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ABSTRACT 
Ideally, software defect prediction models should help organize 
software quality assurance (SQA) resources and reduce cost of 
finding defects by allowing the modules most likely to contain 
defects to be inspected first. In this paper, we study the 
cost-effectiveness of applying defect prediction models in SQA 
and propose a basic cost-effectiveness criterion. The criterion 
implies that defect prediction models should be applied with 
caution. We also propose a new metric FN/(FN+TN) to measure 
the cost-effectiveness of a defect prediction model. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging - 

Debugging Aids. 

General Terms 
Measurement, Reliability 

Keywords 
Defect prediction, cost effectiveness, evaluation metrics.  

1. INTRODUCTION 
Software quality assurance (SQA) is important for the success of a 
software project. However, it is a resource and time-consuming 
activity, which may include manual code inspections, technical 
review meetings, and intensive software testing. Modern large and 
complex systems often consist of hundreds or even thousands of 
modules (methods, files, components, etc). It is thus desirable to 
predict which modules are more likely to contain defects so that 
project managers can allocate limited SQA resources in a 
cost-effective manner. 

Software defect prediction has recently attracted immense interest 
from the software engineering community. Many defect prediction 
models have been proposed (e.g., [1, 3-15]). These models collect 
historical defects of software modules as well as various module 
features such as program complexity, structural dependency, 
changes, process and organizational factors. A classifier such as 
Decision Tree or Naïve Bayes is utilized to train a classification 

model, which can then be used to predict the defect proneness of a 
new module. To evaluate the accuracy of predictions, researchers 
have adopted many metrics such as Recall and Precision.  

Despite recent advances in defect prediction models, these models 
are not able to detect all defective modules and can identify 
correct modules as defective. Although the cost of building a 
defect prediction is usually small as most features can be 
automatically extracted by mining software repositories [8], we 
still need to deploy models for defect prediction cautiously. For 
example, one may be hesitated to deploy defect prediction models 
to safety critical systems if the models cannot guarantee a low 
degree of false negatives. It is because the deployment cost is not 
restricted to the effort of inspecting the reported defective modules. 
It also includes the cost of failures arising from the defects that are 
missed by the prediction models. Therefore, studying the 
cost-effectiveness of defect prediction models is important for the 
practical application of these models. Current studies on defect 
prediction mostly focus on the improvement of data quality [3, 10], 
the identification of new features [12], the design of new 
classification techniques [4], and the selection of training projects 
[15]. The cost-effectiveness of applying defect prediction models 
in SQA practices is not well explored.  

In this paper, we study the cost-effectiveness of applying defect 
prediction models. We propose a criterion that is derived from the 
intuitions that a defect prediction based SQA strategy should at 
least cost less than the strategy of inspecting all modules and the 
strategy of inspecting randomly sampled modules. We also 
propose a new metric to measure the cost-effectiveness of defect 
prediction models. We use a case study on Eclipse project to 
illustrate the usage of the proposed metric. 

2. EVALUATION METRICS FOR DEFECT 
PREDICTION MODELS 
Prediction of defective modules can be cast as a classification 
problem in machine learning: given training samples of modules 
with labels as defective (containing at least one defect) or 
non-defective (no defects). A prediction model has four results: 
true positives (TP), false positives (FP), true negatives (TN) and 
false negatives (FN), as shown in Table 1. The total number of 
actual defective modules is denoted as POS and the total number 
of actual non-defective modules is denoted as NEG. 

Recall and Precision are often adopted to evaluate defect 
predication models (e.g., [3, 11, 14]). These metrics are the 
accuracy measures widely used in Information Retrieval area. 
They are defined as follows: 
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Recall defines the rate of true defective modules in comparison to 
the total number of defective modules, and Precision relates the 
number of true defective modules to the number of modules 
predicted as defective. The values of Recall and Precision are 
between 0 and 1, the higher the better.   

Table 1. Defect prediction results 
 Predicted 

Defective 
Predicted 

Non-defective 
 

Actual 
Defective 

TP FN POS

Actual 
Non-defective 

FP TN NEG

To evaluate the accuracy of a prediction, many researchers (e.g., 
[5, 15]) also use the Probability of Detection (pd) and Probability 
of False Alarm (pf) metrics, which are defined as follows. 
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TNFP
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
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The pd metric is the same as Recall. The pf metric measures how 
many defect-free modules are wrongly classified as defective. The 
values of pf are between 0 and 1, the lower the better. 

