Mining Micro-practices from Operational Data

Minghui Zhou!, Audris Mockus?
'School of Electronics Engineering and Computer Science, Peking University
Key Laboratory of High Confidence Software Technologies, MoE
Beijing 100871, China
“Department of Electrical Engineering and Computer Science, University of Tennessee
1520 Middle Drive Knoxville, TN 37996-2250
Avaya Labs Research, 233 Mt Airy Rd, Basking Ridge, NJ 07920, USA

zhmh@pku.edu.cn, audris@utk.edu

ABSTRACT

Micro-practices are actual (and usually undocumented or in-
correctly documented) activity patterns used by individuals
or projects to accomplish basic software development tasks,
such as writing code, testing, triaging bugs, or mentoring
newcomers. The operational data in software repositories
presents the tantalizing possibility to discover such fine-scale
behaviors and use them to understand and improve software
development. We propose a large-scale evidence-based ap-
proach to accomplish this by first creating a mirror of the
projects in the open source universe. The next step would
involve the inductive generalization from in-depth studies
of specific projects from one side and the categorization of
micro-practices in the entire universe from the other side.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—process metrics
General Terms

Human Factors,Measurement

Keywords

micro-practice, fine-scale activity pattern, operational data
1. INTRODUCTION

Best practices in software engineering have always been
the goal of practitioners and researchers striving to improve
software productivity and quality. Rich literature on the
subject, e.g., [6, 19, 3, 11], considers system-level design,
schedules, and defined processes as mechanisms to assure
the projects’ success. However, it is not always clear to
what extent and how these practices affect individual behav-
ior. Also, methodologies and processes are generally used
as templates, but in practice they are implemented, cus-
tomized, adapted, and evolved to suit a particular context.

In contrast, micro-practices are actual fine-scale patterns
of activity used by developers or projects to accomplish basic
software development tasks, such as finding and fixing bugs,
testing, or mentoring newcomers. They are usually undoc-
umented (or incorrectly documented [25]) and are learned

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2666611

845

through practice of doing the tasks. In other words, they
represent tacit knowledge [18] implicitly defined in the way
individuals act and projects operate.

We argue for the need to discover and compare micro-
practices as means to better understand and improve soft-
ware development. The study of micro-practices is likely
to provide the basis for valuable insights into when, how,
and how well methodologies and processes are used and help
choose micro-practices that are appropriate for developers’
particular goals and contexts.

Operational support tools such as issue tracking system
(ITS), version control system (VCS), mail system, forum,
etc., have been extensively adopted by software projects, and
the operational data produced by these tools is increasingly
being used to observe how people develop software and how
they interact with each other to accomplish the tasks [17,
10, 24, 7, 21, 13]. In other words, software engineering com-
munity has accumulated enormous experiences of software
micro-practices that are latent in vast open source and com-
mercial software repositories. Analysis of this trove of data
should replace the tradition of deductively declaring new
silver bullets to improve software productivity and quality.
The methodological infrastructure and the wide availability
of data make it feasible to build a large-scale extraction and
characterization of micro-practices.

The main idea behind the concept of micro-practice is
that it reflects what developers actually do in specific cir-
cumstances, not necessarily what they say they do or they
think they do. In particular, VCS, ITS, communication me-
dia, came into being because these tools were needed by
developers (not mandated by their management) to cope
with the complexity of their development and maintenance
work. It is, therefore, likely that these repositories reflect
how people actually complete their tasks in a bewilderingly
varied set circumstances of their regular work.

We believe that some fundamental questions can be an-
swered only by considering the entire universe of publicly
available source code and its history [15] and, therefore,
we propose to utilize large-scale software repository data to
discover and categorize the micro-practices across projects.
However, to investigate a relative new phenomenon, we may
want to achieve an initial understanding through analysis
of a small number of cases in restricted contexts. Without
a solid research base to date, analysis on a small number
of cases could be deemed appropriate as such “revelatory
cases” [23] may provide the required rich insight.

