports (and their
bug comments), and the commits (note: this type of code
in a bug report is likely to be involved in the corresponding
fix, e.g., a recommended patch from bug commenters).
After detecting with code features, MLink uses textual

features for further link recovery. In addition to text match-
ing between a bug report and a commit log as in ReLink,
MLink also considers the textual comments within the chang-
ed source files of a commit (We found several cases in which
the fixers used parts of the descriptions of the bugs being
fixed to explain about the reasons for their fixes in inline
comments). Importantly, to recover the links where the
texts in both bug records and commits are not quite similar,
we provide an association method that learns the associa-
tion relations between the terms in the bug records and the
names of entities/components in the changed code of the
commits from the established bug-to-fix links detected by
the traditional heuristics. From the association frequencies,
MLink derives the association relation between a bug record
and a commit to determine if the link exists between them.
Our empirical evaluation on the real-world projects showed

that MLink achieves a very high level of accuracy with 87-
93% in F-score, 85-90% in recall, and 82-97% in precision. It
is able to improve the state-of-the-art approach ReLink [34]
by 6-11% in F-score, 4-13% in recall, and 5-8% in preci-
sion. We also showed that MLink can give better estimation
values for the software quality and maintenance metrics in-
cluding the percentage of the buggy files in a project and
the percentage of bug-fixing changes over the total number
of code changes. The contributions of this paper include

Commit Log #599
(Author: srowen, Date: Oct 4, 2008)
Log message: Added redundant abstract method declarations
to maybe work around problems on Nokias.

Figure 2: Commit Log #599 to Fix Bug #86

Commit Change #599
Affected files: Modify /trunk/core/src/com/google/zxing/-
common/BaseMonochromeBitmapSource.java
Diff:

public abstract class BaseMonochromeBitmapSource implements
MonochromeBitmapSource {

+ //These two methods should not need to exist because they are
defined in the interface that

+ //this abstract class implements. However this seems to cause
problems on some Nokias.

+ //So we write these redundant declarations.
+ public abstract int getHeight();
+ public abstract int getWidth();
}

Figure 3: Committed Change #599 to Fix Bug #86

1. MLink, a multi-layered bug-to-fix link recovery appro-
ach that takes advantage of both textual and code features,

2. An empirical evaluation to show its accuracy in link rec-
overy and estimating code quality and maintenance metrics.

Next section presents motivating examples. Details of ML-
ink are described in Sections 4-7. Section 8 is for our evalua-
tion. Related work is in Section 9. Conclusions appear last.

2. MOTIVATING EXAMPLES
Let us explain a few examples motivating MLink approach.

2.1 Linking via Code Features
A. Important Concepts

Figure 1 shows a bug record in the bug tracking repository
of the ZXing project [37], an open-source barcode image pro-
cessing software. A bug record/report usually consists of

1. A short summary of the issue(s), e.g. “NoSuchMeth-
odError: No such method getHeight()” in Figure 1,

2. A textual description on the issue(s) (Both the sum-
mary and description fields are provided by a bug reporter),

3. A list of bug comments. The bug tracking system
allows the developers in the project or users to discuss the re-
ported issue(s), e.g. the comment 1 in Figure 1. Sometimes,
those commenters even express their thoughts on potential
fixes for the bug, e.g. in comments 1 and 4,

4. Associated meta-data such as type (defect), status
(fixed, closed, reopen, duplicate, invalid), priority, bug re-
porter, fixer, commenters, report time, closed time, etc.

We also had checked in the version control repository of
the ZXing project and found the corresponding fix for the
issue #86. Figure 2 shows its commit log, which is a tex-
tual description about that set of code changes which are
committed to the version control repository. Because that
set of code changes (called a change set) was for fixing the
issue, we call it a fixing change set or a fix. In addition to
fixing changes, developers might make other types of code
changes for enhancement, improvement, etc. A change set
or a fix can be involved with multiple changes to different
source files. Figure 3 shows the change set at the revision
#599 to fix the issue #86 in Figure 1.

2

In general, the issue(s) in a bug report can be fixed by
multiple fixing change sets (i.e. fixes) committed at differ-
ent transaction/time. On the other hand, each change set
committed at a certain time can also fix one or multiple
issues in different bug reports. That is, a bug report can
be linked to one or multiple fixes, and a fix can be linked
to one or multiple bug reports. In the cases which involve
multiple bug reports or multiple fixing change sets, we will
separate them and consider a link as a connection between
a bug report and a change set. We use the word ‘change set’
and ‘commit’ interchangeably. In addition to the commit
log, a commit also has its associated meta-data such as the
committer, the committing date, and a list of changed files.

B. Observations

1. The traditional pattern-based approach [35, 36] does
not work in this case because the commit log does not con-
tain common patterns. That approach relies on the hints
from developers about bug fixing in the commit logs via
common phrases, e.g. ‘fix the issue #XYZ’, ‘bug #123’, etc.
2. In this case, the bug report and its corresponding com-

mit log are not textually similar. The bug reporter describes
the issue from the users’ perspective (e.g. the output mes-
sage). In contrast, the bug fixer describes the fixing changes
from the developers’ point of view (e.g. adding abstract
method declarations) because (s)he writes more about how
(s)he fixes the issue, than what bug (s)he has fixed. That is,
the bug reporter describes the issue itself while the fixer
records how (s)he has fixed it. This is reasonable because the
commit log is designed as part of the version control reposi-
tory to help developers to record their notes on any change
set. In their study, Wu et al. [34] also reported many simi-
lar cases where the texts of the bug records are not similar
to those of the commit logs, leading to inaccuracy in their
tool. Therefore, the existing link recovery techniques [34,
36] that rely much on textual similarity between bug reports
and commit logs do not work in this case. This implies that
automatic link recovery for bug reports and fixes should not
solely rely on textual patterns or textual similarity between
the reports and commit logs of the fixes.