2. ANALYZING THE COST OF APPLYING 
SOFTWARE DEFECT PREDICTION 

2.1 Cost of Defect Prediction Strategy 

Ideally, a defect prediction model should be able to correctly 
identify all defective software modules. Limited QA resources can 
then be allocated to these modules to make SQA more effective. 
However, there are two costs incurred by this strategy: 

 Cost of inspection for the defective modules selected by 
defect prediction models. A defect prediction model returns 
(TP+FP) defective modules. Assuming the average cost 
required for inspecting a module is Ci, the cost of inspecting 
all predicted defective modules is Ci*(TP+FP). In this study, 
to simplify the analysis, we assume that the inspection is 
perfect, i.e., after inspecting a module, the defects can be 
successfully revealed. The value of Ci is project-specific. For 
example, Ci for a complex project is usually higher than a 
simple project. Also, Ci for a project closer to its delivery 
deadline is usually higher than that for a project at its initial 
phase.  

 Cost of failures arising from false negative modules. A 
defect prediction model often fails to identify all defective 
modules. We denote the total cost incurred by false negative 
modules Cfn*FN, where Cfn is the average cost of missing a 
defective module. The value of Cfn is project-specific, which 
could be high for some projects [2]. For example, Cfn for a 
safety-critical project is usually higher than that for a 
web-forum project.  

In summary, the cost of inspecting modules selected by a defect 
prediction model Cp is defined as follows: 

Cp = Ci*(TP+FP) + Cfn*FN          (1) 

As an example, Table 2 shows the results produced by a defect 
prediction model. The Precision is 62.07% and the Recall is 
64.29%. If applied to SQA, the cost Cp is 29Ci+ 10Cfn.  

Table 2. The accuracy of a defect prediction model 

 
Predicted 
Defective 

Predicted 
Non-defective 

Actual Defective 18 10 

Actual Non-defective 11 6 

2.2 Cost of Inspecting-All Strategy 
A defect prediction model allows the developers to concentrate on 
the defect-prone modules. The other SQA strategy is to simply 
inspect all modules without prioritization. We define the cost of 
such strategy Call as follows: 

Call = Ci*N = Ci*(TP+FP+FN+TN)     (2) 

Clearly, a cost-effective defect prediction model should satisfy the 
following requirement: 

Cp < Call  Ci*(TP+FP) + Cfn*FN < Ci*(TP+FP+FN+TN) 
  FN/(FN+TN) < Ci /Cfn                  (3) 

Considering the example shown in Table 2, the cost Call is 45Ci. 
FN/(FN+TN) is 62.50%. Assuming Ci/Cfn is 1/3, then 
FN/(FN+TN) > Ci/Cfn, failing to satisfy the requirement defined in 
Equation (3). Applying such a defect prediction model is not more 
cost-effective than the simple strategy of inspecting all modules.  

2.3 Cost of Random Sampling Strategy 
Another simple SQA strategy is to randomly sample a subset of 
modules and test them. A defect prediction model should be able 
to correctly identify defective modules. It should perform better 
than randomly selecting and inspecting the same number of 
modules. We define the cost of the random inspecting strategy Cran 
as follows: 

Crnd = Ci*(TP+FP) + Cfn*%D*(N-TP-FP) = Ci*(TP+FP) + 
Cfn*%D*(TN+FN)            (4) 

, where Ci*(TP+FP) denotes the cost of randomly inspecting the 
same number of modules as a defect prediction model 
suggests. %D denotes the density of defective modules (i.e., the 
percentage of defective modules in the project). For a new project, 
the value of %D could be estimated based on the experience of 
similar projects. The item Cfn*%D*(TN+FN) denotes the cost of 
missing the defective modules. Clearly, a cost-effective defect 
prediction should satisfy the following requirement: 

Cp < Crnd   Ci*(TP+FP) + Cfn*FN < Ci*(TP+FP) + 
Cfn*%D*(TN+FN)  FN/(FN+TN) < %D  (5) 

Consider the example shown in Table 2, %D is 62.22% (= 28/45). 
The cost Crnd is 29Ci+ 9.96Cfn. FN/(FN+TN) is 62.50%, which is 
larger than %D. Therefore, applying such a defect prediction 
model is not more cost-effective than the simple strategy of 
random sampling and inspection.  

