
Backward-Compatible Constant-Time
Exception-Protected Memory

Pradeep Varma
IBM India Research Laboratory

4, Block C, Institutional Area
Vasant Kunj, New Delhi 110070

+91-11-41292140, +91-11-
26138889(FAX)

pvarma@in.ibm.com

Rudrapatna K. Shyamasundar
Faculty of Technology and Computer

Science, Tata Institute of
Fundamental Research, Mumbai

400005, +91-22-22804777

shyam@tifr.res.in

Harshit J. Shah
School of Technology and Computer

Science, Tata Institute of
Fundamental Research, Mumbai

400005

harshit@tcs.tifr.res.in

ABSTRACT
We present a novel, table-free technique for detecting all temporal
and spatial memory access errors (e.g. dangling pointers, out-of-
bounds check, etc.) in programs supporting general pointers. Our
approach is the first technique to provide such error checking using
only constant-time operations. The scheme relies on fat pointers,
whose size is contained within standard scalar sizes (up to two
words) so that atomic hardware support for operations upon the
pointers is obtained along with meaningful casts in-between pointers
and other scalars. Optimized compilation of code becomes possible
since the scalarized-for-free encoded pointers get register allocated
and manipulated. Backward compatibility is enabled by the scalar
pointer sizes, with novel automatic support provided for encoding
and decoding of fat pointers in place for interaction with
unprotected code (e.g. library binaries). Implementation and
benchmarks of the technique over several applications of the
memory-intensive Olden suite indicate that the average time
overhead of our method is about half the time cost of an unprotected
application’s execution (< 55%). This performance is over twice
faster than the nearest prior work.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – Data types and structures, dynamic storage
management; D.2.5 [Software Engineering]: Testing and
Debugging – Error handling and recovery, debugging aids; D.3.4
[Programming Languages]: Processors – Run-time environments

General Terms
Algorithms, Design, Languages, Performance, Reliability

Keywords
Memory safety, backward compatibility, object version, scalar fat
pointer, spatial access error, temporal access error

1. INTRODUCTION
Memory safety in the context of C/C++ became a concern a decade
or so after the advent of the languages [10]. Austin et al. [1]
described a memory access error as a dereference outside the
bounds of the referent, either address-wise or time-wise. The
former comprises a spatial access error e.g. array out of bounds
access error, and the latter comprises a temporal access error e.g.
dereferencing a pointer after the object has been freed. Austin et al.
provided the first system to detect such errors relatively precisely
(viz. temporal access errors, whose treatment earlier had been
limited). However, the work had limited efficiency (temporal error
checks had a hash-table implementation with worst-case linear
costs; for large fat pointer structures, register allocation was
compromised with accompanying performance degradation;
execution-time overheads were benchmarked above 300%). The fat
pointers also compromised backward compatibility [22].
Significant work has transpired since [1] on these error classes
because of the very hard to trace and fix attributes of these errors [2,
5, 6-9, 11-19, 22]. The insight of Austin et al. into temporal access
errors, namely that object lifetimes can be caught as a pointer
attribute, a capability, has led to several works – Electric Fence,
PageHeap, its follow-ons [8], and [22].

We continue in this tradition, making one key, novel departure from
these earlier works. There is no capability store or table or page
table in our work that is required to be looked up each time an
object is accessed. Our notion of a capability is an object version
that is stored with the object itself and thus is available in cache with
the object for lookup within constant time. In effect, an object for us
is the C standard’s definition [4], namely, a storage area whose
contents may be interpreted as a value, and a version is an
instantiation or lifetime of the storage area.

With this, the overheads for temporal access error checking in our
work can asymptotically be guaranteed to be within constant time.
Furthermore, since each object has a version field dedicated to it, the
space of capabilities in our work is partitioned at the granularity of
individual objects and is not shared across all objects as in [1, 22]
and is more efficient than a capability as a virtual page notion of
Electric Fence, PageHeap and [8]. This feature lets our versions be
represented as a bitfield within the word that effectively contains the
base address of the referent (as an offset into a pre-allocated
protected heap), which means that we save one word for capabilities
in comparison to the encoded fat pointers of [1] without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08...$10.00.

71

compromising on the size of the capability space.1 Since versions
are tied to objects, the object or storage space is dedicated to use
solely by re-allocations of the same size (unless garbage collector
(gc) intervenes). This fixedness of objects is put to further use by
saving the referent’s size with the object itself (like version), saving
another word from the pointer metadata.

These savings that we make on our pointer metadata are crucial in
bringing our encoded pointers down to standard scalar sizes of one
or two words in contrast to the 4-plus words size of [1] and a similar
price of [22]. Standard scalar sizes means that our encoded pointers
assist backward compatibility, avail of standard hardware support
for atomic reads and writes, and can be meaningfully cast to/from
other scalars, and achieve higher optimization via register allocation
and manipulation.

Like [22] our work detects memory access errors at the level of
memory blocks. A memory block comprises the least unit of
memory allocation such as a global or local variable, or the memory
returned by a single invocation of ������. Our work detects all
memory errors at this level, except for uninitialized data reads,
where it does more (than [1, 22]), by flagging all uninitialized data
reads and not just uninitialized pointer reads using a Purify-like
approach. The coverage of uninitialized data reads in this manner is
complete for small objects, and is approximate for large objects.

By detecting memory access errors at the level of memory blocks,
our work targets the general pointer arithmetic model supported by
C [4], with dereferences disallowed only when they cross allocation
bounds and not while they remain within. So for instance, a safe
memcpy() can be written that takes an element pointer of a struct
and copies up or down without exception so long as it remains
within the allocated memory for the � ��	 ��. Arithmetic can cause a
pointer to cross allocation boundaries arbitrarily, only dereferences
have to be within the allocated memory as in Ruwase et al. [18] and
not as in Jones et al. [12].

Fat pointer approaches like [1] have suffered from backward
compatibility problems because fat pointers change structure
layouts. C programs often assume that the size of a pointer is the
same as that of a long integer in structure layouts. A union or a cast
from a pointer to an integer may make similar assumptions. These
assumptions break when large fat pointers are used in place of
normal pointers as in [1]. Library binaries, compiled for non-fat
pointers index structures using offsets that mismatch the fields of
structures containing fat pointers. For these reasons, [22] diverged
from [1] in storing pointer metadata separately from the pointers
themselves. While this improves backward compatibility somewhat,
[22] is still hobbled by having to pass meta-data parameters to
functions separately from the pointer parameters, forcing interface
changes with functions for both parameters passed in and results
returned back (Section 2.3.4, [22]). There is also no support in [22]
for generating the metadata associated with unknown pointers
returned by library functions.