Code Features. Aiming to find an additional mechanism
for such link recovery, we explored further the corresponding
commit #599 for the bug report #86. Instead of examining
only the commit log (Figure 2) of the fix as in the state-of-
the-art bug-to-fix link recovery techniques [34, 35, 36], we
also investigated the fix itself (Figure 3), i.e. the fixing
changes that developers made to the source files in order to
fix the issue #86. From that fixing code, we observe that
1. In addition to a commit log, the fixing changes and cor-

responding changed source files are a crucial part of a fix and
an important source of features to be used for link recovery.
2. The fixing changes (Figure 3) contain the program en-

tity getHeight, which is mentioned in the bug report. The
program entities (e.g. getWidth, getHeight) in the changed
file (BaseMonochromeBitmapSource) were discussed in the com-
ments of a bug record (see comment 1, Figure 1), as well as
in the summary and the description of the bug report. Thus,
the names of program entities are an important type of fea-
tures from the fix that could help in link recovery.
3. The changed source file implements certain compo-

nents/functions of the system. One of those is erroneously
implemented, leading to the bug report about the issue(s)
on that component. Thus, the terms describing those com-

Bug Report #631
(Reported by giovanni...@gmail.com, Nov 20, 2010)...
Summary: Wrong characters in Data Matrix decoding
Description:
The attached 2-D barcode should give:
http://www.prismaindustriale.com
but instead it gives:
http:/awww.prismaindustriale9com ...
Comment 1 by project member srowen, Nov 25, 2010
I got lucky and spotted the problem pretty fast...
———————————————————————————–
Commit #1670
(Author: srowen, Date: Nov 25, 2010)
Log message: Minor fix to carry shift value across input triads
Affected files:
Modify /trunk/core/src/com/google/zxing/datamatrix/de-
coder/DecodedBitStreamParser.java

final class DecodedBitStreamParser {
private static void decodeTextSegment(...) {...
boolean upperShift = false;
int[] cValues = new int[3];

+ int shift = 0;
do { ...
parseTwoBytes(firstByte, bits.readBits(8), cValues);

− int shift = 0;
for (int i = 0; i < 3; i++) {...

Figure 4: Bug Report #631 and corresponding Fix #1670

Table 1: Term Occurrences in Reports and Fixes

Word #BRs Code token Fix CoOccur

decoding 46 DecodedBitStreamParser 10 9
data 22 DecodedBitStreamParser 10 5
character 65 DecodedBitStreamParser 10 9
matrix 10 DecodedBitStreamParser 6 3
datamatrix 8 upperShift 3 3

ponents (e.g. Nokia, MonochromeBitmapSource) can appear in
both textual comments of the bug report and changed source
code. Matching them can help in automatic link recovery.

4. In the comment 1 of Figure 1, a commenter suggests
a potential patch (public abstract in getHeight();...) and that
code fragment was actually used in the fix (Figure 3). Using
such patch, we could recover the link between them.

2.2 Linking with Different Terms in Both Sides
Figure 4 shows another bug record (#631) in the ZXing

project and its corresponding commit (#1670). The text in
the bug record is not similar to that in the commit log or
changed source code. Moreover, unlike in the previous ex-
ample, the entities and components’ names in the changed
source files do not appear in the summary, description, or
comments of the bug record. In this case, the matching via
common patterns, texts, names of program entities and com-
ponents, or recommended patch code does not work well.

We further performed a simple text analysis on the entire
collection of bug reports and commits for the terms appear-
ing in the bug record #631 and in its corresponding fixing
commit #1670 such as decoding, data, DecodedBitStreamParser,
upperShift (see Table 1). Each row represents a pair of terms
in the bug report and a commit, respectively. For example,
we found in the history, there are 46 bug reports containing
the word decoding and 10 fixes requiring the modifications
containing DecodedBitStreamParser. Among those 10 fixes,
nine of them have the corresponding bug reports containing

3

the term decoding. Similar explanation is for other terms in
Table 1. Thus, if the fixing commits contain the terms De-

codedBitStreamParser or upperShift (i.e. the fixes involve those
classes/methods), then the corresponding bug records likely
have the terms on the left (e.g. decoding, datamatrix). There-
fore, if we can learn such association between two terms in
two sides from the established/detected bug-to-fix links in
the past history, we could infer the links in which the com-
mit involving with some entity names is likely to be the fix of
a bug report(s) having their associated terms or vice versa.

2.3 Linking via Notes in Bug Comments
We also found that four ZXing’s bug records in which bug

commenters recorded the corresponding fixing revisions. For
example, in the comment of bug report #472, commenter 3
left a note as follows: “Fixed by r1480”. We were able to
confirm this link at that revision. This type of information is
useful for link recovery as in the pattern-based approach [35].
The difference is that such method explores the notes left by
fixers in the commit logs. No existing approach makes use of
the notes on the fixing revisions recorded in the bug reports.

3. MLINK APPROACH
This paper introduces MLink, a multi-layered approach to

automatically recover bug-to-fix links. Given the history of
bug records in a bug-tracking repository and that of commits
(commit logs and changed source files) in a version reposi-
tory, it will recover the links between the already-fixed bug
reports and the corresponding fixing commits (i.e. fixes).
MLink extracts and makes use of not only textual features

in bug records (summary, description, and bug comments)
and in commit logs, and meta-data as in existing bug-to-fix
link recovery approaches [34, 36], but also code features in
the associated information of the bug records and commits.
MLink recovers links in cascading layers in which each layer
is a detector with its own set of textual and code features
(Figure 5). The input of each layer is the remaining can-
didate links that the previous layers could not confirm/de-
tect. Its remaining candidate links are passed into the next
layer, with the expectation that some additional links will
be revealed via features used in the next layer. The detected
links are combined into the final link set from all layers. The
detectors/layers having features with higher levels of confi-
dence on accurate detection are applied at earlier stages.

MLink Architectural Overview. Figure 5 displays the
process in MLink to recover bug-to-fix links. Bug records
in the bug-tracking database and the commits with their
associated logs and changed code are first analyzed by the
feature extractor. The features will be fed into the appropri-
ate detectors at different layers, e.g., the time features are
used in the filtering layer, while recommended patch code
features, names of program entities and system components,
text features, and term features are provided into the patch-
based, name-based, text-based, and term/code association-
based link detectors, respectively. Let us explain them.

1. Pattern-based detector. This module is adapted
and extended from the pattern-based approach for bug-to-
fix link recovery [36]. It works based on the following:
a) the notes/hints that the fixers provided in the commit

logs about the issues/bugs for which their fixing changes
were intended. The typical patterns/phrases include ‘fix the
issue #...’, ‘fix the bug ID...’, etc.

Commit

logs

Source

code

Source code repository

Links

Time

Fragments

Texts

Term-entity

associations

Remaining

candidate links (RCL)

RCL

RCL

RCL

RCL

Links

Pattern-based detector

Filtering

Patch-based detector

Text-based detector

Name-based detector

Association-based detector

combine

Feature extractor

Links

Links

Links

Links

Bug database

Entities' names

Figure 5: MLink Approach

b) the notes the fixers/commenters left in a bug record to
refer to the fixing revision(s) for that bug report. Common
patterns/phrases are ‘fixed by r123’, ‘fixed in r123’, etc.

