
A Cost-Effectiveness Criterion for Applying Software
Defect Prediction Models

Hongyu Zhang1,2 and S.C. Cheung3
1Tsinghua University

2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
Beijing, China

hongyu@tsinghua.edu.cn
3The Hong Kong University of Science and Technology, Hong Kong, China

scc@cse.ust.hk

ABSTRACT
Ideally, software defect prediction models should help organize
software quality assurance (SQA) resources and reduce cost of
finding defects by allowing the modules most likely to contain
defects to be inspected first. In this paper, we study the
cost-effectiveness of applying defect prediction models in SQA
and propose a basic cost-effectiveness criterion. The criterion
implies that defect prediction models should be applied with
caution. We also propose a new metric FN/(FN+TN) to measure
the cost-effectiveness of a defect prediction model.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging -

Debugging Aids.

General Terms
Measurement, Reliability

Keywords
Defect prediction, cost effectiveness, evaluation metrics.

1. INTRODUCTION
Software quality assurance (SQA) is important for the success of a
software project. However, it is a resource and time-consuming
activity, which may include manual code inspections, technical
review meetings, and intensive software testing. Modern large and
complex systems often consist of hundreds or even thousands of
modules (methods, files, components, etc). It is thus desirable to
predict which modules are more likely to contain defects so that
project managers can allocate limited SQA resources in a
cost-effective manner.

Software defect prediction has recently attracted immense interest
from the software engineering community. Many defect prediction
models have been proposed (e.g., [1, 3-15]). These models collect
historical defects of software modules as well as various module
features such as program complexity, structural dependency,
changes, process and organizational factors. A classifier such as
Decision Tree or Naïve Bayes is utilized to train a classification

model, which can then be used to predict the defect proneness of a
new module. To evaluate the accuracy of predictions, researchers
have adopted many metrics such as Recall and Precision.

Despite recent advances in defect prediction models, these models
are not able to detect all defective modules and can identify
correct modules as defective. Although the cost of building a
defect prediction is usually small as most features can be
automatically extracted by mining software repositories [8], we
still need to deploy models for defect prediction cautiously. For
example, one may be hesitated to deploy defect prediction models
to safety critical systems if the models cannot guarantee a low
degree of false negatives. It is because the deployment cost is not
restricted to the effort of inspecting the reported defective modules.
It also includes the cost of failures arising from the defects that are
missed by the prediction models. Therefore, studying the
cost-effectiveness of defect prediction models is important for the
practical application of these models. Current studies on defect
prediction mostly focus on the improvement of data quality [3, 10],
the identification of new features [12], the design of new
classification techniques [4], and the selection of training projects
[15]. The cost-effectiveness of applying defect prediction models
in SQA practices is not well explored.

In this paper, we study the cost-effectiveness of applying defect
prediction models. We propose a criterion that is derived from the
intuitions that a defect prediction based SQA strategy should at
least cost less than the strategy of inspecting all modules and the
strategy of inspecting randomly sampled modules. We also
propose a new metric to measure the cost-effectiveness of defect
prediction models. We use a case study on Eclipse project to
illustrate the usage of the proposed metric.

2. EVALUATION METRICS FOR DEFECT
PREDICTION MODELS
Prediction of defective modules can be cast as a classification
problem in machine learning: given training samples of modules
with labels as defective (containing at least one defect) or
non-defective (no defects). A prediction model has four results:
true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN), as shown in Table 1. The total number of
actual defective modules is denoted as POS and the total number
of actual non-defective modules is denoted as NEG.

Recall and Precision are often adopted to evaluate defect
predication models (e.g., [3, 11, 14]). These metrics are the
accuracy measures widely used in Information Retrieval area.
They are defined as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia.
Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08...$15.00
http://dx.doi.org/10.1145/2491411.2494581

643

FNTP

TP
call


Re

, FPTP

TP
ecision


Pr

Recall defines the rate of true defective modules in comparison to
the total number of defective modules, and Precision relates the
number of true defective modules to the number of modules
predicted as defective. The values of Recall and Precision are
between 0 and 1, the higher the better.