Our work provides much better support for backward compatibility
than [1] or [22] using scalar-sized fat pointers. There are two
incarnations of our general pointer layouts – the general-heap
layout, and a reduced-heap layout. The general layout uses a two-
word scalar representation of the general pointer and the reduced-

1 This comes from the combined counting capacity of

 � ��
 ���� � �
 ���� and �� �� ���
 ���� (later), which make up a word.

heap layout uses a one-word scalar representation. Backward
compatibility offered by reduced-heap layouts is ideal – the encoded
general pointer has the same scalar size as an un-encoded pointer
(one word). Similarly, the backward compatibility offered by the
simpler version of our pointers (Section 3) is ideal – it provides full
heap sizes and 1-word encoded pointers. These pointers can be
used with pre-compiled libraries with very effective backward
compatibility. The general pointer layout (2 word scalar) would also
offer similar compatibility if it were possible to obtain vendor
libraries in which pointer sizes are double-word scalars2. Once
encoded pointers and un-encoded pointers of the same scalar size
have been obtained, backward compatibility reduces to the ability to
provide un-encoded versions of the pointers to a library via
arguments and encoded versions of the same to application code
when the library returns results. For this, novel, automatic support
for encoding and decoding of pointers is provided. So a library can
continue with processing un-encoded pointers only while the
application deals with encoded pointers alone and the interface uses
the automatic support to transform pointers in place between the
application and the libraries. Similarly, unprotected code
manipulating pointers as integers can be provided un-encoded
pointers at the time of the cast to integer and un-encoded pointers
obtained from a cast from integers can be converted into encoded
pointers using this support.

All capability-based systems, e.g. our reduced-heap system have a
problem that they can run out of capability space (i.e. version space
for us). This is because the capability fields have a fixed size and
hence the number of capabilities they represent is fixed while a
long-running program can engender an unbounded number of object
lifetimes. Except for [8], which approaches this issue primarily
from a static analysis (automatic pool allocation) approach, no work
has targeted recycling of capabilities. We have developed a
comprehensive extension of our technique assuming a
(conservative) garbage collector [3] which makes it possible for our
work to handle unbounded heap recycling. Our version-recycling
work will be presented in a later publication, separately. Here we
only present an interface to the work.

Our novel contributions are given below:

o A table-free method for detecting all memory access errors.
Errors covered include uninitialized memory accesses, which
are checked in constant time for all types, and not just pointers
using a Purify-like technique whose coverage is complete for
small allocations and is approximate otherwise. Coverage of
all other memory errors is complete within constant time.

o Fat pointers in our method are of scalar sizes, amenable to
aggressive optimization, atomic use, and meaningful casts.

o Backward compatibility support is provided extensively by our
work, including scalar fat pointers and automatic support for
encoding and decoding of pointers.

o Benchmarks of our techniques show that our time overhead for
memory-intensive applications averages less than 55%, which
is much lower than the nearest prior work.

2 This in effect is seeking to obtain 32-bit compiled binaries for

64-bit ported library sources where pointers are 64-bit.

72

2. RELATED WORK
Dhurjati et al. [8] are similar to us in temporal access error checking,
although they only cover dangling pointer checks for heap-allocated
objects. Our version numbers correspond to virtual page numbers in
Dhurjati et al. [8], except that virtual page numbers are shared and
looked up via the hardware memory management unit (MMU).
While only one version number is generated per allocated object in
our scheme, a large object can span a sequence of virtual pages in
[8], all of which populate the MMU and affect its performance. Our
version numbers are typed by object size and are table-free in terms
of lookup. This implies that the object lookup cost is guaranteed to
be constant for us, while for [8] it varies according to table size even
if OS/hardware supported. For example consider the scenario when
the table outgrows the number of pages held in hardware table. TLB
misses cost are described as a concern in [8]. There is also concern
at the fact that an allocation/deallocation engenders a system call
apiece which is expensive.

Our system treats memory violations – temporal and spatial – in an
integrated manner. Our versions are substantially more efficient in
the virtualization they offer compared to [8] wherein each object
allocation, however small, blocks out a full virtual page size and
large objects block out multiple virtual pages. By contrast, the
virtualization overhead for our mechanism comprises a small
constant addition to the object size. Virtual space overuse
(simultaneously live objects) has no concomitant performance
degradation for us, while in work of [8], it can cause paging-
mechanism-related thrashing which would affect not only the
application process, but also other processes in the machine.

Xu et al. [22] present a table-based framework to handle temporal
and spatial memory access errors. The framework extends the
approach of [1] but does not obtain constant-time operations as in
our work. Overhead for an allocation operation is linear in the
number of pointers to be stored in an allocated block – space for the
metadata associated with these pointers is computed and allocated
with the block, and initialized as invalid pointers. Also, an allocation
request can trigger an expansion of the expandable array store
comprising the heap capabilities, which in turn has a linear cost in
terms of the total expansion made as the additional slots have to be
initialized as the free list of capability slots.

As regards safety checking once pointers have been allocated, not all
pointer accesses can be checked in [22] given that pointer metadata
in [22] is stored separately from pointers themselves using a source-
to-source transformation scheme. Checking safety of a pointer
usage requires mirroring access to the pointer by a parallel access to
its separately stored metadata, which is not always possible in the
approach of [22], which uses statically-exposed access paths (for
embedded pointers, page 120, left column, bottom of last paragraph,
“worth mentioning …” [22]3).

3 Consider the example: � ��	 �������� � �� � � � � � ���� ��� � ��� � �� � � � �� ��� ��� � �

�
 �� � ���� � ��	 ��� ����� � � � ��� � � � � �� � � � �� ! � � ��"�� �� # � � $�� % While [20]
mentions on-going work to handle one situation with embedded
pointers, it is not clear if that un-reported work would be
capable of connecting pointers embedded in � to their metadata
since the pointer arithmetic here makes a stride of 2, while the
metadata for the struct array makes only a stride of 1 given that
no metadata is created for the field one.

The metadata overhead for our fat pointers comprises one extra
word at most while the (separately stored) metadata per pointer in
[22] comprises two words for capability alone (corresponds to our
versions). Additionally, the size of the memory block (referent)
pointed to is stored as pointer metadata. Also, an attempt to separate
metadata from pointers (i.e not have fat pointers) results in
additional overhead of a link field in the pointer metadata. While
some of this metadata per pointer gets reduced by sharing it and
storing it in the pointed to object, the scheme is unable to reach the
shared metadata by pointer arithmetic and ends up having to store an
additional pointer to it (� � ��&
 ' �, [22] Section 4.1). In [22] the size
argument of malloc is used to determine whether an allocation is for
an object or array; C programs may use malloc otherwise, which
would not work with [22].

Jones et al. [12] present a table-based technique for checking spatial
memory violations in C/C++ programs. Standard pointers are used
unlike fat pointers of prior spatial access error checkers obtaining
significant backwards compatibility as a result. Ruwase et al. [18]
extend [12] with out-of-bounds object that allow inbound-pointer-
generating arithmetic on an out-of-bounds pointer. Our scalar, fat-
pointer based technique has this ability independently of [18, 12].

Dhurjati et al. [7] develop Jones et al. [12] and its extension Ruwase
et al. [18] by using automatic pool allocation to partition the large
table of objects. The technique statically analyzes application
sources. We differ from [7] and its predecessors by not relying on
any table lookup. We don’t impose any object padding for out-of-
bound pointers either. General pointer arithmetic (inbound/out-of-
bound) over referent objects is supported by our work.

Loginov et al. [13] present a run-time type checking scheme that
tracks extensive type information in a “mirror” of application
memory to detect type-mismatched errors. The scheme concedes
expensiveness performance-wise (due to mirror costs, not constant
time ops – e.g. type information generated is proportional to object
size including aggregate objects) and does not comprehensively
detect dangling pointer errors (fails past reallocations of compatible
objects analogous to Purify).