2. WHY MICRO-PRACTICE?

The practices in software projects were discovered starting
by direct observation of the actual software projects. A typ-
ical case is Brooks’ observations based on his experiences at
IBM while managing the development of OS/360 [4]. He had
added more programmers to a project falling behind sched-
ule, a decision that he would later conclude had, counter-
intuitively, delayed the project even further. Later qualita-
tive methods such as interviews and surveys were extensively
employed to study project practices. For example, Curtis
et al. [6] interviewed personnel from 17 large projects and
found that the thin spread of application domain knowledge,
fluctuating and conflicting requirements, and communica-
tion bottlenecks and breakdowns, affected software produc-
tivity and quality through their impact on cognitive, social,
and organizational processes. There has been interest in
finer-scale practices as well, e.g., personal software process
(PSP) [11] proscribes certain behaviors and suggests ways
to keep track of them. It does not appear to be used by the
vast majority of developers, perhaps because of the overhead
of data gathering and discipline needed to follow PSP.

There have been attempts to conduct controlled experi-
ments investigating developer activity patterns. For exam-
ple, Perry et al. reported on two experiments to discover
how developers spend their time [19]. They described how
noncoding activities can use up development time and how
even a reluctance to use e-mail can influence the develop-
ment process.

The lessons we could draw from these early studies are
that software development is a knowledge intensive activity
and that a large number of potentially confounding factors
exist, especially related to human elements [2, 6, 5]. Perhaps
that’s why software engineering is often found to be differ-
ent from traditional science or engineering disciplines. In
particular, the course of action in most sciences when faced
with a question of opinion is to obtain experimental verifica-
tion, but software engineering disputes are not usually set-
tled that way [2]. Besides the above mentioned reasons, the
expense of attempting to do controlled studies in an indus-
trial environment involving medium or large-scale systems
accounts for the reliance on opinions [2]. Moreover, despite
the effort to conduct controlled studies, the data from ex-
periments rarely apply to the bigger questions of what works
in practice. For example, a multiple case study found very
large cost and process differences among four companies im-
plementing an identical small web document management
system, but the outcomes did not suggest a positive corre-
lation between cost, process, and outcomes [1].

Fortunately, today the large volume of operational data
accumulated in software repositories allows us to answer a
number of important questions without the excessive cost
of conducting experiments. Each development activity typ-
ically leaves a digital trace, therefore all the traces recorded
in these repositories constitute the digital history of software
development. In particular, many of the digital traces rep-
resent artifact-mediated communication, as illustrated in,
e.g., [25]. There is, therefore, a good chance that we could
understand how people work with each other through min-
ing these artifacts.

Learning the practices from the historical data is an on-
going activity and it needs to expand and become more
comprehensive. A variety of metrics were derived from op-
erational data to measure project practices. For example,

846

Herbsleb et al. found that the time it takes to complete
distributed tasks is almost three times longer than for co-
located tasks [10]. We found earlier that it took three years
for a developer to become fluent at central tasks in a big
project [24]. However, almost invariably, published signifi-
cant relationships tend to become less significant or disap-
pear once more data is collected [12]. While such studies
have not been done in software engineering, the results are
likely to be similar because of the complex nature of software
development which involves human factors that are difficult
to measure and greatly vary between projects [20].

In summary, the observed relationship often changes when
project context varies, and we never fully control the varia-
tions of a project context. In other words, there is no lack of
successful practices, what lacks is the capability to quantify
and reproduce the practices employed by different individu-
als and projects.

‘We propose, therefore, to study how to derive micro-practices

from operational data, with an emphasis on quantitative ap-
proaches and reproducible mechanisms. We define micro-
practices as fine-scale activity patterns used by software
projects to accomplish key tasks. We emphasize micro level
to guarantee that the practices could be observed and quan-
tified from the operational data. For the similar task, dif-
ferent projects or different individuals may or may not have
the similar practice, depending on the specific project con-
text they have. Therefore, first, in order to understand the
micro-practices used in projects, it’s important to quantify
the project landscape and the corresponding practices. Sec-
ond, in order to test reproducibility of the practices, we need
to investigate a large-scale dataset. Without sufficient data,
it may be difficult to discover cross-project interaction and
interdependence practices (e.g., cross project reuse, devel-
oper turnover), and to build models (e.g. effort or code rec-
ommendation models) that work well in a variety of projects.