Table 1. Defect prediction results
 Predicted

Defective
Predicted

Non-defective

Actual
Defective

TP FN POS

Actual
Non-defective

FP TN NEG

To evaluate the accuracy of a prediction, many researchers (e.g.,
[5, 15]) also use the Probability of Detection (pd) and Probability
of False Alarm (pf) metrics, which are defined as follows.

FNTP

TP
pd


 ,

TNFP

FP
pf




The pd metric is the same as Recall. The pf metric measures how
many defect-free modules are wrongly classified as defective. The
values of pf are between 0 and 1, the lower the better.

2. ANALYZING THE COST OF APPLYING
SOFTWARE DEFECT PREDICTION

2.1 Cost of Defect Prediction Strategy

Ideally, a defect prediction model should be able to correctly
identify all defective software modules. Limited QA resources can
then be allocated to these modules to make SQA more effective.
However, there are two costs incurred by this strategy:

 Cost of inspection for the defective modules selected by
defect prediction models. A defect prediction model returns
(TP+FP) defective modules. Assuming the average cost
required for inspecting a module is Ci, the cost of inspecting
all predicted defective modules is Ci*(TP+FP). In this study,
to simplify the analysis, we assume that the inspection is
perfect, i.e., after inspecting a module, the defects can be
successfully revealed. The value of Ci is project-specific. For
example, Ci for a complex project is usually higher than a
simple project. Also, Ci for a project closer to its delivery
deadline is usually higher than that for a project at its initial
phase.

 Cost of failures arising from false negative modules. A
defect prediction model often fails to identify all defective
modules. We denote the total cost incurred by false negative
modules Cfn*FN, where Cfn is the average cost of missing a
defective module. The value of Cfn is project-specific, which
could be high for some projects [2]. For example, Cfn for a
safety-critical project is usually higher than that for a
web-forum project.

In summary, the cost of inspecting modules selected by a defect
prediction model Cp is defined as follows:

Cp = Ci*(TP+FP) + Cfn*FN (1)

As an example, Table 2 shows the results produced by a defect
prediction model. The Precision is 62.07% and the Recall is
64.29%. If applied to SQA, the cost Cp is 29Ci+ 10Cfn.

Table 2. The accuracy of a defect prediction model

Predicted
Defective

Predicted
Non-defective

Actual Defective 18 10

Actual Non-defective 11 6

2.2 Cost of Inspecting-All Strategy
A defect prediction model allows the developers to concentrate on
the defect-prone modules. The other SQA strategy is to simply
inspect all modules without prioritization. We define the cost of
such strategy Call as follows:

Call = Ci*N = Ci*(TP+FP+FN+TN) (2)

Clearly, a cost-effective defect prediction model should satisfy the
following requirement:

Cp < Call Ci*(TP+FP) + Cfn*FN < Ci*(TP+FP+FN+TN)
 FN/(FN+TN) < Ci /Cfn (3)

Considering the example shown in Table 2, the cost Call is 45Ci.
FN/(FN+TN) is 62.50%. Assuming Ci/Cfn is 1/3, then
FN/(FN+TN) > Ci/Cfn, failing to satisfy the requirement defined in
Equation (3). Applying such a defect prediction model is not more
cost-effective than the simple strategy of inspecting all modules.

2.3 Cost of Random Sampling Strategy
Another simple SQA strategy is to randomly sample a subset of
modules and test them. A defect prediction model should be able
to correctly identify defective modules. It should perform better
than randomly selecting and inspecting the same number of
modules. We define the cost of the random inspecting strategy Cran
as follows:

Crnd = Ci*(TP+FP) + Cfn*%D*(N-TP-FP) = Ci*(TP+FP) +
Cfn*%D*(TN+FN) (4)

, where Ci*(TP+FP) denotes the cost of randomly inspecting the
same number of modules as a defect prediction model
suggests. %D denotes the density of defective modules (i.e., the
percentage of defective modules in the project). For a new project,
the value of %D could be estimated based on the experience of
similar projects. The item Cfn*%D*(TN+FN) denotes the cost of
missing the defective modules. Clearly, a cost-effective defect
prediction should satisfy the following requirement:

Cp < Crnd Ci*(TP+FP) + Cfn*FN < Ci*(TP+FP) +
Cfn*%D*(TN+FN) FN/(FN+TN) < %D (5)

Consider the example shown in Table 2, %D is 62.22% (= 28/45).
The cost Crnd is 29Ci+ 9.96Cfn. FN/(FN+TN) is 62.50%, which is
larger than %D. Therefore, applying such a defect prediction
model is not more cost-effective than the simple strategy of
random sampling and inspection.

2.4 A Criterion for Cost-Effectiveness
Combining Equations (3) and (5), a defect prediction model
should at least satisfy the following basic criterion in order to be
cost-effective:

FN/(FN+TN) < min(Ci /Cfn , %D) (6)

Considering the example shown in Table 2, the upper bound value
of FN/(FN+TN) a cost-effective defect prediction model should
achieve is 1/3.

We also propose to use FN/(FN+TN) as a metric to measure the
cost-effectiveness of a defect prediction model, complementing

644

other metrics for measuring classification accuracy (e.g., Precision
and Recall). The lower is the FN/(FN+TN) value, the better is the
cost-effectiveness of the prediction model. Such a metric can be
used for determining the benefit of applying a defect prediction
model, and for selecting among alternative prediction models.

3. A CASE STUDY
To illustrate the usefulness of the proposed metric for evaluating
cost-effectiveness of a defect prediction model, we re-examine the
defect prediction results of a study performed by Zimmermann et
al. on Eclipse [11]. Eclipse is a widely used integrated
development platform for creating Java, C++ and web applications.
It has been used as an experimental subject by many studies on
software defect prediction (e.g., [3, 4, 14]). Note that although our
case study uses the Eclipse experiment described in [11], the
proposed metric is a general metric that is independent of the
methods and data used for constructing prediction models.

In this study, we focus on the Eclipse 3.0 defect data (v2.0) at the
package level. The data was collected by mining Eclipse’s bug
databases and version achieves. There are 429 packages in Eclipse
3.0, 57% of them contain post-release defects (defects reported in
the first six months after release). The authors of [11] build several
defect prediction models based on the data collect from Eclipse
2.0 and Eclipse 2.1, to predict defect-prone packages (packages
contain at least one defect) in Eclipse 3.0. Table 3 summarizes
their prediction results.

3.1 Evaluation with Recall and Precision
Metrics
In Table 3, for the two prediction models, the Precision values are
0.641 and 0.713, the Recall values are 0.724 and 0.664,
respectively. These results may or may not be satisfactory for
some application scenarios. To evaluate the cost-effectiveness of
the results, we apply the proposed metric as defined in Equation
(6). Assume that the Ci /Cfn value is 1/3, the FN/(FN+TN) values
are 0.44 and 0.41 for the two prediction models, respectively.
These values are all above the Ci /Cfn value. Therefore, both
models are unsatisfactory when cost-effectiveness is considered.
The results suggest that cautions should be taken when these
prediction models are applied in practice.

Table 3. Defect prediction results for Eclipse 3.0 packages
Train Test Precision Recall %D FN/(FN+TN)

Eclipse
2.0

Eclipse
3.0

0.641 0.724 57% 0.44

Eclipse
2.1

Eclipse
3.0

0.713 0.664 57% 0.41

Figure 1 illustrates how the value of FN/(FN+TN) changes with
different Precision and Recall values, for the Eclipse example.
From Figure 1, we can see that, in order to satisfy the criterion that
the value of FN/(FN+TN) should be lower than 1/3, the Precision
values should be: 1) higher than 0.79 if Recall is 0.724, 2) higher
than 0.91 if Recall is 0.664. The current Precision values are not
“good enough” in terms of cost-effectiveness. Figure 1 also shows
that, if the Ci/Cfn value is 1/2, given the same Recall values, the
Precision values shown in Table 3 satisfy the cost-effective
criterion.