Purify, by Hastings et al., [10], maintains a map of memory at run-
time in checking for memory safety. It offers limited temporal access
error protection (not safe for reallocations of deleted data) and fails
for spatial access errors once a pointer jumps past a referent into
another valid one. Valgrind, [15,19], a dynamic binary
instrumentation framework tests for undefined value errors and
offers Purify-like protection up to bit-level precision. In contrast to
these works, our work captures all dangling pointer errors and
spatial errors (e.g. dereference of a reallocated freed object or
dereference past a referent into another valid but separate referent).
While Valgrind typically slows application performance by well
over an order of magnitude, our work adds only limited constant
costs to program operations. Also, Valgrind computes some false
positives and false negatives within its framework compared to
which our approach has no false positives. Our false negatives are
limited to uninitialized data checks, wherein our coverage of large
objects is approximate.

CCured (Necula et al., [14, 6]) provides a type inference system for
C pointers for statically and dynamically checked memory safety.
The approach however ignores explicit deallocation, relying instead
on Boehm Weiser conservative garbage collection [3] for space
reclamation. It also disallows pointer arithmetic on structure fields
[14]. The approach creates safe and unsafe pointer types all of

73

which have some runtime checks. Objects carry size and type tag
information. No asymptotic complexities are provided.

Cyclone [11] is a significant enough type-safe variant from ANSI C
to require significant porting effort of C programs. In Cyclone,
dangling pointers are prevented through region analysis and
growable regions and garbage collection. Free() is a no-op, and gc
carries out space reclamation. Oiwa’s Fail-Safe C [16] uses gc for
memory reuse ignoring user-specified memory reclamation.

Berger et al. [2] present a randomized memory manager approach to
handling memory safety errors by increasing redundancy
(replicating computation; and multiplying heap size, which is similar
to Purify’s larger heap requirements in support of heap aging).
Chilimbi et al. [5] use sample-based adaptive profiling to
dynamically build and monitor a heap model, identifying long-
unused, stale objects as potential leaks. Our approach can easily
replicate this using our list of allocated objects. Further, using the
gc extension, this can further guarantee whether an object is a
memory leak or not (no pointers left, yet object is live). Qin et al.
[17] experiments with using hardware error correcting codes (ECC)
in detecting memory violations/leaks in a manner analogous to the
page protection mechanism.

3. PROTECTED HEAP MANAGEMENT
Exception protected memory resides in a dedicated heap for the
purpose called the protected heap. The stack and global space
resides outside the protected heap. Only the protected heap has to
have contiguous space reserved for it, which is arranged at the
beginning of a program run.

Suppose N is the number of bits used to represent pointers to the
address space (i.e. the standard word size, e.g. 64 bits, in a 64-bit
architecture). For a protected heap size of 2M bytes, M is the
number of bits needed for addressing bytes in the heap. Then N –
M bits remain unused for addressing purposes. These bits can be
used for defining version numbers of objects as follows.

A version n is the nth time the same object or storage space (as
defined by ANSI C99 standard [4]) has been allocated to hold a
value.

Storage space is allocated just before the value is constructed and
deallocated just after the value is destroyed. Since pointers to an
object may survive after the object has been deallocated, the
determination that a pointer points to the current object or an earlier
version is made using the version bits. The scheme allows 2N – M
distinct version numbers, following which version bits must be re-
cycled after proving safe recyclability. For a typical 64-bit word
machine containing 64-bit pointers, suppose a protected heap of size
4 gigabytes (i.e. 232 bytes) is desired. Then versions totalling 264 - 32

= 232 = 4G in number are supported (after which version recycling
needs to be carried out).

We describe our basic technique using C pseudo-code in Figures 1-
4. Pseudo-code algorithms are presented, since we argue constant-
time complexity of our scheme in Section 6 later. This section
ignores alignment considerations for simplicity. Incorporating
alignment is discussed separately in Section 4.1. In the figures, (�� �

$
 � ��
 ���� � �
 ���� is the protected heap size. The allocated layout for an
object of type T is)
 � �� � ���� ", where)
 & is defined as given in Figure 1.
Note that the layout only involves the size of the type T and not the
type itself. Thus the various object lists (Figure 1) manage objects
solely by size, and allow storage sharing partitioned by size, not

type. In this paper it is assumed that no bitfield is of size 0 (the size
0 cases are straightforward special cases).

**�� �� � 	 �� ' +��
 � ��
 ���� � �
 ���� �

**�� �� � 	 �� ' ����' �� �� ���� ��� '

 � ��
 ���� ��

�� � � ' � ��	 � � �� � � ' ���� � �� ��' ��

, ' � ��� � �(��-�. . �
 � ��
 ���� � �
 ���� "�

, ' � ��� � ���� �� ���
 ���� ���� �� � ���� ��' "�� �/ (0 1
 2 3� �4�
 � ��
 ���� � �
 ���� "��

, ' � ��� � �� �
 ��
 �� �� ��� � ���-�. . ��� �� ���
 ���� "���

� ��' �	 � 	 � � '

 � ��
 ���� � ��� �5 ��

, ' � ��� � ����&� �
 ���	 � �% ��**���� ' ���

�� � � ' � ��� ��	 ���� �

����������� ��' ���+��� �� ���
 ���� ��

������������ ��' ����� � ��+�
 � ��
 ���� � �
 ���� ��

������������6�������������������

�� � � ' � ��� ��	 �����������

�����������6��� ��-����**�� ���� � ��� �� ��� 7�� � 8 ��

�����������6��� ��$�����**�� ���� � ����&� �7�� �� ���	 � �

������������
 ����9&:��

��������������)
 &��

� ��' ��������� '
 ��� �
 &�� 5 �����������������**��� ������� � ' �� �� �� �

� ��' ���� �
 ��� �
 &�� �5 ������������������������**��� ������� � ' �� �� �� �

� ��' �	 � 	 � ����
 ��� �
 ��� �
 &�� �5 �������**��� ������� � ' �� �� �� �

� ��' ���� �
 �� �� ���
 &�� �� �
 ��
 �� �� ��� � �4�$����

Figure 1. Basic declarations
In this section, we describe our technique for the statically-known
size layouts (see Section 4.3 for dynamic sizes). We also use
simple, 1-word pointers to access the objects using the encoding for
pointers, 6, given in Figure 1. For this encoding, a ���' �� pointer is
cast to a word 6 prior to being destructured thus. These simple one-
word pointers are incapable of modeling intra-object pointers (to
members), which we discuss in Section 4.2 later.

In Figure 1, � ��' is the machine wordsize (e.g. 32 bits, or 64 bits).
/ (0 1
 2 3� is the number of bits in a byte, ordinarily 8. Our
encoded pointers track addresses by the offset (6;���� � �) from the first
location in the protected heap (� ���� ��� '

 � ��
 ���� �). The pointer into
the protected heap for unused space is another offset called
	 � 	 � � '

 � ��
 ���� � �; A ���&� �
 ���	 � is a random bitmask used for
backward compatibility purposes. An encoded pointer 6 is one word
long comprising a version � bitfield and an ���� � � bitfield. The
metadata in an object)
 & comprises two words, both laid out like P.
The first word, �� ��- stores the object’s version bitfield and an
offset to the next object in the linked list that the object belongs to
(allocated objects list, free list etc.). The second word, �� ��$ holds
���&� �
 ���	 � in its version bits for the purpose of backwards
compatibility (discussed later) and an offset to the previous object in
the linked list so the object management queues can be doubly-
linked lists. All offset fields that point to objects, in pointers, heads
of lists below, or in objects themselves always point past the
metadata in the pointed object, i.e. to the member �9: in)
 & above.