The key difference from the traditional approach [36] is
that in addition to commit logs, MLink also mines the com-
mon patterns in the comments of the changed code as well
as in the comments of bug records. Moreover, although the
notes in the above a) and b) are similar in spirit, no existing
approach makes use of the notes in b). Importantly, because
the notes from developers are correct indication of true bug-
to-fix links, we use the resulting links from this detector as
the training sets to learn the thresholds, parameters, and cri-
teria for the measurements in the next detectors. This is a
form of un-supervised learning [34] (will be described later).

2. Filtering layer. The remaining candidate links that
were not detected by the pattern-based detector are ana-
lyzed and those violating a time constraint will be removed.
The constraint is that the committing time for a fix must
be between the open and close time of the corresponding
resolved bug record. This step reduces the number of un-
necessary candidate pairs of bug records and irrelevant fixes.

3. Patch-based detector. This layer first extracts
the patch code recommended by the bug reporters or com-
menters (if any) that is embedded within bug descriptions/-
comments. It then matches them against the changed source
code (i.e. changed code portions) of the commit under test-
ing. We develop a method to isolate code fragments within
the texts of a bug report and use a token-based clone detec-
tion method for code matching. Details are in Section 4.

4. Name-based detector. In some cases, the recom-
mended patches are not available. However, the names of
entities and system components would be mentioned in both
bug records (descriptions, summaries, and comments) and
fixes (commit logs, changed code, and inline comments). We
also develop an algorithm to detect such names in both sides
and match them against each other. Details are in Section 5.

4

5. Text-based detector. After detecting links via
the layers with code-based features, MLink compares bug
records with fixes via textual features extracted from bug
descriptions/summaries/comments and from commits (with
commit logs and inline comments in the changed code).
MLink also uses the terms in commit logs as in ReLink [34].
However, ReLink did not use inline comments within code.

6. Association-based detector. This detector is used
where the texts or entity names in bug records and commits
are not similar. MLink computes the association strengths
between the terms in bug reports and the entity names in
commits from the link set detected by the pattern-based
detector, and then infers the links. That is, the commit
with some entity names is likely the fix for a bug record(s)
having their associated terms or vice versa (see Section 6).

4. PATCH-BASED LINK DETECTION
This section describes our technique to extract patch code

embedded within the texts of a bug record, and then to
match it against the changed code for link recovery.

4.1 Patch Extraction
Embedded patch code in the texts of a bug record has the

following characteristics. First, it is a sequence of contiguous
code tokens surrounded by the descriptive texts written in a
natural language. Second, those code tokens include conven-
tional program tokens in programming languages, e.g. key-
words, operators, delimiters, identifiers, literals, etc. Third,
among those tokens, there are code tokens similar to the to-
kens in a natural language such as textual comments, string
literals, identifiers, and keywords. Those four types of code
tokens pose a challenge in patch extraction since it is not
trivial to distinguish them from (natural-language) regular
texts. Finally, a patch must have a sufficiently large size.
Based on those characteristics, MLink extracts patches

from a bug report B (Figure 6). It processes B in three
passes. In the first pass, it tokenizes all the contents of a bug
report and identifies the clearly recognizable program tokens
(e.g. operators, delimiters, etc) from regular texts. Among
the aforementioned four types of code tokens, textual com-
ments within a patch and string literals can be recognized in
this pass because those comments must begin with special
characters such as “/*” and “//”, and strings must appear
within quotes. Thus, MLink replaces them with special code
tokens comments and lits, respectively. Moreover, if identi-
fiers follow a naming convention (e.g. CamelCase), they can
be matched in this pass via lexical patterns according to the
programming language (see Section 5.1. for this matching).
MLink’s second pass over all tokens is designed to handle

the cases of keywords and identifiers that are not clearly
distinguishable from regular texts of a bug record. The idea
is that if such a not-yet-determined code token (keyword or
identifier) is surrounded by several clearly recognizable code
tokens, (i.e. the density of code tokens around it is high),
then it is also marked as a code token (i.e. the code area is
expanded). That condition is measured by C/N , where C
and N are the numbers of code tokens and the surrounding
tokens, respectively. The expansion process is repeated for
next not-yet-code tokens until all of them are consumed.
Finally, in the last pass over all tokens, MLink detects all the
patched code by collecting all sequences of contiguous code
tokens whose sizes are sufficient large (i.e. ≥ a threshold).

function PatchExtractor (B: bug record)
1. Tokenizing

Recognize code tokens
Replace comments/literals by special code tokens

2. Expanding the areas of code tokens
Repeat
Find next not−yet−determined code token T
Count C: number of code tokens in a

window of size N centered at T
If C/N> 0.5, mark T as code token //Not used for

finding other code tokens
Until no more not−yet−determined code token

3. Finding patches
Foreach sequence of contiguous code tokens P i:
If Len(P i)>=Threshold, add P i to the patch list

Figure 6: Patch Extraction Algorithm

4.2 Recovering Links via Patch Matching
A patch, after extracted from a bug record, is used to trace

the corresponding fixing code. MLink compares the patch
against the changed code fragments in each candidate com-
mit, and ranks them based on their similarity levels. For co-
mparison, it computes the longest common subsequence be-
tween two sequences of code tokens derived from a patch in
a bug record and from changed code. Code tokens can be
easily extracted from the changed code after the inline com-
ments and literals are replaced with comment and lit tokens.

Assume that MLink extracts m patches P1, P2, .., Pm from
a bug record B. The candidate commit C has n changed
code fragments S1, S2, .., Sn. Let us also use Pi and Sj to
denote the sequences of tokens derived from them, respec-
tively. The matching level m(Pi, Sj) between the patch Pi

from B and code fragment Sj in C is computed as follows:

m(Pi, Sj) =
|lcs(Pi, Sj)|

1 + min(|Pi|, |Sj |)

where |lcs(Pi, Sj)| is the length of the longest common subse-
quence of Pi and Sj . |Pi| and |Sj | are the numbers of tokens
in Pi and Sj , respectively. We use the min function (instead
of |Pi|+|Sj |−|Pi∩Sj |) to avoid the case where either Pi or Sj

is much larger than the other, and m(Pi, Sj) would be very
small. This can occur since the recommended patch is often
smaller than the actual fixed code. We also add 1 into the
denominator to regularize the value of m(Pi, Sj) in the case
where min(|Pi|, |Sj |) and lcs(Pi, Sj) are small (e.g. equal 1).
The matching degree between B and C is as follows:

m(B,C) = max
Pi∈B,Sj∈C

(m(Pi, Sj))

We use the max function (instead of avg) because the com-
menter might suggest multiple patches and the fixer chooses
only one. Thus, MLink aims to find the best matching pair.