Figure 2 illustrates how the values of FN/(FN+TN) vary with
different %D, Precision (P) and Recall (R) values. Given the
criterion that the value of FN/(FN+TN) should be lower than 1/3,
both prediction models given in Table 3 are not cost-effective

when %D is 57%. However, if %D is less than 50%, these two
models satisfy the cost-effective criterion. Suppose that the Ci/Cfn

value becomes 1/5, the two models satisfy the cost-effective
criterion only if %D is less than 40%.

Figure 1. FN/(FN+TN) under different recall and precision

values

Figure 2. FN/(FN+TN) under different %D values

3.2 Evaluation with PD and PF Metrics
In Table 3, the Recall and Precision metrics are used to measure
the classification accuracy of prediction models. We also examine
how the proposed metric works with the pd (probability of
detection) and pf (probability of false alarm) metrics. The original
paper [11] does not give the evaluation results measured in terms
of pd and pf. However, we can derive these values from Table 3
directly. In our prior work [13, 15], we discovered the relationship
between the Precision and pd/pf as follows:

PDPOS

PFNEG

TP

FPFPTP

TP
ecision













1

1

1

1
Pr (7)

Clearly, the NEG/POS item in the above equation can be
calculated as: NEG/POS = (1-%D)/%D (8)

Based on Equations (7) and (8), we transform the Recall/Precision
values in Table 3 to pd and pf values in Table 4. To evaluate
whether the pd and pf values shown in Table 4 are “good enough”,
we plot a figure (Figure 3) that illustrates how the value of
FN/(FN+TN) changes with different pd and pf values, for the
same Eclipse example. From Figure 3, we can see that, in order to
satisfy the criterion that the value of FN/(FN+TN) should be lower
than 1/3, the pf values should be: 1) less than 0.25 if pd is 0.724, 2)
less than 0.08 if pd is 0.664. The current pf values are 0.538 and

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9

P
r
e
c
i
s
i
o
n

Recall

FN/(FN+TN) = 0.20

FN/(FN+TN) = 0.50

FN/(FN+TN) = 0.33

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

F
N/
(
FN
+
TN
)

%D

P=71.3%

R=66.4%

P=64.1%

R=72.4%

1/3(Ci/Cf)

%D=

57%

645

0.354, which do not satisfy the cost-effectiveness criteria. Figure 3
also shows that, if the Ci/Cfn value is 1/2, given the same pd values,
the pf values shown in Table 4 satisfy the cost-effective criterion.

Table 4. Defect prediction results in terms of pd and pf
Train Test pd pf

Eclipse 2.0 Eclipse 3.0 0.724 0.538

Eclipse 2.1 Eclipse 3.0 0.664 0.354

Figure 3. FN/(FN+TN) under different pd and pf values

4. DISCUSSIONS
In this section, we answer the questions specified in the call for
paper1:

 What is the new idea? We propose a new criterion and
metric for evaluating the cost-effectiveness of a defect
prediction model.

 Why is it new? Currently, defect prediction models are
evaluated using conventional accuracy metrics such as
Precision, Recall, pd, and pf. There is a lack of explicit
criterion and metric that can evaluate a prediction model
from the cost-effectiveness perspective.

 What is the single most related paper by the same
author(s)? By others? In our prior work [13], we studied
the metrics used for evaluating defect prediction models. We
explore the relationship between the Recall/Precision and
pd/pf metrics. Our finding reveals a fundamental limit on the
ability to improve defect predictors for domains where the
defective modules are relatively infrequent. In this work, we
further explore the cost-effectiveness aspect of the
evaluation, which is more significant when the defective
modules are relatively frequent.
Recently, other researchers also explored effort-aware defect
prediction models. For example, Mende and Koschke [7]
discovered that when effort is considered, many classifiers
perform not significantly better than a random selection of
modules. They considered the ordering of modules and
measure effort using a CE metric proposed by Arisholm et al.
[1]. The CE metric is defined in a cumulative lift-chart and
plots the percentage of identified faults against the examined
lines of code. Posnett et al. [9] also proposed a revised CE
metric called AUCCE. Unlike their work, our criterion and
metric are based on defect prediction results alone (Table 1)
and do not consider ordering and size of defective modules.