74

This means a non-empty list has a non-zero head field, allowing 0 to
be reserved to indicate an empty list.

For each size &, there are three global lists for managing objects:

o A doubly-linked list of allocated objects which allows any
object to be deallocated in constant time. Among other
purposes, this list enables encoding of un-encoded pointers
returned by un-protected code to provide support for backward
compatibility.

o A free list (��� �
 ��� �
 &) of previously freed objects that can be
used at the next allocation

o An unusable list (� 	 � ����
 ��� �
 ��� �
 &) of previously freed
objects that can no longer be reused because they have run out
of fresh, usable version numbers and require version recycling.

Both the free list and unusable list store objects with the version
number advanced to a previously unused version. Thus upon
allocation (after recycling – for 	 � 	 � ����
 ��� �
 ��� �
 &), this version
number can be used directly. Because of this structure, if a dangling
pointer test is carried out when a freed object is sitting on one of
these two lists, the test will work correctly since the dangling pointer
will be encoded with a previously used version while the freed
object will have an unused one. The unusable free list is unusable,
not because it cannot be allocated from, but because an object
allocated by it cannot be freed later (without a preceding recycling).

Without recycling, versions would be allocated in increasing, round-
robin order from 0 till � �
 ��
 �� �� ��� � � 4�-, where the last version is
reserved for residence on the unusable list. While a full treatment of
recycling is not in the scope of this paper, it suffices to say that the
upper limit of version allocations also wraps around and moves
within the range [5 � % � � �
 ��
 �� �� ��� � � -]. The limit separates freed
version numbers from versions that may still be in use. This limit is
tracked by ��� �
 �� �� ���
 & that moves round-robin in the range of
version numbers. It is initialized to � �
 ��
 �� �� ��� � � 4� $ since at the
start, no recycling is involved, and � �
 ��
 �� �� ��� � �4�- is reserved for
the unusable list whose objects and object pointers are known to not
be in use.

�

**����� � ���� ��� �� ��� ����� �� � �� ��� �� ���

���' �� �' � ��' �
 � ��� �� ������' �� �� ��"��

���� �	 �� �� ���� ��� '

 � ��
 ���� ��# ����6�� "�� � ��" ! ���� � �����

������� ���� �����' �� �� ��"���

����� �	 �� ���6�� "�� � ��"� ! ��� � ���

��������������6�� "��' � ��' �
 � ��� �� ��� ��""�4�$"�� ! ����

�

Figure 2. Read/write related operations
An encoded pointer is translated to standard C pointer in Figure 2
by obtaining the offset field within the pointer and adding that to
� ���� ��� '

 � ��
 ���� �. Pointer decoding precedes each dereference of
the object. Prior to decoding the pointer thus, memory safety check
requires that the version stored in the object be consistent with the
version stored in the pointer. This can be carried out by �� ���� ,
wherein the right hand side of the equality test carries out the former
and the left hand side carries out the latter.

The allocation procedure is statically customized to size & (prefix &
in ��������
 � ���� ��� '
 &). First an attempt to allocate from the free list
is made. If that fails, then an attempt to allocate from the unused
heap is made. In this attempt, the version assigned is taken to be two
past the (rotating) ��� �
 �� �� ���
 & limit. As mentioned earlier, one
past the ��� �
 �� �� ���
 & is number reserved for the unusable free list.
If allocation does not succeed from either free list or unused heap,
then an allocation failure is indicated by returning < =)) . < =)) is a
constant, encoded pointer to a constant, never-deleted, zero-sized
object (i.e has no �9: field) allocated in the protected heap at the
beginning of program execution. While checking against < =)) can
be treated as a special case check to be added explicitly to the verify
operation in Figure 2 above, this check is gracefully merged into
usual spatial error checking in Section 4.2. Returning < =))
indicates allocation failure.

Allocation creates and populates an encoded pointer (� ��) with the
pertinent ���� � � and version � fields. Once an object to allocate is
obtained, �� �� points to the start of the metadata affiliated with the
object. Finally the object metadata is modified to reflect the doubly-
linked structure of �������� '
 ��� �
 &. The previous offset field of any
existing head object is set to the newly allocated object; the newly
allocated object’s previous is set to 0 reflecting its position at the
head; the head points to the newly allocated object and the newly
allocated object’s next points to the previous head object.

���' �� ���������
 � ���� ��� '
 &��"���

6�� �� ��7��� ����

��������� �
 ��� �
 &�>� �5 "���**��������� ��������� � ���� ��

������� �� ! ���� � ��� ���� �
 ��� �
 &���

�������� ���� ���6�� "��� ���� ��� '

 � ��
 ���� ��# ���� �
 ��� �
 &""�4�$��

������� �� ! ��� ��� �� ! ���

��������� �
 ��� �
 &�� ��� �� ! ����� � �����

����**��������� ' ������	 � 	 � � ' �
 � �� �

� �� � �����(�4�	 � 	 � � '

 � ��
 ���� � ��! � ��&�# �$�� �� �� � ���6"�"���

������� �� ! ���� � ��� �	 � 	 � � '

 � ��
 ���� � ��# �$�� �� �� � ���6"����

�������� ���� ��6�� "��	 � 	 � � '

 � ��
 ���� � ��# �� ���� ��� '

 � ��
 ���� �"��

�������� �� ! ��� ������ �
 �� �� ���
 &�# �$"�? �� �
 ��
 �� �� ��� � ��

��������� ���# �-" ! ��� ����&� �
 ���	 � ��

������	 � 	 � � '

 � ��
 ���� � ��� �	 � 	 � � '

 � ��
 ���� � ��# �&�# �$�� �� �� � ���6"����

������� �� ! ��� ��� �� ! ����

� �� � ��� �	 �� �< =)) ���**��� ' ����� � �����	 �� ������������ ���

�� �� ! ���� � ��� ��������� '
 ��� �
 &�������

������������ '
 ��� �
 &�>� �5 "��������������**�� � ��� �� ���	 � �

���������6�� "��� ���� ��� '

 � ��
 ���� ��# ��������� '
 ��� �
 &""� -" ! ���� � ����

������������������ ��� �� ! ���� � ����

�������� '
 ��� �
 &�� �� �� ! ���� � ������**�� � ��
 � �' ������� ��

��� ���# �-"� ! ����� � ��� �5 ���**�� � ��� �� ���	 � ��

�� �	 �� �� �����' �� � "�� ��"���*� ��� �	 �� �� � ��' � ' �� ��� �� ���� *���

Figure 3. Allocation

75

Deallocation is also customized to size &. In Figure 4, it is presumed
that verify is executed beforehand to verify version and non-< =))
legality.