The link between the bug record B and a commit C is
established if their matching degree is over a threshold θp.

5. NAME-BASED LINK DETECTION
Let us describe our technique to trace links via the names

of entities extracted from bug records and changed code.

5.1 Entity Name Extraction
During programming, developers often follow some nam-

ing convention/style. For example, the identifiers are writ-
ten in CamelCase style, C notations; the fully qualifier names

5

Table 2: Entity Name Detection Patterns

Type Pattern Convention Example

CamelCase [A-Za-z]+.*[A-Z]+.* Name in Java getHeight
C notation [A-Za-z]+[0-9]* .* Name in C dns look up
Qualified.Name [A-Za-z]+[0-9]*[\.].+ Name in Java obj.toString
UPPERCASE [A-Z0-9]+ Literal DEFAULT

must follow the lexical syntax with separators ‘.’; constants
are often written in uppercase letters; etc. Since MLink fo-
cuses on clearly recognizable entities’ names, it detects them
via lexical patterns as described in Table 2.
For extracting entity names in a bug record B, MLink first

tokenizes B’s contents. It removes all delimiters and opera-
tors, and then uses the patterns in Table 2 to determine if
an extracted token is an entity name. To avoid insignificant
entity names, it filters the names that do not appear in all
changed code and the ones that occur in most of bug records.

5.2 Recovering Links via Entity Names
When the name of an entity e is mentioned in a bug record

B, that entity has potential relevance to the reported techni-
cal issue(s) in that report. If e belongs to the changed source
code or the log of a commit C, it is related to the technical
function(s) that was changed in that commit. Therefore, the
link between B and C can be decided via the correlation be-
tween 1) e is relevant to the reported issue in B, and 2) e,
mentioned in C, is involved in fixing the same function/issue
in B. The correlation via a common entity e is computed as

ηe(B,C) =
Ne(B)/N(B) +Ne(C)/N(C)

|{Bi : e ∈ Bi}|+ |{Cj : e ∈ Cj}|

Ne(B) and Ne(C) are the numbers of occurrences of e in B
and C, respectively. N(B) and N(C) are the total numbers
of occurrences of all entities’ names in B and C. |{Bi : e ∈
Bi}| and |{Cj : e ∈ Cj}| are the numbers of bug records and
commits having e, respectively.
The correlation ηe(B,C) is higher if entity e is significant

with respect to B and C. That is, e occurs more frequently
in both bug record B and the changed code or commit log
of C (see the numerator), however, it appears much less fre-
quently in other reports and commits (see the denominator).
Because there might exist multiple such entities e, the

link between B and C is decided via the aforementioned
correlation over all extracted common entities as follows:

η(B,C) =
∑

e∈(B∩C)

ηe(B,C)

We use the summation in the formula to emphasize on all
significant entities that appear in both sides.
When matchingB against all candidate commits C, MLink

will select C if the correlation ηe(B,C) is over a threshold θn.

6. TEXT-BASED LINK DETECTION
In a system, one or more technical functions were erro-

neously implemented in some source file(s). The terms de-
scribing that issue(s) in a bug report could be similar to
the terms in the comments of those fixed files since a de-
veloper wants to record the reason why (s)he made that
fixing change. MLink extracts terms from those sources and
pre-processes them with tokenizing, stop-word removal, and
stemming. Identifier names in the changed files are also

separated in accordance with common coding styles, e.g.
getHeight is split into get and height. Next, MLink com-
putes the significance of a term wi in a document d via
Term Frequency - Inverse Document Frequency (Tf-Idf) [30]:
si = tfi × idfi, where tfi is the occurrence frequency of wi

in document d, and idfi, the inverse document frequency, is

equal to log |D|
|{d:wi∈d}| . |D| is the total number of documents.

|{d : wi ∈ d}| is the number of documents containing wi.
Then, MLink calculates the cosine similarity between a bug
record and all remaining candidate fixes via their vectors of
the Tf-Idf values of all the terms. It selects the top-ranked
candidate as the detected corresponding fix of the bug record
if the respective similarity is larger than a threshold θt. This
threshold can be learned from the set of links returned from
the pattern-based detector (will be detailed in Section 8).

7. ASSOCIATION-BASED DETECTION
This section describes our technique to recovery links where

the texts, patch code, and the names of entities or compo-
nents in both bug records and commits are not quite similar.

7.1 Term and Program Entity Association
In a program, program entities/components are used to re-

alize some system functionality. If the changed source code
of a commit involves with some program entities/compo-
nents, that commit is considered as a change made to their
corresponding functionality. In a bug record, the terms de-
scribe the reported technical issue(s) in the system. Thus, in
MLink, the association level between an entity/component e
in the changed code of a commit and a technical term w in a
bug record indicates/represents how likely that functionality
realized via entity e has the issue(s) described by w.

The association µe(w) between a program entity e and
a term w in bug records is calculated via the correlation
between the number of bug records containing w (i.e. using
w in describing some technical issues) and the number of
corresponding commits involving e in fixing those issues:

µe(w) =
nw,e

1 + min(nw, ne)
(1)

• nw,e is the number of commits whose changed source
code contains e for fixing the bug records containing w,

• nw is the number of all bug records containing w, and
• ne is the number of commits whose changed code con-

tains e.
If w appears many times in a bug report, MLink counts

only once for nw. If e appears many times in changed code,
it is also counted once. In the above formula, we use min
function (instead of nw + ne − nw,e) to avoid the cases in
which either the set Sw of bug records having w or the set
Se of commits having e is much larger than the other, and
µe(w) would be very small. We add 1 in the denominator
to regularize the value of µe(w) as in Section 4.2.

Let us use N to denote min(nw, ne). If every time w is
used in a bug record to describe an issue, the corresponding
fix always contains the entity e, then µe(w) gets the highest
value N/(1+N). This value approaches 1 if N is sufficiently
large. If entity e is always involved in a fix for a technical
issue described via term w, then µe(w) also gets the highest
value N/(1+N). If e has never been used to fix a technical
issue described by w, µe(w) is zero. In general, it is within
[0, N/(N + 1)]. The more frequently w and e co-appear in
its respective document, the higher the value of µe(w) is.