3. RESEARCH TRAJECTORY

In order to quantify micro-practices that could reproduce
the success of software projects, it’s important to start from
collecting the data and understanding the data law, e.g.,
how the data were generated [16].

Based on the data, we could try a variety of approaches to
locate micro-practices depending on the questions we want
to address. One is to start from specific projects, and the
other is to target the whole universe projects. Both are
driven by specific research questions, and have their respec-
tive advantages.

3.1 Building Large-Scale Repository

The publicly accessible data recorded in operational sup-
port tools of millions of Open-source Software (OSS) projects
bring us an opportunity to investigate software engineer-
ing best practices across projects. Such scale of data (the
so-called big data) offers us the opportunity to understand
the world with new tools and new insights along with chal-
lenges [14]. For example, if we want to measure productivity
using the number of commits, it’s important to know how
developers commit code in that project. Some developers
tend to commit code after a complete test, but others may
use an iterative approach. If we don’t identify that differ-
ence, we may end up adding numbers representing different
types of activities bringing misleading results. There are nu-
merous other variations in micro-practices that we need to
identify and adjust for when using operational data.

There are a number of attempts to collect and share open

source project data, e.g., FLOSSMOLE (http://flossmole.org),
GitHub Archive (http://www.githubarchive.org), gittorrent|8].

We are also building a public repository (https://passion-
lab.org) that records the history of open source universe.

Building a public repository is a tedious and long-term
commitment. There are at least two very basic tasks that
have to be completed. The first task is to retrieve data from
Internet. The various types of repositories (e.g., cvs, svn, git,
and hg for VCS; jira, bugzilla for ITS), the project adminis-
trator’s policies (e.g., banning the IP addresses that do the
data retrieval), the network bandwidth, the huge amount of
changes, issues in a project (e.g., GitHub has more than 12
million repositories), and so forth, all make the retrieval dif-
ficult. The second task is to standardize data. It is a lot of
work to extract the raw data from the operational support
tools and to standardize into formats convenient for analysis
(an example is in [25]).

3.2 Analysis of a Small Number of Projects

For novel concept such as micro-practice, the relative new-
ness of the concept, leads to a lack of a solid research base
on the phenomenon. Bearing this in mind, we may be con-
cerned with initially achieving an increased understanding of
micro-practices via a small number of “revelatory cases” [23].

A good example of micro-practice area is bug triage. The
goal of bug triage is to harness the incoming bug reports.
Triage is of great interest for software projects because it
has the potential to reduce developer effort by involving
a broader base of non-developer contributors to filter and
augment reported issues [22]. However, the value of contri-
butions made by these non-developer triagers may be un-
derestimated. Therefore it’s important to understand the
micro-practices of these triagers and leverage their strength
to improve the project — this has been rarely studied in the
literature. To reveal this new phenomenon, we chose two
projects, Mozilla and Gnome, to get a deep understanding
about their triage practices.

Using issue tracking data and interviews with experienced
contributors we investigate ways to quantify the impact of
non-developer triagers. We find the primary impact of triagers
to involve issue filtering, filling missing information, and de-
termining the relevant product. While triagers were good
at filtering invalid issues and as accurate as developers in
filling in missing issue attributes, they had more difficulty
accurately pinpointing the relevant product, leading to a
substantial fraction of incorrect assignments. In particular,
Morzilla has over 85 products with strong interdependencies,
e.g., the product “Core” provides base API to Firefox and
Thunderbird. “Follow the stack-trace to locate the problem-
atic product” may be a too sophisticated skill for an average
non-developer, resulting in over 21% mistaken product as-
signments in Mozilla (with the developer error rate of 18%
and non-developer error rate of 29%).

Based on this understanding, we proposed product assign-
ment recommender (PAR) [21] to estimate the odds that a
product assignment value in the I'TS is incorrect. PAR learns
from the past practices in I'TS and performs prediction using
a logistic regression model. PAR helps developers to focus
on fixing real problems, and could also be used to improve
data accuracy in ITS by crowd-sourcing non-developers to
verify and correct low-accuracy data.