A successful deallocation increments (via �� ��� �� � �
 �� �� ���
 &) the
version of the object that can be used both while sitting on a free list
or by the next allocation. In incrementing if it is found that the
��� �
 �� �� ���
 & limit is crossed, then the object is placed on the
unusable free list, otherwise it is placed on the standard free list.
The crossing of ��� �
 �� �� ���
 & is decided by computing the gap
between the current version and the limit. Suppose ��� �
 �� �� ���
 &���
�� �� ! �; Then � �� in Figure 4 should be ��� �
 �� �� ���
 &� � �� �� ! �7�

which is indeed the case as the modulo arithmetic drops the
� �
 ��
 �� �� ��� � addition. Suppose ��� �
 �� �� ���
 &� . ��� �� ! �; Then � ��
in Figure 4 should be ��� �
 �� �� ���
 &� # � �� � �
 ��
 �� �� ��� � � � �� �� ! �"7�

which again is the result offered by the modulo arithmetic. Thus
Figure 4 computes the correct gap in all cases.

������� ��� �� � �
 �� �� ��� ��6�� ��� ��7�� ��' ���� �"���

���� ��' �� �� �� ����� ��# ��� �
 ��
 �� �� ��� � �4��� �� ! �""��? �� �
 ��
 �� �� ��� � ��

����� �� ! ��� ���� �� ! ��# �-�"��? �� �
 ��
 �� �� ��� � ��

����� �	 �� ��� �� �>� �5 "��

��

���' �' � ��������
 � ���� ��� '
 &�����' �� �� ��"����

���6�� ��� ���� ���6�� "��' � ��' �
 � ��� �� ��� ��""��4�$���

���� ��' �� � 8 ��� ��� �� ! ���� � ���

���� ��' �� �� ���	 � �� ���� ���# �-"� ! ����� � ���

���**���' ��� ���@� ����� �� ��� ��� ' ��' ' ������ � ��� ����� ���� � ���� ��

��������� ��� �� � �
 �� �� ��� ��� ��7���� �
 �� �� ���
 &""��

����������� �� ! ���� � ��� ���� �
 ��� �
 &���

������������ �
 ��� �
 &�� ������' �� "���� ���# �$""�4�� ���� ��� '

 � ��
 ���� ����

���� �� � ���� �� ! ���� � ��� �	 � 	 � ����
 ��� �
 ��� �
 &���

�������	 � 	 � ����
 ��� �
 ��� �
 &�� ������' �� "���� ���# �$""�4�� ���� ��� '

 � ��
 ���� ����

���**��� ���� �������������� ' ���� ��

��������� �� ���	 � �� � �5 "���������� '
 ��� �
 &�� �� � 8 �������**��� � � ��� � 8 ��

����� �� � ����6�� "��� ���� ��� '

 � ��
 ���� ��# �� �� ���	 � ""�4�$" ! ���� � ��� �� � 8 ����

��������� � 8 ��>� �5 "��

�����������6�� "��� ���� ��� '

 � ��
 ���� ��# �� � 8 �""�4�-" ! ���� � ��� �� �� ���	 � ����

Figure 4. Deallocation

4. GENERAL POINTER AND LANGUAGE
CONSIDERATIONS
4.1 Alignment Issues
Type alignment can be built in simply by allocating objects along
the most general alignment, doubleword boundaries. Figure 5 shows
the allocation layout for an object of type T.

� ��	 ���) ��� ��' ����&� �-�+��� �� ���
 ���� ��

����������������� ��' �� �� � �+�
 � ��
 ���� � �
 ���� ���

����������������� ��' ���+��� �� ���
 ���� ��

����������������� ��' �� � 8 �+�
 � ��
 ���� � �
 ���� ����

����������������� ��' ����&� �$+��� �� ���
 ���� ���������

����������������� ��' �� �� ���	 � +�
 � ��
 ���� � �
 ���� ���

����������������� ��' ��� ����� � � **��� ������� ����� ����� � �

����������������' �	 ��� � ��' 9����� �� � ���� "*� �� � ���' �	 ��� � ��' "����:�������

Figure 5. Aligned object layouts

The space cost of rounding � �� � ���� "�up to a multiple of ' �	 ��� � ��'
can be reduced directly to a multiple of � ��' . However, the
allocation interface would then become different from the standard
one for malloc(), which only takes object size as the argument and
not alignment.

The size field in Figure 5 allows spatial safety checks to be carried
out (Section 4.2). Bitfields ���&� �- and ���&� �$ are used to place
fixed bit patterns in the protected heap to aid backward
compatibility searches (Section 5).

Another departure the layout in Figure 5 makes over the simpler
layout in Figure 1 is that an �� �� field is kept for the purpose of un-
initialized access checks in the allocated object. This is a Purify-like
approach wherein the object is divided into equal areas, each
represented by an initialization flag. A write sets the area’s init flag.
If a read is carried out in an area before the init bit is set, it indicates
an un-initialized field access. This approach captures un-initialized
reads of all types, and not just pointer types as is obtained in [1, 22].
Furthermore, since the number of flags is a constant, the
initialization checks (e.g. resetting flags upon object allocation) all
transpire in constant time unlike the linear-in-object-size cost of [1,
22]. For small objects, the flags cover initialization errors
comprehensively, for large objects, the coverage is approximate.

One of the useful features of this arrangement is that all meta data
for object � wastes no padding bits or bytes and minimally occupies
four words before member �. Furthermore there is no padding after
member o if its alignment is doubleword. The stored object size in
an object’s metadata omits the padding incurred by the field � in
rounding to a doubleword. This is for the purpose of accurate
spatial checks.

4.2 General Arithmetic-Supporting Pointers
In C/C++, pointers are scalar types so they ought to be represented
within one or two machine words (consistent with standard scalar
sizes). Figure 6 presents our general encoded pointers in two words.

� ��	 ���6A���

��� ��' ���+��� �� ���
 ���� ��� ��' ����� � ��+�
 � ��
 ���� � �
 ���� ��**�� ��' �-�

� ��' ���� ���
 ��@� ��
 � ��� �� ���**�� ��' �$�

����

Figure 6. General pointer layout

76

In the above layout of general pointers (6A), the first word encodes
version-carrying pointer data as discussed in the algorithms
presented earlier (Figures 1-4). The second word stores a regular un-
encoded pointer that can point to any inner member of the object.
This pointer is not stored as an offset and occupies a whole word so
that following C’s semantics, general pointer arithmetic can shift
this pointer around the whole machine address space (within and
beyond protected heap) without bothering whether the pointer
points to a valid object or not. Thus C’s general pointer arithmetic is
fully supported (it is carried out directly on the un-encoded pointer).
Validity checking occurs only when a pointer is dereferenced, to
check whether the object pointed to is inbound or not.

A reduced-heap implementation of our pointer is given in Figure 7.
This implementation is pertinent when the heap requirements of a
program are small. In the context of migration of 32-bit programs to
64-bit platforms, even the largest useful heap sizes can well be the
largest supported by 32-bit systems. The doubled size of a 64-bit
pointer means that meta-data beyond the bits needed for addressing
the largest 32-bit heaps can be stored within one 64-bit pointer. The
meta-data stored beyond
 � ��
 ���� � �
 ���� �required to address the heap
is optimized by converting the one-word occupying
�� ���
 ��@� ��
 � ��� �� ��from Figure 6 to an �� ���
 ��@� ��
 ���� � ��in Figure 7.
This conversion is based on the insight that an intra-object pointer is
likely to mostly remain inbound (this drives the work in Jones et al.
[12], where mostly, further reach of the pointer is explicitly
disallowed).