6

7.2 Bug Record and Entity Association
Because a bug record contains multiple terms, MLink com-

putes the association between a program entity in a commit
and that bug record via its terms. The association between
the entity e and the bug record B is calculated as the maxi-
mum association value between e and all the terms w in B:

µe(B) = max
w∈B

(µe(w)) (2)

where µe(w) is the association value between w and e.
The higher µe(B) is, the more likely the functionality re-

alized via entity e has the issue(s) reported in B. Since a
bug record might contain several terms not much related
to reported technical issue(s), MLink uses the max function
(instead of the sum function) in order to select the most signi-
ficant term(s) with the highest correlation with the entity e.

7.3 Bug Record and Commit Association
In a bug record B, the technical issue(s) is expressed via

terms, while the changed code in a commit C is written in
a programming language via program entities. The associ-
ation between B and C indicates the correlation between
1) whether B reports about some technical issue(s), and 2)
whether C is aimed to change the same reported issue/func-
tion(s). Thus, that association value represents how likely a
bug report B was fixed by a particular commit C.
Assume that the commit C has the program entities e’s

which are involved in the fixed code of C. The association
between B and C is computed as the maximum value among
all association values between B and all involved entities in
the changed code of the commit C:

µC(B) = max
e∈C

(µe(B)) (3)

where µe(B) is the association between an entity e in C and
bug record B. MLink uses the max function (instead of the
sum function) in order to select the most significant entities
with the highest correlation with the bug report B.

Link Recovery with Association. MLink’s recovery pro-
cess has both training and detecting phases:
1. In the training phase, the training set consists of the de-

tected bug-to-fix links returned from the pattern-based de-
tection layer. MLink first pre-processes the bug records and
the changed code fragments in the corresponding commits
including tokenizing, stop-word removal, stemming, parsing
the code, collecting tokens/entities, etc. In the bug records,
only the significant terms with high Tf-Idf values are kept.
From the changed code, entities are extracted as described
in Section 5.1. Next, MLink calculates the values of nw, ne

and nw,e for each word w in all bug records and each entity
e in all commits in the training set. It then computes the
association values µe(w) according to the formula (1).
2. In the detection phase, for a given bug record B and

each candidate commit C, MLink calculates the association
values µe(B) and µC(B) with the formulas (2)-(3). The link
between B and C is decided if the association value is the
highest among all candidates and is over a threshold θa.

8. EMPIRICAL EVALUATION

8.1 Data Collection and Evaluation Metrics
Let us present our empirical studies to evaluate and com-

pare MLink with ReLink [34] and BugScout [27] approaches.

Table 3: Subject Systems

Project Period Revisions FBugs Links

ZXing [37] (ZX) 11/07-12/10 1-1,694 135 143
OpenIntents [29] (OI) 12/07-12/10 1-2,890 101 129

Apache [3] (AP) 11/04-4/08 76,294-899,841 686 1090

For comparison, we used the same data set as in ReLink
[34] in which the ground truth for bug-to-fix links of three
projects are publicly provided at [40]. Table 3 summaries
their information with time and revision ranges, the number
of fixed bugs, and the number of links. We also downloaded
the respective bug records (summaries, descriptions, com-
ments, and meta-data) as well as the commit logs, changed
source code, and meta-data from the projects’ Web sites.

The recovered links from MLink were compared to the
ground truth. As in Relink [34], we also use three evaluation
metrics. Precision is defined as the ratio between the total
number of correctly detected links and the total number of
detected links. Recall is the ratio between the number of
correctly detected links and the total number of links in the
ground truth. F-score is balanced metrics for precision and
recall and is defined as F-score = 2×Precision×Recall

Precision+Recall
.

8.2 Module-based Sensitivity Analysis

8.2.1 Sensitivity Analysis
In this experiment, we analyzed the sensitivity of the re-

covery accuracy of each module/layer in MLink with respect
to its threshold. The base module does not have threshold,
thus, we will present its accuracy in the next section. Let us
call the four other modules patch, name, text, and assoc. We
ran those four modules on ZXing and measured its accuracy
for various threshold values. For all experiments, thresholds
are within [0..1] with the varying step of 0.01.

Figure 7 shows the sensitivity analysis result for the patch

module. As seen, as the threshold θp is smaller (< 0.1), i.e.
the matching criteria for patched code is not strict, recall is
higher since more links are detected. However, precision is
lower due to more false positive cases. When θp is increas-
ed, precision increases and recall decreases. As seen, the
patchmodule can get stable at highest precision (100%) when
θp >= 0.6 as it detected 9 correct links (out of 143). How-
ever, patch must not be used individually due to its low recall
and F-score. It must be used in a combination at an earlier
stage to take advantage of its high precision with high thresh-
old value (i.e. strict matching criteria of patched code).

Figure 8 shows the sensitivity analysis result for name.
As θn is increased (i.e. the requirement of a report and a
commit sharing entity names is stricter: η > θn), precision
increases and recall decreases. However, F-score also decr-
eases, indicating that the namemodule should not be used in-
dividually for link recovery. However, precision quickly achi-
eves highest at 100% as θn is increased in the range [0.09-
0.3]. At θn=0.09 and θn=0.3, it detected 9 and 1 true links,
respectively. As θn>0.3, the stricter requirement of many
shared entity names does not allow it to detect any more
link. Thus, the name layer must be used in an earlier stage to
achieve high precision within that range of θn. Note: small
η values are due to the normalization formula in Section 5.2.

Figure 9 shows the sensitivity analysis result for text. As
seen, there is a range of θt between [0-0.1] in which precision,

7

Figure 7: Accuracy Analysis of patch on θp

Figure 8: Accuracy of name on θn

recall, and F-score values are stable, and F-score reaches its
highest (81-82%). The peak F-score value is higher than
those in patch and name. As θt is increased over 0.1 (i.e. text
similarity between a report and a commit must be higher),
precision increases a bit, however, recall and F-score de-
crease much. Precision reaches its highest value of 100% at
θt=0.35 when it detected 7 correct links out of 143 true ones.
As θt is over 0.4, it cannot detect any more link. This result
suggests that link recovery should set a low threshold θt for
textual similarity between a report and a commit because
higher θt would lead more missing links. Thus, aiming for
high precision (100%) for patch and name, one should con-
nect them in earlier stages than the text module because text

with low θt has lower precision than them. Note that the
text module differs from ReLink in which it considers also
inline comments in changed code. Moreover, it takes only
the top-ranked candidate, rather than multiple ones as in
ReLink. This enables MLink to pick up high-quality links
and to rely on the assoc module to detect more links later.
Figure 10 shows the sensitivity analysis result of assoc.