We expect that this work will highlight the importance

847

of bug triage in software projects and will help design large
multi-project studies to understand and improve triage micro-
practices. In particular, it’s still not clear how these micro-
practices are related to the specific project context, and if
these micro-practices could be reproduced in other projects.
For example, while PAR is applicable in Gnome, it does not
work well in Mozilla. We speculate that the reason for the
difference is that Mozilla has a bigger volunteer base than
Gnome (so Gnome triage tasks are mostly accomplished by
its developers). Therefore, to understand the best practices
across projects, it’s important to understand the project
landscape. For example, GitHub is being used for free stor-
age and as a Web hosting service, and the majority of the
projects are personal and inactive [13]. Any researcher may
want to bear that in mind when approaching the data in
GitHub and discovering micro-practices associated with per-
sonal, storage, or web-hosting projects could allow appropri-
ate filtering for the desired analysis.

3.3 Analysis on Universe Projects

Considering the potential of large-scale data, we could
target all the projects in the universe, and understand the
prevalence of various practices in that universe. Below we
suggest the code reuse as an example idea of how to proceed.

Source code reuse, as an important aspect of software
reuse, is widely practiced in OSS projects [15]. In particular,
what to select for reuse and how to get reputation through
others’ reuse attract developers’ attention [9]. It would be
good to find out what are those popular projects to help
address these concerns.

As mentioned in Section 3.1, we have been collecting ver-
sion control repositories for years. We retrieved repositories
from code hosting sites, e.g., GitHub, Googlecode, Source-
forge, BitBucket, Launchpad, OSS communities, e.g., Apache,
GNU, Eclipse, Mozilla, and other sites.

To deal with the heterogeneity of version control reposi-
tories, we use file-versions for observations'. When writing
this paper, we have over a billion of file-versions.

Based on the file path of these file versions, we use heuris-
tic to locate the frequently reused projects [26]. We find that
frameworks and application components constitute the ma-
jority of frequently reused projects (as shown in Table 1).
In particular, web frameworks, e.g., Ruby on Rails, test-
ing frameworks like Cucumber, and editor component like
TinyMC are recurring. This indicates important role of soft-
ware frameworks and basic application components for soft-
ware reuse.

Some tools, e.g., the one-click-forking in GitHub, may
change the conventional micro-practices. For example, the
task of finding good reusable components that address de-
velopers’ needs well and that have proven stable and well-
supported may be simplified by the forking information. In
particular, the number of existing forks may indicate com-
ponent’s quality, and the author’s reputation (judged by the
number of projects, watchers, and collaborators) may serve
as an indicator of stability.

Considering the extensive extent of code reuse in OSS
communities, it’s of interest to devote research effort to the
co-evolution problems across projects, e.g., feature imple-
mentation and bug fix merging among the projects that use
the same code.

La file’s different versions in its lifetime are all included and marked
a postfix of version number, e.g. main.c/1.1 and main.c/1.2.

Table 1: Frequently reused repositories
Co-occur pair Project Application area
lib & mm, include & mm | linux kernel OS
config & script, config & | Ruby on Rails web framework

public

js & langs, css & langs TinyMCE editor component
lib & feature Cucumber test framework
lib & spec Rspec test framework

4. CONCLUSIONS

The software community pays a lot of attention to the
technological aspects of software development, sometimes at
the expense of the organizational and social aspects. One
often cited reason is the difficulty of quantitatively measur-
ing people factors. Accumulated operational data produced
by operational support tools provide the possibility to ob-
serve and measure software development, and we propose to
mine the fine-scale practices from operational data. These
micro-practices may then serve as building blocks to create
better ways of using operational data.

There are numerous software development models that
range from techniques to determine effectiveness of software
methods, to ways to estimate developer productivity and
predict software quality that rely on operational data. More
diverse and more detailed repositories are bound to appear
with corresponding methods and tools to analyze them in
the future. The research in this area will make it possi-
ble to measure aspects of project practices in more detailed
and more relevant ways and that will open new possibilities
to understand and improve project productivity and soft-
ware quality to satisfy the increasing demands of the rapidly
changing, multicultural, and global software development.