The number of bits required to represent �� ���
 ��@� ��
 ���� � � is
computed by the following static analysis. The maximum size of an
object allocated by the program is estimated (this is typically known
from the associated type in case of non-array objects). The size is
bounded by the protected heap size, which can further be bounded
more tightly by the user in which case a dynamic bounds check each
time an object is allocated is carried out. The maximum deviation of
a pointer out-of-bounds is estimated. For this, it is known that the
maximum deviation by pointer arithmetic can only occur prior to a
dereference using the pointer. The dereference dynamically checks
for the pointer being inbound. Each pointer if properly initialized, is
initialized as inbound or a < =)) pointer wherein the
�� ���
 ��@� ��
 ���� � � is zero4. Proper initialization is verified statically
in our work for now. The maximum that a pointer can deviate
beyond this inbound or zero offset into invalidity is bound by the
largest chain of pointer arithmetic operations that can be executed in
the program before a dereference of the pointer. A static proof that
each pointer arithmetic operation must be succeeded within a finite
path by a dereference of the pointer is sufficient to bound the
maximum deviation. The deviation is the maximum sum of the
pointer offsets carried out along any such path in the program. This
is carried out intra-procedurally in our work as this seems to be quite
sufficient so far.

Once the maximum bound on any pointer’s outbound excursion is
computed, �� ���
 ��@� ��
 ���� � �
 ���� �is computed as 1 + log2 (maximum
excursion bound + maximum allocated object size). If the

4 Note that a pointer can be created using a cast from integer

explicitly or implicitly in which case the pointer’s outbound
excursion cannot be assumed to be zero unless the novel
support provided by our work here (see backwards
compatibility, section 5) in mapping the integer to an inbound
pointer or NULL is relied upon.

maximum excursion bound is not a known constant, the reduced
heap implementation is not used5. The extra bit is required for the
sign bit to cover negative offsets.

� ��	 ���61����

� �� � � ' �� ��' ���� ���
 ��@� ��
 ���� � ��+��� ���
 ��@� ��
 ���� � �
 ���� ���

� ��' ���+��� �� ���
 ���� ���

� ��' ����� � ��+�
 � ��
 ���� � �
 ���� ���

����

Figure 7. Reduced-heap pointer layout
The object layout for a reduced-heap implementation changes from
Figure 5 to include padding equivalent to �� ���
 ��@� ��
 ���� � � field in
each of the first three meta-data words.

Spatial test for a reduced-heap pointer comprises casting its
�� ���
 ��@� ��
 ���� � ��to an unsigned word and checking whether it is less
than the unsigned object size. This is a fast one-comparison test
(instead of conjunction of two tests for upper and lower bounds), in
which negative offsets are always larger than any object size due to
the contribution of the sign bit (note that size is represented in

 � ��
 ���� � �
 ���� which are always fewer than a � ��' due to
�� �� ���
 ����). Spatial test for a general-heap pointer uses the same
test as above, after generating an �� ���
 ��@� ��
 ���� � � equivalent from
the ���� � � and the �� ���
 ��@� ��
 � ��� �� � fields.

As described in Section 3, the < =)) pointer is encoded to point to an
object of size 0, which means that its spatial test will always fail.
This is a special object containing only meta-data fields. < =))
pointer dereferences are caught as spatial errors during dereferences,
which eliminates special-case treatment. For a free operation, it is
checked that the �� ��� ��@� �� ���� � � is 0 besides the regular spatial and
temporal checks.

Pointer arithmetic operations are modified to increment or
decrement the �� ���
 ��@� ��
 ���� � � or �� ���
 ��@� ��
 � ��� �� � fields in an
encoded pointer. Note that this maintains pointer arithmetic
operations as constant-time operations.

4.3 Statically Unknown Allocations
Given that C’s malloc takes a dynamic size argument, the search of
the corresponding object lists (or allocation/deallocation functions
as described here) is a dynamic cost. While for the large majority of
cases, the dynamic size would be tied to a (statically-known) type’s
allocation (hence sizeof() is known statically), a user is free to
allocate space completely dynamically (e.g. one of the benchmarks
here, MST, allocates an array of size provided by user input
dynamically). For the former case of the statically known types, the
search can be eliminated statically as described in Figures 1-4. For
the unusual, fully dynamic case, the search cost can be bounded to a
constant in our scheme as follows: Dedicate a Pth portion (P is a
constant) of the protected heap of size H as a search array to contain
access data for all dynamic sizes handled by the heap. Memory
other than the protected heap can be used for this purpose. The pth
slot in the array can contain access data for sizes [p*P … (p +1)*P -

5 A user-defined bound on �� ���
 ��@� ��
 ���� � �
 ���� can still be used,

with dynamic checking carried out at each pointer arithmetic
operation to optionally implement a reduced heap strategy.

77

1] within itself that can be searched in time proportional to constant
P. In effect this search array provides a hash table with constant
search size (clash per bucket). This method may be fine-tuned
based on static/dynamic profiling/analysis of information of the
sizes actually generated by the program.

4.4 Stack and Globals Protection
Any stack scalar variable requiring run-time protection checks for
the storage it represents (e.g. an automatic variable whose address is
taken) is shifted to the heap. This is straightforwardly done by
wrapping the variable’s type in a struct. An automatic variable
initialized by the struct allocation is then generated so that every
time it is instantiated in a new stack frame, the struct is heap
allocated. References to the original scalar are replaced by
references to the automatic variable’s struct member. Each time the
stack frame is destroyed, the structs allocated for its variables are de-
allocated so that no later dereferences are allowed. At the time the
stack frame is destroyed, the pointers to the allocated structs are
checked for liveness as a part of deallocation. If any of the structs
has been deallocated before, then an exception is thrown, which
catches the user-deallocation of stack variables.

Similarly, a global scalar requiring run-time protection is also
moved to heap by replacing it with an un-initialized struct-wrapped
counterpart and changing global references in the program to the
struct member. The user-defined main() is renamed and called from
within a system-generated main() that initializes the global structs
with allocated objects. The system-generated main() deallocates the
global structs at its end, whereupon user deallocations of globals are
caught.

Non-scalar automatic and global variables are handled similarly,
without requiring wrapper structs.

5. BACKWARD COMPATIBILITY
As mentioned in the introduction, the scalar sizes of our fat pointers
can enable them to be compiled at the same size as standard
pointers. Backward compatibility then reduces to the problem of
providing encoding and decoding support for pointers when
interacting with unprotected code through libraries, pointer casts to
integers etc. Of these the decoding problem is simple; the interface
code walks over the data to be passed to unprotected code and calls
' � ��' �
 � ��� �� � (Figure 2) and replaces encoded pointers with
decoded pointers in place (in data). The < =)) pointer is decoded to
the standard C < =)) pointer as a special case. The problem of
encoding non-< =)) pointers passed back from un-protected code is
more involved and is as described below.

First the allocation functions linked to un-protected/library code are
made variants of the protected heap allocation functions as follows.
The allocator returns protected heap objects on request, with the
change that a decoded pointer to the object is returned, and not an
encoded pointer. Prior to returning the object, the decoded pointer
and its encoded version are stored in a global table for use later by
interface functions.

Once the unprotected/library code finishes executing and the
interface to the code is reached, all data returned by the unprotected
code is walked in order to replace decoded pointers by encoded
ones. The global table populated by allocations above is used as an
association list in this replacement process as is the set of decodings
that were carried out when the unprotected code was entered.