2.4 A Criterion for Cost-Effectiveness 
Combining Equations (3) and (5), a defect prediction model 
should at least satisfy the following basic criterion in order to be 
cost-effective: 

FN/(FN+TN) < min(Ci /Cfn , %D)              (6) 

Considering the example shown in Table 2, the upper bound value 
of FN/(FN+TN) a cost-effective defect prediction model should 
achieve is 1/3.  

We also propose to use FN/(FN+TN) as a metric to measure the 
cost-effectiveness of a defect prediction model, complementing 
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other metrics for measuring classification accuracy (e.g., Precision 
and Recall). The lower is the FN/(FN+TN) value, the better is the 
cost-effectiveness of the prediction model. Such a metric can be 
used for determining the benefit of applying a defect prediction 
model, and for selecting among alternative prediction models. 

3. A CASE STUDY 
To illustrate the usefulness of the proposed metric for evaluating 
cost-effectiveness of a defect prediction model, we re-examine the 
defect prediction results of a study performed by Zimmermann et 
al. on Eclipse [11]. Eclipse is a widely used integrated 
development platform for creating Java, C++ and web applications. 
It has been used as an experimental subject by many studies on 
software defect prediction (e.g., [3, 4, 14]). Note that although our 
case study uses the Eclipse experiment described in [11], the 
proposed metric is a general metric that is independent of the 
methods and data used for constructing prediction models. 

In this study, we focus on the Eclipse 3.0 defect data (v2.0) at the 
package level. The data was collected by mining Eclipse’s bug 
databases and version achieves. There are 429 packages in Eclipse 
3.0, 57% of them contain post-release defects (defects reported in 
the first six months after release). The authors of [11] build several 
defect prediction models based on the data collect from Eclipse 
2.0 and Eclipse 2.1, to predict defect-prone packages (packages 
contain at least one defect) in Eclipse 3.0. Table 3 summarizes 
their prediction results. 

3.1 Evaluation with Recall and Precision 
Metrics 
In Table 3, for the two prediction models, the Precision values are 
0.641 and 0.713, the Recall values are 0.724 and 0.664, 
respectively. These results may or may not be satisfactory for 
some application scenarios. To evaluate the cost-effectiveness of 
the results, we apply the proposed metric as defined in Equation 
(6). Assume that the Ci /Cfn value is 1/3, the FN/(FN+TN) values 
are 0.44 and 0.41 for the two prediction models, respectively. 
These values are all above the Ci /Cfn value. Therefore, both 
models are unsatisfactory when cost-effectiveness is considered. 
The results suggest that cautions should be taken when these 
prediction models are applied in practice. 

Table 3. Defect prediction results for Eclipse 3.0 packages 
Train Test Precision Recall %D FN/(FN+TN)

Eclipse 
2.0 

Eclipse  
3.0 

0.641 0.724 57% 0.44 

Eclipse 
2.1 

Eclipse 
3.0 

0.713 0.664 57% 0.41 

Figure 1 illustrates how the value of FN/(FN+TN) changes with 
different Precision and Recall values, for the Eclipse example. 
From Figure 1, we can see that, in order to satisfy the criterion that 
the value of FN/(FN+TN) should be lower than 1/3, the Precision 
values should be: 1) higher than 0.79 if Recall is 0.724, 2) higher 
than 0.91 if Recall is 0.664. The current Precision values are not 
“good enough” in terms of cost-effectiveness. Figure 1 also shows 
that, if the Ci/Cfn value is 1/2, given the same Recall values, the 
Precision values shown in Table 3 satisfy the cost-effective 
criterion. 

Figure 2 illustrates how the values of FN/(FN+TN) vary with 
different %D, Precision (P) and Recall (R) values. Given the 
criterion that the value of FN/(FN+TN) should be lower than 1/3, 
both prediction models given in Table 3 are not cost-effective 

when %D is 57%. However, if %D is less than 50%, these two 
models satisfy the cost-effective criterion. Suppose that the Ci/Cfn 

value becomes 1/5, the two models satisfy the cost-effective 
criterion only if %D is less than 40%. 