5. ACKNOWLEDGMENT

Thanks the National Natural Science Foundation of China
Grants 91118004 and 61432001, and the National Basic Re-
search Program of China Grant 2015CB352200.

6. REFERENCES

[1] B. C. Anda, D. 1. Sjgberg, and A. Mockus. Variability
and reproducibility in software engineering: A study
of four companies that developed the same system.
IEEE TSE, 35(3), May/June 2009.

V. Basili and D. Weiss. A methodology for collecting
valid software engineering data. IEEE Transactions on
Software Engineering, 10(6):728-737, 1984.

B. W. Boehm, B. Clark, E. Horowitz, and et al. Cost
models for future software life cycle processes:
Cocomo 2.0. Annals of Software Engineering,
1(1):1-24, November 1995.

F. P. J. Brooks. he Mythical Man-Month.
Addison-Wesley, 1975.

B. Curtis. Human factors in software development.
Technical report, I'TT Programming Technology
Center, 1986.

B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Commun. ACM, 31(11):1268-1287, Nov. 1988.

L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D.
Herbsleb. Social coding in github: transparency and
collaboration in an open software repository. In
CSCW, pages 1277-1286, 2012.

G. Gousios, B. Vasilescu, A. Serebrenik, and

A. Zaidman. Lean ghtorrent: Github data on demand.

848

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

[23]

[24]

[25]

[26]

In MSR’201/, pages 384-387, May 31-June 1, 2014.

S. Haefliger, G. Von Krogh, and S. Spaeth. Code reuse
in open source software. Management Science,
54(1):180-193, 2008.

J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally-distributed
software development. IEEE Transactions on Software
Engineering, 29(6):481-494, June 2003.

W. S. Humphrey. Managing the Software Process. SEI
series in software engineering. Reading, Mass. 1989.
J. P. A. Toannidis. Why most published research
findings are false. PLoS Med, 2(8):e124, August 30
2005.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. German, and D. Damian. The promises and perils
of mining github. In MSR’2014, pages 92-101, May
31-June 1, 2014.

K. Michael and K. W. Miller. Big data: New
opportunities and new challenges [guest editors’
introduction]|. Computer, 46(6):22-24, 2013.

A. Mockus. Amassing and indexing a large sample of
version control systems: towards the census of public
source code history. In MSR’2009, May 16—17 2009.
A. Mockus. Engineering big data solutions. In FOSE,
ICSE 2014, Hyderabad, India, June 1-6 2014.

A. Mockus, R. F. Fielding, and J. Herbsleb. A case
study of open source development: The Apache server.
In 22nd International Conference on Software
Engineering, pages 263-272, Limerick, Ireland, June
4-11 2000.

I. Nonaka. A dynamic theory of organizational
knwledge creation. Organizational Science, 5(1):14-37,
February 1994.

D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement. IFEFE
Software, pages 3645, July 1994.

I. Sommerville, D. CIliff, R. Calinescu, J. Keen,

T. Kelly, M. Kwiatkowska, J. Mcdermid, and

R. Paige. Large-scale complex it systems. Commun.
ACM, 55(7):71-77, July 2012.

J. Xie, Q. Zheng, M. Zhou, and A. Mockus. Product
assignment recommender. In ICSE’201/ Research
Demonstration, pages 556—559, Hyderabad, India,
June 1-6 2014.

J. Xie, M. Zhou, and A. Mockus. Impact of triage: a
study of mozilla and gnome. In ESEM 2013, pages
247-250, Baltimore, Maryland, USA, Oct 10-11 2013.
R. K. Yin. Case Study Research: Design and Methods.
Fourth Edition. SAGE Publications, California, 2009.
M. Zhou and A. Mockus. Developer fluency:
Achieving true mastery in software projects. In ACM
SIGSOFT / FSE, pages 137146, Santa Fe, New
Mexico, November 7-11 2010.

M. Zhou and A. Mockus. What make long term
contributors: Willingness and opportunity in OSS
community. In ICSE 2012, pages 518-528, Ziirich,
Switzerland, 2012.

J. Zhu, M. Zhou, and A. Mockus. The relationship
between folder use and the number of forks: A case
study on github repositories. In ESEM’14, Sep 18-19
2014.