The association list of encoded/decoded pointers cannot suffice in
general. For the decoded pointers whose encoding is still not found,
the following method is used. From the location pointed by the
decoded pointer in protected heap, a preceding pair of ���&� �-�

���&� �$ patterns is located in the heap. A sanity check that these are
indeed intended marker values is carried out by traversing the
previous and next fields relative to the markers to locate their
objects and corresponding marker values. Consistency check with
these objects increases confidence in the pattern discovery. In
searching for the preceding markers of a decoded pointer, only
preceding memory up to the size of the largest-allocated object has
to be searched. The search starts from the nearest preceding marker
pair such that the associated size field keeps the decoded pointer
within bounds of the associated object. For each such candidate
object, the previous object in the doubly-linked list of objects is
looked up. Each shift to a previous object is checked for
consistency with a traversal back using the next link. If a consistent
traversal back to an �������� '
 ��� �
 & header is obtained, only then it is
assured that the starting marker values represent a valid, live object.
Once the validity of the object containing the decoded pointer is
verified, then the encoded pointer is generated straightforwardly. It
is assumed that for non-< =)) pointers, the unprotected code only
returns pointers intended to be inbound and to live objects. If no
live containing object is found, then an error is reported.

An integer cast to pointer generates an undecoded pointer initially,
which is then converted to an encoded pointer as discussed above.
Similarly encoded pointers are cast to integer by first converting
them to decoded pointers.

6. PERFORMANCE
As far as the asymptotic performance of our algorithms is
concerned, note that none of the routines in Figures 1-4 (and their
general pointer discussion, Section 4) have any loops or recursion.
Any search cost for object lists/accessors for any object size k is
constant as described using P-denominated structures in Section 4.3.
Thus the cost for providing memory safety (allocation, deallocation,
pointer arithmetic, and verification overhead) in our system
comprises only constant time operations.

In this section we characterize the cost constants of our work. For
this, we have both reduced-heap and general implementations run
on a 64-bit machine (AIX 6.1.0.0, Power5 2.09GHz, 4G RAM)
using GCC 4.2.4 for compilation at –O3 level of optimization, with
version recycling/garbage collection within our system completely
disabled. We have benchmarked our performance on the memory-
intensive applications of the Olden Suite which comprises programs
that have been commonly benchmarked by the relevant related
work. We have benchmarked only publicly available Olden
applications (all that we could find, which was from the Cyclone
site, containing four Olden applications in all, see
http://www.cs.umd.edu/projects/PL/cyclone/benchmarks-1.0.tar.gz). The
benchmarks contain several NULL-dereference errors, all of which
were caught by our work. For the benchmarks, the general and
reduced-heap implementations were chosen such that all encoded
pointer bitfields are rounded to multiples of a byte. This enables a
specialized kernel to be generated in which bit-field access gets
replaced by field access and pointer arithmetic in general.

The general-heap benchmarks use one-byte �� �� ���
 ���� and four-
byte
 � ��
 ���� � �
 ���� , wasting three-bytes as padding. The reduced-
heap implementation uses one-byte �� �� ���
 ���� , three-byte

78

�� ���
 ��@� ��
 ���� � �
 ���� , and four-byte
 � ��
 ���� � �
 ���� ; Due to the lack
of 128-bit integer types in GCC (encoding as a 128-bit long double
runs into a GCC bug at –O3 level optimization), we split the 128-bit
general-heap-encoded pointer into two 64-bit unsigned long
quantities (one the �� ���
 ��@� ��
 � ��� �� � and the other containing the
�� �� ���
 ���� and
 � ��
 ���� � �
 ����). The two longs are carried
everywhere the original pointer is, as scalars using a straightforward
source-to-source transformation. When storing the pointer in
memory, or communicating with the external world, the two longs
are placed adjacent to each other just as they would be in a 128-bit
layout (Figure 6).

The static analysis (for intra-object-offset field size, Section 4.2)
establishing these benchmarks to be capable of reduced-heap
implementation also establishes proper initialization, which means
that the run-time initialization check mechanism is eliminated from
these benchmarks. Furthermore, no stack or global variables require
heap-shifting (as none of them involve arrays, or have their address
taken). These optimizations are commensurate with the
optimizations carried out in [1, 8, 22]. While [1, 22] do incur an
extra dynamic overhead of resetting any pointers in allocated
memory blocks, this cost is minor (resetting allocated blocks to 0
adds less than 0.2% to original application times). Hence the cost
comparison is generous, since [1] has additional run-time
optimizations enabled eliminating expensive temporal checks
dynamically and [8] uses a combination of static and run-time
methods in automatic pool allocation to reduce run-time costs. Our
results are shown in Table 1 and contrasted with prior work. The
column unprotected run time gives the average time taken by an
application for one run in a batch of twenty runs. The times are
measured using getrusage() system call and comprise the user +
system times. The cost of setting up the protected heap using an
sbrk() call is included in each application’s time.

Among our benchmarks, MST performed the worst, in part because
it accesses the kernel via the P-denominated structures of Section
4.3. This is because MST dynamically allocates arrays of a size that
is provided as user input. Hence allocations for these arrays become
dynamically-sized and the kernel access acquires a layer of dynamic
deconstruction described in Section 4.3. In the reduced heap case,
we benchmarked the application using fixed array sizes also. This
reduced the overhead down to 83%, an improvement of 11.3% that
brings the average overhead of reduced heap implementation to
below 49% (for programs which do not have dynamically-sized
mallocs).

Note that on average, our work performs better than the nearest prior
work [22] by a factor of 2.33 for general heap and 2.42 for reduced
heap. We report comparisons with [1, 22] since they share our goals
of complete memory safety for C without changing the memory
model (free() not obviated by garbage collection). We have also
considered [8] since its temporal checking via virtual pages is close
to our own core concept of versions. Other approaches that we
haven’t contrasted with individually here have different goals than
us (changed memory model – CCured [6, 14], Cyclone [11], and
Fail-Safe C [16]; or address a subset of safety issues (mostly spatial)
– Jones et al. [12], Ruwase and Lam [18], Dhurjati et al. [7] and
Loginov et al. [13]). To the best of our knowledge, our work
advances the state of the art in complete memory safety for C-like
languages by well over a factor of 2 (see comparison with [22]
above).

7. CONCLUSION AND FUTURE WORK
We have presented a novel scheme for comprehensive safety in the
context of memory models like that of the C language. We do not
change the memory model (e.g. free() remains meaningful, and not
subsumed by garbage collection). Instead, we provide safety for all
issues along with the following novel results: (a) our work is table
free, saving time/space costs of lookup; (b) operations like deference
checking overhead, allocation, deallocation, and pointer arithmetic
overhead have only constant-time costs; (c) encoded pointers are fat,
but within scalar sizes (one to two words), which makes them
amenable to aggressive optimization, backward compatibility and
atomic use; (d) backward compatibility now has support for
encoding and decoding of arbitrary pointers; (e) benchmarks show
good performance even on memory-intensive Olden applications (<
55% average overhead, over twice faster than nearest prior work),
which suggests that our work is likely to be even faster in the usual,
not-so-memory-intensive applications.

We plan to complete our on-going implementation of conservative
garbage collection for version recycling and to report our experience
on a larger set of benchmarks.

8. ACKNOWLEDGEMENTS
Harshit Shah was supported by an Indo-Italian Fellowship under the
ITPAR Programme. He has carried out this work at IBM India
Research Laboratory, New Delhi.