There is a range when θa=[0-0.2] in which accuracy is stable.
As θa is increased (i.e. stricter criteria on high associations
of terms in a bug report and entities in the fixes), precision
increases gradually, while recall and F-score decrease slowly.
Precision reaches its highest of 91% as θa is in [0.5-0.63].
However, both recall and F-score decrease much. The result
shows that one should not use high threshold for the assoc

layer. Moreover, this module has lower F-score than text

module, thus, it should be connected after text. In summary,
this confirms the order of layers: patch, name, text, and assoc.

Figure 9: Accuracy of text on θt

Figure 10: Accuracy of assoc on θa

8.2.2 Threshold Learning
Because all modules in MLink are cascading in layers as

shown in Section 3, the thresholds explained in the previous
experiment might not be exactly the optimal ones when the
modules are used together. This section explains our ex-
periment to automatically learn those thresholds. Note that
the pattern-based detector, base, does not need any thresh-
old and always returns highly accurate links [34]. Thus, we
design a unsupervised hill-climbing algorithm to learn the
values for the thresholds θp, θn, θt, and θa for other detec-
tors from the resulting links of the base detector.

The algorithm aims to find the thresholds such that the
highest F-score is achieved for the set of links recovered by
the base module. Let us use ft = f(θp, θn, θt, θa) to denote
the F-score goal function. The idea of our algorithm is that
to estimate the local optimum value of a function with mul-
tiple variables t1, t2, ..., tn, it first sets the initial values for
all variables. At each iteration, it fixes n-1 values and varies
the remaining variables to find the optimum values. It varies
the value for each variable until it cannot get better F-score.

Figure 11 shows MLink’s hill-climbing algorithm. At first,
the set of all links P detected by the pattern-based layer is
divided into the training and testing sets for 3-fold cross val-
idation, in which two folds are used for training and one for
testing. The training folds are used to determine the associ-
ation values between bug records’ words and program enti-
ties. The algorithm then repeatedly fixes three of four thres-
holds and varies the remaining threshold in its range. It uses
MLink to detect links on the testing fold and F-score is com-
puted. When the highest ft at a value x of the threshold is

8

function HillClimbingOptimization (P : Set of links detected by
the pattern−based detector)

Initializing θp = 0, θn = 0, θt = 0, θa = 0
1. Dividing P into

Training set Ptrain with size = 2
3
size of P

Testing set Ptest: the remaining subset of P
2. Training:
Computing the association values µe(w)s on Ptrain

Repeat
foreach θi in {θp,θn,θt,θa}
Varying θi in its range
Detecting links in Ptest

if ft reaches the highest value at x then
set θi to x and move to next θ

Until ft stop increasing

Figure 11: Hill-climbing Algorithm for Threshold Learning

reached, it sets the value of the threshold to x and continues
to vary other thresholds until ft cannot get better values.
Our algorithm returned the following values for the thresh-

olds: θp=0.49, θn=0.10, θt=0.08, and θa=0.42. We used
these values for the remaining experiments.

8.2.3 Accuracy of Combinations of Modules
In this experiment, we measured the accuracy of different

combinations of the modules. Table 4 shows the result.
Our base module is similar to the traditional pattern-based

approach (T) [35, 36] except that we also consider the fix-
ers’ notes within bug records (Section 2.3). In comparison,
MLink, via mining such notes, was able to detect additional
4, 13, and 118 links in ZXing, OpenIntents, and Apache, re-
spectively. As seen, base achieved high precision (83-100%),
however, it missed many true links, leading to low F-score.
As connecting to base, the patch module helps improve

both recall and F-score while maintaining high precision. In
ZXing, base+patch detected 5 additional correct links with-
out any false detection, and improves recall by 4% and F-
score by 3%. In Apache, it detected 11 additional true links
with 5 false ones, and improved both recall and F-score. No
patched code in bug comments was detected in OpenIntents,
thus, accuracy stays the same as that of the base module.
When connecting to base+patch, the name module with its

matching criteria on entities’ names has much improved over
base+patch with many additional correctly detected links and
a very few incorrect ones. It detected 14 and 12 more true
links with 1 and 5 incorrect ones in ZXing and Apache, re-
spectively. In OpenIntents, it got 3 more correct links with-
out an incorrect one. Generally, high precision of base+patch

is maintained in base+patch+name, while recall is improved
from 2-9%, and F-score from 1-7%. This result is consis-
tent with that of the previous experiment because patch and
name modules should contribute to MLink when they give
high precision with strict matching criteria.
Compared with base+patch+name, base+patch+name+text

detected many more additional true links: 33 and 41 more
links in ZXing and Apache, respectively. The numbers of
new incorrect links are small (4 and 14 in ZXing and Apache).
In OpenIntents, it detected 2 more correct ones with no in-
correct link. For ZXing, the text module helps improve sig-
nificantly recall (+23%) and F-score (+14%), while precision
decreases only 3%. For other two systems, recall increases
1-3%, while precision stays the same as base+patch+name.

Table 4: Accuracy Result for Cascading Layers

Sys. T base base+ base+ base+ base+ Re- base+
patch patch+ patch+ patch+ Link Bug-

name name+ name+ Scout
text text+

assoc
(MLink)

ZX Det 69 73 78 93 130 131 118 130
Corr 69 73 78 92 125 126 107 102
Incor 0 0 0 1 5 5 11 28
Miss 74 70 65 51 18 17 36 41
Prec 100 100 100 99 96 96 91 79
Rec 48 51 55 64 87 88 75 71
Fs 65 68 71 78 92 93 82 75

OI Det 87 100 100 103 105 113 95 112
Corr 87 100 100 103 105 110 95 105
Incor 0 0 0 0 0 3 0 7
Miss 42 29 29 26 24 19 34 24
Prec 100 100 100 100 100 97 100 94
Rec 67 78 78 80 81 85 74 81
Fs 81 87 87 89 90 91 85 87

AP Det 1,060 1,096 1,112 1,129 1,184 1,193 1,261 1,142
Corr 791 909 920 932 973 978 934 921
Incor 269 187 192 197 211 215 327 221
Miss 299 181 170 158 117 112 156 169
Prec 75 83 83 83 82 82 74 81
Rec 73 83 84 86 89 90 86 84
Fs 74 83 84 85 86 87 79 83

We also connected all modules in MLink. As seen, for the
cases that textual similarity is not high, the assoc module
was able to detect additional true links (1, 5, and 5 for ZX-
ing, OpenIntents, and Apache, respectively) that were not
detected by any previous modules. It improved recall from
1-4% over base+patch+name+text with equally high precision.