 
Figure 1. FN/(FN+TN) under different recall and precision 

values 

 
Figure 2. FN/(FN+TN) under different %D values 

3.2 Evaluation with PD and PF Metrics 
In Table 3, the Recall and Precision metrics are used to measure 
the classification accuracy of prediction models. We also examine 
how the proposed metric works with the pd (probability of 
detection) and pf (probability of false alarm) metrics. The original 
paper [11] does not give the evaluation results measured in terms 
of pd and pf. However, we can derive these values from Table 3 
directly. In our prior work [13, 15], we discovered the relationship 
between the Precision and pd/pf as follows: 

PDPOS

PFNEG

TP

FPFPTP

TP
ecision


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
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1

1

1

1
Pr    (7) 

Clearly, the NEG/POS item in the above equation can be 
calculated as:    NEG/POS = (1-%D)/%D              (8) 

Based on Equations (7) and (8), we transform the Recall/Precision 
values in Table 3 to pd and pf values in Table 4. To evaluate 
whether the pd and pf values shown in Table 4 are “good enough”, 
we plot a figure (Figure 3) that illustrates how the value of 
FN/(FN+TN) changes with different pd and pf values, for the 
same Eclipse example. From Figure 3, we can see that, in order to 
satisfy the criterion that the value of FN/(FN+TN) should be lower 
than 1/3, the pf values should be: 1) less than 0.25 if pd is 0.724, 2) 
less than 0.08 if pd is 0.664. The current pf values are 0.538 and 
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0.354, which do not satisfy the cost-effectiveness criteria. Figure 3 
also shows that, if the Ci/Cfn value is 1/2, given the same pd values, 
the pf values shown in Table 4 satisfy the cost-effective criterion. 

Table 4. Defect prediction results in terms of pd and pf 
Train Test pd pf 

Eclipse 2.0 Eclipse 3.0 0.724 0.538 

Eclipse 2.1 Eclipse 3.0 0.664 0.354 

 
Figure 3. FN/(FN+TN) under different pd and pf values 

4. DISCUSSIONS 
In this section, we answer the questions specified in the call for 
paper1: 

 What is the new idea? We propose a new criterion and 
metric for evaluating the cost-effectiveness of a defect 
prediction model. 

 Why is it new? Currently, defect prediction models are 
evaluated using conventional accuracy metrics such as 
Precision, Recall, pd, and pf. There is a lack of explicit 
criterion and metric that can evaluate a prediction model 
from the cost-effectiveness perspective. 

 What is the single most related paper by the same 
author(s)? By others? In our prior work [13], we studied 
the metrics used for evaluating defect prediction models. We 
explore the relationship between the Recall/Precision and 
pd/pf metrics. Our finding reveals a fundamental limit on the 
ability to improve defect predictors for domains where the 
defective modules are relatively infrequent. In this work, we 
further explore the cost-effectiveness aspect of the 
evaluation, which is more significant when the defective 
modules are relatively frequent.  
Recently, other researchers also explored effort-aware defect 
prediction models. For example, Mende and Koschke [7] 
discovered that when effort is considered, many classifiers 
perform not significantly better than a random selection of 
modules. They considered the ordering of modules and 
measure effort using a CE metric proposed by Arisholm et al. 
[1]. The CE metric is defined in a cumulative lift-chart and 
plots the percentage of identified faults against the examined 
lines of code. Posnett et al. [9] also proposed a revised CE 
metric called AUCCE. Unlike their work, our criterion and 
metric are based on defect prediction results alone (Table 1) 
and do not consider ordering and size of defective modules. 

 What feedback do the authors expect from the forum? 
We would like to exchange ideas with other researchers and 

                                                                 
1 http://esec-fse.inf.ethz.ch/cfp_new_ideas.html 

explore the applicability of the proposed metric in evaluating 
defect prediction models. 

5. CONCLUSION 
In this paper, we study the cost-effectiveness of applying defect 
prediction models in SQA. We propose a basic cost-effectiveness 
criterion (Equation 6) derived from the intuition that a defect 
prediction based SQA strategy should at least cost less than the 
strategy of inspecting all modules and the strategy of inspecting 
randomly sampled modules. The criterion implies that defect 
prediction models should be applied with cautions. Besides the 
conventional metrics (such as Recall and Precision) for measuring 
the accuracy of a defect prediction model, we propose a new 
metric FN/(FN+TN) to measure the cost-effectiveness of the 
prediction model. We believe our work can help better understand 
and apply defect prediction research results in practice. 
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