Table 1. Benchmarks of Olden Suite Applications

Benchmark Unprotected run
time (seconds)

Reduced Heap
(overhead, %)

General Heap
(overhead, %)

[1] (overhead,
%)

[8] (dangling ptr
checks only,
overhead, %)

[20] (overhead,
%)

TREEADD 1.00 15 38 - 268 223

MST 0.35 94 98 400 853 76

BISORT 3.17 49 57 - 222 76

TSP 2.90 49 24 - 312 128

Average 1.86 52 54 400 414 126

79

9. REFERENCES
[1] Austin, T. M., Breach, S. E., and Sohi, G. S. 1994. Efficient

detection of all pointer and array access errors. In Proc. ACM
SIGPLAN 1994 Conf. Programming Language Design and
Implementation (Orlando, Florida, United States, June 20 - 24,
1994). PLDI '94. ACM, New York, NY, 290-301.
DOI=http://doi.acm.org/10.1145/178243.178446.

[2] Berger, E. D. and Zorn, B. G. 2006. DieHard: probabilistic
memory safety for unsafe languages. In Proc. ACM SIGPLAN
2006 Conf. Prog. Language Design and Implementation,,
SIGPLAN Not. 41, 6 (Jun. 2006), 158-168.
DOI=http://doi.acm.org/10.1145/1133981.1134000.

[3] Boehm, H. 1993. Space efficient conservative garbage
collection. In Proc. ACM SIGPLAN 1993 Conf. Prog.
Language Design and Implementation (Albuquerque, New
Mexico, United States, June 21 - 25, 1993). R. Cartwright, Ed.
PLDI '93. ACM, New York, NY, 197-206.
DOI=http://doi.acm.org/10.1145/155090.155109.

[4] ISO/IEC 9899:1999 C standard, 1999. ISO/IEC 14882:1998
C++ standard, 1998. Also, ISO/IEC 9899: 1999 C Technical
Corrigendum, 2001, www.iso.org.

[5] Chilimbi, T. M. and Hauswirth, M. 2004. Low-overhead
memory leak detection using adaptive statistical profiling. In
ASPLOS 2004, SIGPLAN Not. 39, 11 (Nov. 2004), 156-164.
DOI=http://doi.acm.org/10.1145/1037187.1024412.

[6] Condit, J., Harren, M., McPeak, S., Necula, G. C., and
Weimer, W. 2003. CCured in the real world. In Proc. ACM
SIGPLAN 2003 Conf. on Programming Language Design and
Implementation (San Diego, California, USA, June 09 - 11,
2003). PLDI '03. ACM, New York, NY, 232-244.
DOI=http://doi.acm.org/10.1145/781131.781157.

[7] Dhurjati, D. and Adve, V. 2006. Backwards-compatible array
bounds checking for C with very low overhead. In Proc. 28th
Int. Conf. Software Engineering (Shanghai, China, May 20 -
28, 2006). ICSE '06. ACM, New York, NY, 162-171.
DOI=http://doi.acm.org/10.1145/1134285.1134309.

[8] Dhurjati, D. and Adve, V. 2006. Efficiently Detecting All
Dangling Pointer Uses in Production Servers. In Proc. Int.
Conf. Dependable Systems and Networks (June, ’06). DSN
’06. IEEE Computer Society, Washington, DC, 269-280.

[9] Dhurjati, D., Kowshik, S., and Adve, V. 2006. SAFECode:
enforcing alias analysis for weakly typed languages. In Proc.
ACM SIGPLAN 2006 Conf. Prog. Language Design and
Implementation, SIGPLAN Not. 41, 6 (Jun. 2006), 144-157.
DOI=http://doi.acm.org/10.1145/1133255.1133999.

[10] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proc. Usenix Winter 1992 Technical
Conference (San Francisco, CA, USA, Jan. 1992). Usenix
Association, 125-136.

[11] Jim, T., Morrisett, J. G., Grossman, D., Hicks, M. W., Cheney,
J., and Wang, Y. 2002. Cyclone: A Safe Dialect of C. In
Proceedings of the General Track: 2002 USENIX Annual
Technical Conference (June 10 - 15, 2002). C. S. Ellis, Ed.
USENIX Association, Berkeley, CA, 275-288.

[12] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs. In
Automated and Algorithmic Debugging, Linkoping, Sweden,
pages 13--26, 1997.

[13] Loginov, A., Yong, S. H., Horwitz, S., and Reps, T. W. 2001.
Debugging via Run-Time Type Checking. In Proc. 4th
International Conf. Fundamental Approaches To Software
Engineering (April 02 - 06, 2001). H. Hußmann, Ed. LNCS
vol. 2029. Springer-Verlag, London, 217-232.

[14] Necula, G. C., McPeak, S., and Weimer, W. 2002. CCured:
type-safe retrofitting of legacy code. In Proc. 29th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Portland, Oregon, January 16 - 18,
2002). POPL '02. ACM, New York, NY, 128-139. DOI=
http://doi.acm.org/10.1145/503272.503286.

[15] Nethercote, N. and Seward, J. 2007. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and
Implementation (June 2007). PLDI ’07. ACM, New York, NY,
89-100. DOI= http://doi.acm.org/10.1145/1273442.1250746.

[16] Oiwa, Y. Implementation of a Fail-Safe ANSI C Compiler.
PhD Thesis, Department of Computer Science, University of
Tokyo, December 2004.

[17] Qin, F., Lu, S., and Zhou, Y. 2005. SafeMem: Exploiting
ECC-Memory for Detecting Memory Leaks and Memory
Corruption During Production Runs. In Proc. HPCA (February
12 - 16, 2005). IEEE Computer Society, Washington, DC,
291-302.

[18] Ruwase, O. and Lam, M. 2004. A practical dynamic buffer
overflow detector. In Proc. Network and Distributed System
Security (NDSS) Symposium. February 2004, 159-169.

[19] Seward, J. and Nethercote, N. 2005. Using Valgrind to detect
undefined value errors with bit-precision. In Proc. USENIX
Annual Technical Conference (Anaheim, CA, April 2005).
USENIX ’05. USENIX Association, Berkeley, CA.

[20] Varma, P. “Generalizing Recognition of an Individual Dialect
in Program Analysis and Transformation”, In Proc. ACM
Symp. Applied Computing (SAC 2007) (Seoul, Korea, March
11-15, ’07) ACM Press, New York. 1432-1439.
DOI=http://doi.acm.org/10.1145/1244002.1244310.

[21] Varma, P. Anand, A., Pazel, D. P., Tibbitts, B. R. “NextGen
EXtreme Porting: Structured by Automation”, In Proc. ACM
Symp. Applied Computing (SAC 2005) (Santa Fe, NM, USA,
March ’05) ACM Press, New York. 1511-1517.
DOI=http://doi.acm.org/10.1145/1066677.1067018.

[22] Xu, W., DuVarney, D. C., and Sekar, R. 2004. An efficient and
backwards-compatible transformation to ensure memory safety
of C programs. In Proc. 12th ACM SIGSOFT Int. Symposium
on Foundations of Software Engineering (Newport Beach, CA,
USA, October 31 - November 06, 2004). SIGSOFT '04/FSE-
12. ACM, New York, NY, 117-126. DOI=
http://doi.acm.org/10.1145/1029894.1029913.

80