 What feedback do the authors expect from the forum?
We would like to exchange ideas with other researchers and

1 http://esec-fse.inf.ethz.ch/cfp_new_ideas.html

explore the applicability of the proposed metric in evaluating
defect prediction models.

5. CONCLUSION
In this paper, we study the cost-effectiveness of applying defect
prediction models in SQA. We propose a basic cost-effectiveness
criterion (Equation 6) derived from the intuition that a defect
prediction based SQA strategy should at least cost less than the
strategy of inspecting all modules and the strategy of inspecting
randomly sampled modules. The criterion implies that defect
prediction models should be applied with cautions. Besides the
conventional metrics (such as Recall and Precision) for measuring
the accuracy of a defect prediction model, we propose a new
metric FN/(FN+TN) to measure the cost-effectiveness of the
prediction model. We believe our work can help better understand
and apply defect prediction research results in practice.

ACKNOWLEDGMENTS
This research is supported by the NSFC projects 61073006 and
61272089, and Hong Kong SAR RGC/GRF project 611811.

REFERENCES
[1] E. Arisholm, L. C. Briand, M. Fuglerud, Data Mining

Techniques for Building Fault-proneness Models in Telecom
Java Software, in Proc. ISSRE 2007, 215-224, Nov 2007.

[2] R. Charette, Why Software Fails, IEEE Spectrum,
September 2005.

[3] S. Kim, H. Zhang, R. Wu and L. Gong, Dealing with Noise
in Defect Prediction, in Proc. ICSE'11, May 2011.

[4] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, Sample-based
Software Defect Prediction with Active and Semi-supervised
Learning, Journal of Automated Software Engineering,
Springer, Jan 2012, pp.1-30.

[5] T. Menzies, J. Greenwald and A. Frank, Data Mining Static
Code Attributes to Learn Defect Predictors, IEEE Trans.
Software Engineering, 32(11), pp. 1-12, 2007.

[6] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A.
Bener, Defect prediction from static code features: current
results, limitations, new approaches, Journal Automated
Software Eng, Dec 2010.

[7] T. Mende and R. Koschke, Effort-Aware Defect Prediction
Models, in Proc. CSMR 2010, pp.107-116, March 2010.

[8] N. Nagappan, T. Ball,and A. Zeller, Mining Metrics to
Predict Component Failures, in Proc. ICSE’06, May 2006.

[9] D. Posnett, V. Filkov, and P. Devanbu, Ecological inference
in empirical software engineering, in Proc. ASE'11, 362-371.

[10] R. Wu, H. Zhang, S. Kim, and S.C.Cheung, ReLink:
Recovering Links between Bugs and Changes, in Proc.
ESEC/FSE'11, Szeged, Hungary, Sep 2011.

[11] T. Zimmermann, R.Premraj and A. Zeller, Predicting
Defects for Eclipse, in Proc. PROMISE’07, Minneapolis,
USA, May 2007.

[12] T. Zimmermann and N. Nagappan, Predicting Defects using
Network Analysis on Dependency Graphs, in Proc. ICSE
2008, Leipzig, Germany, May 2008.

[13] H. Zhang and X. Zhang, Comments on "Data Mining Static
Code Attributes to Learn Defect Predictors", IEEE Trans. on
Software Engineering, 33(9), 635-636, 2007.

[14] H. Zhang, An Investigation of the Relationships between
Lines of Code and Defects, in Proc. ICSM’09, Sep 2009.

[15] H. Zhang, A. Nelson, T. Menzies, On the Value of Learning
From Defect Dense Components for Software Defect
Prediction, Proc. PROMISE’10, Sep 2010.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9

p
f

pd

FN/(FN+TN) = 0.20

FN/(FN+TN) = 0.50

FN/(FN+TN) = 0.33

646