In this study, we observed that when a new module was
added to the previous modules, it was always able to detect
additional true links that were not found by previous mod-
ules. The modules base, patch, and name contributed additio-
nal correct links, increase recall, while maintaining high pre-
cision. The modules text and assoc detected more additional
true links than the others, with significantly higher recall
and slightly lower precision. Thus, F-score increases much.

8.3 Comparisons with ReLink & Topic Model
Table 4 shows the results of two state-of-the-art meth-

ods, ReLink [34] and BugScout [27]. We used the result for
ReLink as reported in its paper [34] because we used the
same data sets and oracle. BugScout is a technique to re-
cover links between bug reports and source files using topic
modeling. We used BugScout to derive the links between
bug reports and commits via the links to changed files. We
trained it via the link set recovered by the base module.

As shown, MLink achieves a very high accuracy level: 87-
93% in F-score, 85-90% in recall, and 82-97% in precision.
MLink is able to improve over ReLink by 6-11% in F-score,
4-13% in recall, and 5-8% in precision. It detected 19, 15,
and 44 more true links than ReLink in ZXing, OpenIntents,
and Apache, respectively. The numbers of incorrect links
are reduced by 6-112 links as compared to ReLink (except 3
more incorrect ones in OpenIntents). The numbers of miss-
ing links are smaller from 15-44 links in comparison with
ReLink. Moreover, MLink also outperformed BugScout by
4-18% in F-score, 4-17% in recall, and 1-17% in precision.
It detected 24, 5, and 57 more true links than BugScout in
ZXing, OpenIntents, and Apache, respectively.

9

Table 5: Comparison of Measurement Data

ZX OI AP

Gold Re- M- Gold Re- M- Gold Re- M-
Link Link Link Link Link Link

Changes 1,694 2,890 43,167
Fixes 138 107 120 121 94 103 976 866 921
%Fixes 8.1% 6.3% 7.1% 4.2% 3.3% 3.6% 2.3% 2.0% 2.1%

Files 399 742 194
Buggy 118 83 102 36 30 30 98 101 100
%Buggy 29.6% 20.8% 25.6% 4.9% 4.0% 4.0% 50.5% 52.1% 51.5%

Table 6: Time Efficiency

Sys. BRs Commits Train(s) Detect(s) Detect/BR(s)

ZX 135 1,694 205.7 187.3 1.4
OI 101 2,890 203.2 177.0 1.8
AP 686 43,867 3,250.3 3,172.7 4.6

We also conducted another experiment to evaluate how
other maintenance metrics would be more precise when they
are computed from the links recovered by MLink in compar-
ison with the links detected by ReLink. Two metrics used
in this experiment include
1) The percentage of bug fixes among all other types of

changes in a project. This value reflects developers’ bug-
fixing efforts in the total efforts of code change activities;
2) The percentage of buggy files in a project.
Those two metrics can be easily derived from the recovered

link set. Table 5 shows the result. Column Gold displays the
ground truth values, which are also available with the data
sets provided by ReLink’s authors. As shown, the estimated
values using the result from MLink are closer to the ground
truth than those from ReLink. For example, the percentage
of bug-fixing changes in ZXing detected by MLink is 7.1%,
i.e. only 1.0% different from the golden value, while the dif-
ference between ReLink’s result and the golden one is 1.8%.
Similarly, the percentage of buggy files in ZXing detected
by MLink is 25.6%, i.e. 4% different from the golden value,
while the difference between ReLink’s and the golden one is
8.8%. Thus, MLink gives better measurement values.

Time Efficiency. Table 6 shows MLink’s time efficiency
result. As seen, the training time including time to train
thresholds and association values is reasonable ranging from
203s to less than 1 hour (for the large number of Apache’s
bug reports). Detection time per bug report is very small
from 1.4-4.6s. Thus, MLink is very time efficient.

Threats to Validity. The oracle provided by ReLink’s
authors might contain errors due to human checking. How-
ever, our goal was to compare MLink with other approaches.
Thus, they affected all approaches. Subject systems are
open-source with varied quality of bug records and commits.

9. RELATED WORK
Several approaches have been proposed to recover bug-to-

fix links. In Fischer et al. [14, 15]’s approach, if file names
exist in both bug reports and change logs, the links will
be recovered. Bachmann et al. [8] enhanced that method
by checking the bug-closing date against the commit date.
Zimmermann et al. [31, 35, 36] use the traditional heuristics
such as common phrases in commit logs. These traditional
heuristics have been widely used in MSR research, e.g. bug

prediction models [19, 32, 35, 36], bug-introducing/fixing
classification/identification [16, 17, 18, 24], and fixing ef-

forts [23]. Śliwerski et al. [32] check semantic relationships,
e.g. whether a change log contains terms in a bug report, etc.
None of them use source code and comments as in MLink.

Bachmann et al. [9] found strong evidences that only a
fraction of bug fixes are actually labeled in source code
repositories. Thus, the recovered links by traditional heuris-
tics can be a biased sample of the entire population of fixed
bugs [9, 10]. LINKSTER [11] is a tool to facilitate the man-
ual identification of such links. Nguyen et al. [28] reported
a similar bias in a bug-fix dataset in IBM Jazz. Other re-
searchers also observed the negative impacts of low data qua-
lity on the results of empirical studies [1, 4, 21, 24, 26, 33].

To improve link recovery accuracy over the traditional ap-
proach, Wu et al. [34] developed ReLink, an algorithm based
on three key features: 1) time interval, 2) text similarity, and
3) mapping of bug commenters and change committers (see
Section 1). ReLink first uses the traditional heuristics to
recover the initial set of links. That set is considered as the
correct set from which ReLink then learns the thresholds for
time interval, text similarity, and the mapping between bug
commenters and change committers. In comparison, first,
MLink uses both texts and code features in source code and
changes, and algorithms to extract/compare them. Entities’
names and code fragments in both sides are extracted/com-
pared. Second, our association algorithm is able to associate
terms and entities based on the established links from the
base module for the cases of dissimilar texts. Moreover, we
also use version IDs recorded in bug reports’ comments.

A related line of work is traceability link recovery (TLR).
Bacchelli et al. [6, 7] use entities’ names to recover the links
between emails and source code. Corley et al. [12] use patch
code for bug-to-fix link recovery. However, both methods
do not support where bug reports do not contain the same
entities’ names as in source code. This is common since bug
reporters describe the bugs with more general terms, while
developers use more compact names for program entities.
MLink can handle those cases via its association layer.

Other popular TLR approaches are based on information
retrieval (IR) including vector space model and probabilis-
tic models [2], Latent Semantics Indexing (LSI) [22], topic
modeling [5, 27], etc. In comparison, those IR methods are
based on textual similarity between bug reports and source
code (and its comments). They do not handle well the cases
where the texts in reports and commits are quite different.
Cleland-Huang et al. [13] used machine learning to recover
the links from regulatory code to product requirements.

10. CONCLUSIONS
This paper introduces MLink, a bug-to-fix link recovery

method that considers both textual and source code features
in artifacts. MLink is also capable of learning the associa-
tion relations between the terms in the bug records and the
names of entities in changed code to recover links for re-
ports/commits without much similar texts. Our empirical
evaluation on real-world projects shows that MLink can im-
prove the state-of-the-art methods by up to 18% in accuracy.

11. ACKNOWLEDGMENTS
This project is funded in part by US National Science

Foundation (NSF) CCF-1018600 grant.

10

12. REFERENCES
[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and

Y.-G. Guéhéneuc. Is it a bug or an enhancement?: a
text-based approach to classify change requests. In
Proceedings of the conference of the center for
advanced studies research, CASCON’08. ACM, 2008.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng.,
28:970–983, October 2002.

[3] Apache. http://httpd.apache.org/.

[4] J. Aranda and G. Venolia. The secret life of bugs:
Going past the errors and omissions in software
repositories. In ICSE ’09, pp. 298–308. IEEE CS, 2009.

[5] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor.
Software traceability with topic modeling. In ICSE’10,
pages 95–104. ACM, 2010.

[6] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.
Benchmarking lightweight techniques to link e-mails
and source code. In Working Conference on Reverse
Engineering, WCRE’09, pp. 205–214. IEEE CS, 2009.

[7] A. Bacchelli, M. Lanza, and R. Robbes. Linking
e-mails and source code artifacts. In ICSE’10, pages
375–384. ACM, 2010.

[8] A. Bachmann and A. Bernstein. Software process data
quality and characteristics: a historical view on open
and closed source projects. In IWPSE-Evol’09, pages
119–128. ACM, 2009.

[9] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and
A. Bernstein. The missing links: bugs and bug-fix
commits. In FSE’10, pages 97–106. ACM, 2010.

[10] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced?: bias in bug-fix datasets. In ESEC/FSE ’09,
pages 121–130. ACM, 2009.

[11] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein.
Linkster: enabling efficient manual inspection and
annotation of mined data. In FSE’10, ACM. 2010.

[12] C. Corley, N. Kraft, L. Etzkorn, S. Lukins. Recovering
traceability links between source code and fixed bugs
via patch analysis. In TEFSE’11, IEEE CS, 2011.

[13] J. Cleland-Huang, A. Czauderna, M. Gibiec, and
J. Emenecker. A machine learning approach for
tracing regulatory codes to product specific
requirements. In ICSE’10, pages 155–164. ACM, 2010.

[14] M. Fischer, M. Pinzger, and H. Gall. Analyzing and
relating bug report data for feature tracking. In
Working Conference on Reverse Engineering,
WCRE’03, pages 90–99. IEEE CS, 2003.

[15] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM’03, pp. 23–32. IEEE, 2003.

[16] A. Hindle, D. M. German, and R. Holt. What do large
commits tell us?: a taxonomical study of large
commits. Int. working conference on Mining software
repositories, MSR ’08, pages 99–108. ACM, 2008.

[17] S. Kim, J. Whitehead, and Y. Zhang. Classifying
software changes: Clean or buggy? IEEE Trans. on
Software Engineering, 34(2):181–196. 2008.

[18] S. Kim, T. Zimmermann, K. Pan, and J. Whitehead.
Automatic identification of bug-introducing changes.
In ASE’06, pages 81–90. IEEE CS, 2006.

[19] S. Kim, T. Zimmermann, J. Whitehead, and A. Zeller.
Predicting faults from cached history. In ICSE’07,
pages 489–498. IEEE CS, 2007.

[20] S. Kim, H. Zhang, R. Wu and L. Gong. Dealing with
Noise in Defect Prediction. In ICSE’11, pages 481-490.
IEEE CS, 2011.

[21] G. A. Liebchen and M. Shepperd. Data sets and data
quality in software engineering. In international
workshop on Predictor models in software engineering,
PROMISE ’08, pp. 39-44. ACM, 2008.

[22] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In ICSE’03, pages 125–135.
IEEE CS, 2003.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11:309–346, July 2002.

[24] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In ICSM’00,
pages 120–130. IEEE CS, 2000.

[25] T. Morse. Concurrent Versions System. Linux Journal.
Vol no 21es. 1996.

[26] I. Myrtveit, E. Stensrud, and U. H. Olsson. Analyzing
data sets with missing data: An empirical evaluation
of imputation methods and likelihood-based methods.
IEEE Trans. Softw. Eng., 27:999–1013, Nov 2001.

[27] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V.
Nguyen, and T. N. Nguyen. A Topic-based Approach
for Narrowing the Search Space of Buggy Files from a
Bug Report. In ASE’11. IEEE CS, 2011.

[28] T. H. D. Nguyen, B. Adams, and A. E. Hassan. A case
study of bias in bug-fix datasets. In WCRE’10, pages
259–268. IEEE CS, 2010.

[29] Openintents. http://www.openintents.org/.

[30] G. Salton and C. Yang. On the specification of term
values in automatic indexing. Journal of
Documentation, 29(4):351–372, 1973.

[31] A. Schröter, T. Zimmermann, R. Premraj, and
A. Zeller. If your bug database could talk... In
Proceedings of the 5th International Symposium on
Empirical Software Engineering, pages 18–20, 2006.

[32] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? Int. workshop on Mining
software repositories, MSR’05, pages 1–5. ACM, 2005.

[33] K. Strike, K. El Emam, and N. Madhavji. Software
cost estimation with incomplete data. IEEE Trans.
Softw. Eng., 27:890–908, October 2001.

[34] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink:
recovering links between bugs and changes. In
ESEC/FSE ’11, pages 15–25. ACM, 2011.

[35] T. Zimmermann. Preprocessing cvs data for
fine-grained analysis. In MSR’04, pp. 2-6. IEEE, 2004.

[36] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In PROMISE’07, pages
9-19. IEEE CS, 2007.

[37] Zxing. http://code.google.com/p/zxing/.

[38] Subversion SVN. http://subversion.tigris.org/.

[39] Bugzilla. http://www.bugzilla.org/.

[40] ReLink Project.
http://www.cse.ust.hk/˜scc/Relink.htm.

11

